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Abstract 

Background:  Electromyography (EMG)-based audiovisual biofeedback systems, developed and tested in research 
settings to train neuromuscular control in patient populations such as cerebral palsy (CP), have inherent implementa-
tion obstacles that may limit their translation to clinical practice. The purpose of this study was to design and validate 
an alternative, plantar pressure-based biofeedback system for improving ankle plantar flexor recruitment during walk-
ing in individuals with CP.

Methods:  Eight individuals with CP (11–18 years old) were recruited to test both an EMG-based and a plantar pres-
sure-based biofeedback system while walking. Ankle plantar flexor muscle recruitment, co-contraction at the ankle, 
and lower limb kinematics were compared between the two systems and relative to baseline walking.

Results:  Relative to baseline walking, both biofeedback systems yielded significant increases in mean soleus (43–
58%, p < 0.05), and mean (68–70%, p < 0.05) and peak (71–82%, p < 0.05) medial gastrocnemius activation, with no 
differences between the two systems and strong relationships for all primary outcome variables (R = 0.89–0.94). Ankle 
co-contraction significantly increased relative to baseline only with the EMG-based system (52%, p = 0.03).

Conclusion:  These findings support future research on functional training with this simple, low-cost biofeedback 
modality.
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Background
Effective recruitment of the ankle plantar flexor muscles 
is necessary to modulate the forward and vertical pro-
gression of the center of mass for an efficient exchange 
of potential and kinetic energy during bipedal walking 
[1, 2]. Individuals with cerebral palsy (CP) [3], stroke 
[4, 5], and the elderly [6], often lack the neuromuscular 

control to effectively utilize their plantar flexors dur-
ing walking. For individuals with CP, the most prevalent 
pediatric-onset movement disorder, there is broad clini-
cal agreement that plantar flexor dysfunction often con-
tributes to gait impairment [7], creating a barrier to an 
active lifestyle and predisposing this population to a host 
of secondary effects associated with inactivity [8], includ-
ing an eventual loss of independent ambulation [9]. For 
this reason, interventions designed to improve neuro-
muscular control of the ankle plantar flexors could have 
a significant impact on long-term mobility for individuals 
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with CP, or any other patient populations that experience 
reduced motor control at the ankle.

Several audiovisual biofeedback systems (e.g., step-
length feedback) have been developed for individu-
als with CP with the goal of modulating upper or lower 
limb position, force, or motor control [10, 11]. To date, 
most audiovisual biofeedback studies aimed at increas-
ing lower-limb muscle control in CP have utilized an 
electromyography (EMG)-based system, whereby a user’s 
muscle activity is displayed to them in real-time [12–14]. 
While EMG-based audiovisual biofeedback provides 
direct feedback of the intervention’s target (i.e., increased 
muscle activity), there are significant limitations to the 
EMG biofeedback modality that prevents widespread 
adoption in clinical or home settings, including motion 
artifact noise during walking; skin-electrode interface 
reliability challenges, like hair and sweating; the neces-
sity and complexity of proper anatomical placement of 
the sensors, particularly when placing sensors on small 
limbs; and the cost of an EMG system. This may explain 
why, despite a demonstrated benefit of plantar flexor 
EMG-based biofeedback for improving ankle function 
and gait symmetry in CP nearly three decades ago, this 
gait training tool has failed widespread adoption in clini-
cal practice. Practical biofeedback modalities capable of 
increasing plantar flexor recruitment during gait training 
would likely have widespread appeal.

We theorize that a potential alternative to a plan-
tar flexor EMG-based biofeedback system could be an 
underfoot plantar pressure-based system that would 
measure and provide feedback on the change in forefoot 
pressure generated from plantar flexor muscle recruit-
ment. Pressure sensors are inexpensive and could be 

quickly and easily accommodated by most footwear, and 
have been used previously to modulate muscle activity 
at the ankle during walking for individuals with chronic 
ankle instability [15]. If effective, plantar pressure-based 
biofeedback may expand access to neuromuscular gait 
training by offering a practical solution for in-clinic and 
at-home use. Before a plantar pressure-based system like 
this could be clinically translated, however, it should be 
validated by comparing changes in muscle activity with 
those observed from an EMG-based system during 
walking.

The primary aim of this study was to clinically validate 
the use of a plantar pressure-based audiovisual biofeed-
back system to increase ankle plantar flexor engagement 
during walking by comparing changes in muscle activa-
tion levels to an EMG-based audiovisual biofeedback 
system in CP. We hypothesized that both biofeedback 
modalities would result in a significant increase in plan-
tar flexor activity while walking, with no difference and 
strong relationships between the two systems, validating 
the use of the plantar pressure-based system as an alter-
native to an EMG-based system.

Methods
We developed a simple plantar pressure-based bio-
feedback system comprised of a force sensitive resis-
tor (FSR) placed under the ball of the fore-foot that 
responded to plantar flexor muscle activity indirectly 
through push-off with the ground (Fig.  1A). We com-
pared our plantar pressure-based system to EMG-based 
biofeedback, which we considered the “gold stand-
ard”, given that it provides direct feedback of the met-
ric that a user is attempting to modulate (i.e., muscle 

Fig. 1  A Plantar pressure-based setup, with a force sensitive resistor (FSR) placed under the pad of the foot to measure changes in plantar pressure 
with contraction of the ankle plantar flexors; B standalone plantar pressure-based biofeedback system; C experimental protocol for validating the 
plantar pressure-based audiovisual biofeedback system against an EMG-based system (measuring and displaying soleus muscle activity), where 
both systems used an identical display of a real-time moving bar graph and horizontal target line with an audible “ding” when this target line was 
passed
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activation), and has been tested in previous studies [13, 
16]. To isolate the effects of each biofeedback modal-
ity while controlling for the components attached to 
the body, we used the same wearable setup (i.e., plantar 
pressure and EMG systems) during all walking condi-
tions (i.e., baseline, plantar pressure-based biofeedback, 
and EMG-based biofeedback).

Plantar pressure biofeedback system
Plantar pressure was measured using an FSR (FlexiForce 
A502, Tekscan) secured to a thin carbon fiber foot plate. 
The FSR had a relatively large (51 × 51 mm) sensing area 
that was centered under the typical location for the head 
of the first metatarsal (the “pad” or “ball” of the foot). The 
FSR location remained the same for each participant, 
as an aspect of the present study was to evaluate if an 
FSR placed in this area could serve as a suitable metric 
for providing audiovisual biofeedback of ankle plantar 
flexion for different foot types. The FSR was wired to a 
custom printed circuit board with a microcontroller and 
Bluetooth transceiver, utilizing electronics from a modi-
fied version of our wearable robotic system presented in 
[17]. In this study, the Bluetooth transceiver communi-
cated with a laptop running a real-time MATLAB graphi-
cal user interface (GUI). To demonstrate the broader 
applicability of our approach, we also created a stand-
alone system with a smartphone application (available for 
iOS and Android from Biomotum, Inc.). The stand-alone 
system, weighing < 50 g, had the components condensed 
into a portable casing that can be attached to a user’s 
footwear (Fig. 1B).

A 5-s calibration procedure was completed at the 
beginning of each walking trial. The instantaneous plan-
tar pressure data were then normalized by the average 
peak stance phase pressure during the calibration period 
and transmitted at 100  Hz to a moving bar graph on 
the MATLAB GUI. A “target” horizontal line was also 
included on the bar graph, which was initially set to 10% 
above the average peak plantar pressure from the calibra-
tion period. The target was then adjusted based on each 
user’s performance. Specifically, if a user reached their 
target greater than 75% of steps within a minute, the line 
was increased by 10%. If a user reached their target less 
than 50% of steps within a minute, the line was decreased 
by 10%. If a user reached their target between 50 and 75% 
of steps within a minute, the line was held constant. If a 
participant reached the target line, the bar graph changed 
from red to green, and a “ding” sound was emitted from 
the laptop speakers. Once the bar dropped back below 
the target line, the bars changed back to red (Fig.  1C). 
Biofeedback was provided for each participant’s more 
impaired limb.

EMG biofeedback system
We used a commercially available system for EMG-
based biofeedback (Desktop DTS, Noraxon), which 
displayed real-time soleus muscle activity after filtering 
with a 1000 ms root mean square envelope. The filtered 
muscle activity was presented in an identical display as 
the plantar pressure-based system; the same auditory 
feedback was also provided. To match the plantar pres-
sure-based system, a “target” horizontal line was also 
set at 10% above a user’s baseline peak soleus activity, 
with the same performance-based adjustments to this 
target as the plantar pressure system (Fig.  1C). Feed-
back was provided on each participant’s more impaired 
limb.

Participants
This protocol was approved by the Northern Arizona 
University Institutional Review Board (#986744) and 
completed at the Northern Arizona University–Phoe-
nix Biomedical Campus (Phoenix, AZ). The proto-
col utilized participants recruited for a clinical trial, 
which was prospectively registered at ClinicalTrials.gov 
(NCT04119063). Prior to starting the study, informed 
written consent was provided by each participant if 18 
years or older, or the parent/legal guardian in the case 
of minors (minors also provided verbal assent).

Participant inclusion criteria was as follows: con-
firmed diagnosis of CP (hemi- or diplegic distribu-
tions), Gross Motor Function Classification System 
(GMFCS) level I–III, the ability to walk on a treadmill 
with support for at least ten minutes, and 10–21 years 
of age. Exclusion criteria included orthopedic surgery 
within the past 6 months, botulinum toxin injections to 
the triceps surae muscles within the past 6 months, and 
any other conditions that would preclude safe partici-
pation. Eight participants were recruited (Table 1).

Protocol
To begin, height, weight, and lower limb anthropomet-
rics were measured for each participant. Next, par-
ticipants were outfitted with reflective markers on their 
lower limbs in accordance with Vicon’s lower body Plug-
In Gait model (Vicon, 100  Hz; Denver, CO, USA), and 
wireless surface EMG sensors (Noraxon, 1000 Hz; Scotts-
dale, AZ, USA) were placed on the more affected limb’s 
soleus, medial gastrocnemius, and tibialis anterior mus-
cles according to SENIAM recommendations [18]. For 
participants who were diplegic, the more affected limb 
was determined by asking the participant or participant’s 
guardian which side was weaker and/or less coordinated. 
All participants and/or participant guardians were able to 
clearly identify a more affected side.
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Participants walked under the following three condi-
tions at a self-selected speed on the treadmill for two 
minutes and 30  s while lower body kinematics and 
muscle activity were measured: (1) baseline (i.e., no 
audiovisual biofeedback), (2) unilateral plantar pres-
sure-based audiovisual biofeedback, and (3) unilateral 
EMG-based audiovisual biofeedback. All participants 
started with the baseline condition, followed by the 
plantar pressure and EMG biofeedback conditions in 
random order. P1, a younger participant, was re-tested 
on a separate day because of an apparent behavior non-
compliance issue.

Data analysis
Twenty gait cycles of each condition were analyzed. 
Three-dimensional marker data was used to calculate 
ankle and knee joint angles for both biofeedback condi-
tions versus baseline using Vicon’s Plug-In Gait Model 
and inverse kinematics. Angle data was low-pass fil-
tered (4th order Butterworth, 4 Hz low-pass cutoff) and 
an average curve for both ankle angle and knee angle 
was generated. EMG data was bandpass filtered (4th 
order Butterworth, 20–400  Hz band-pass cutoff), recti-
fied, and low-pass filtered (4th order Butterworth, 4 Hz 
low-pass cutoff [19]), and then time normalized to a gait 
cycle (heel strike to heel strike). The twenty recorded 
gait cycles were averaged together for a single activation 
curve for each muscle, and normalized to peak baseline 
activation of that respective muscle.

Peak stance phase ankle plantar flexion and knee exten-
sion angles were calculated for each condition. We chose 
to assess lower limb kinematics to determine if either sys-
tem resulted in compensatory strategies that would nega-
tively impact gait. In addition, mean and peak propulsive 
phase (51–100% of stance phase [20]) soleus and medial 
gastrocnemius activation was calculated for each condi-
tion. Finally, stance-phase co-contraction at the ankle 
between the soleus and tibialis anterior was calculated for 
each condition using a co-contraction index (CCI) [21]:

where i represents the individual time points of stance 
phase (0–100%, or 101 total data points), LEMG repre-
sents the normalized magnitude of the less active mus-
cle at time point i, and MEMG represents the normalized 
magnitude of the more active muscle at time point i. CCI 
values for the audiovisual biofeedback conditions were 
then normalized to baseline values.

Statistical analysis
We validated plantar pressure-based biofeedback 
through three main statistical comparisons: (1) by assess-
ing the change in muscle activity relative to baseline; (2) 
by comparing the change in muscle activity relative EMG 
biofeedback; and (3) similar to other validation stud-
ies [22, 23], by assessing the relationship to EMG-based 
biofeedback.

The primary outcome measures for our a-priori 
hypotheses included mean and peak propulsive phase 
soleus and medial gastrocnemius muscle activity. Sec-
ondary outcome measures included ankle CCI, and peak 
ankle plantar flexion and knee extension angle. To assess 
our primary objective of validating plantar pressure vs. 
EMG biofeedback, we performed one-way repeated 
measures Analysis of Variance (RM ANOVA) to deter-
mine the effect of biofeedback condition (i.e., baseline, 
plantar pressure biofeedback, and EMG biofeedback) on 
these outcome measures. If a significant effect of walking 
condition was found, we ran two-tailed pairwise com-
parisons with Holm–Bonferroni correction for multiple 
comparisons. In addition, we assessed the relationship 
between the plantar pressure-based and EMG-based 
primary outcome measures by calculating a Pearson 
product-moment correlation coefficient (R), where 0.3 
was considered a weak relationship, 0.5 a moderate rela-
tionship, and 0.7 a strong relationship [24]. To ensure 
that outlier values did not significantly influence this 

(1)CCI =

101

i=1

LEMG (i)

MEMG (i)
(LEMG (i)+MEMG (i))

Table 1  Participant characteristics

GMFCS Gross Motor Function Classification System level

Gender Age (y) Height (m) Weight (kg) GMFCS Distribution

P1 M 13 1.48 38.6 II Diplegic

P2 M 15 1.58 59.4 II Diplegic

P3 F 11 1.43 41.7 III Diplegic

P4 M 13 1.58 38.5 III Diplegic

P5 M 16 1.61 48.5 II Diplegic

P6 M 18 1.75 60.3 II Diplegic

P7 M 17 1.65 65.8 I Hemiplegic

P8 M 12 1.40 39.5 I Hemiplegic
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relationship, we ran an outlier analysis where any values 
1.5 times the interquartile range below the first quartile 
or above the third quartile were removed the correlation 
calculation [25]. P7’s medial gastrocnemius data was not 
available for the primary objective due to a dropped sig-
nal from the EMG sensors. All reported p-values are the 
adjusted values from the multiple comparisons correc-
tion, and significance level was set at p < 0.05.

Results
All participants successfully completed the protocol, 
walking with both audiovisual biofeedback systems and 
understanding their objective of reaching their target line 
on each step.

There was a significant effect of walking condition on 
mean soleus activity (p < 0.01; Fig.  2A). Pairwise com-
parisons indicated a significant increase in mean soleus 
activity for both the plantar pressure-based (mean ± SD) 
(43 ± 33%, p < 0.05) and EMG-based systems (58 ± 42%, 
p < 0.05) relative to mean baseline soleus activity, with 
no difference between the two systems (p = 0.09). There 
was no significant effect of walking condition on peak 
soleus activity (p = 0.08; Fig.  2B). Strong relationships 
were observed between the two systems for both mean 
(R = 0.89, p < 0.01, Fig.  3A) and peak (R = 0.92, p < 0.01, 
Fig. 3B) soleus activation. See Additional file 1 for indi-
vidual soleus activation curves for these conditions.

A significant effect of walking condition was observed 
for both mean (p < 0.01; Fig.  4A) and peak (p < 0.01; 
Fig. 4B) medial gastrocnemius activity. Pairwise compari-
sons indicated a significant increase in mean medial gas-
trocnemius activation for both the plantar pressure-based 

(68 ± 50%; p < 0.05) and EMG-based (77 ± 44%; p < 0.05) 
systems relative to baseline, with no difference between 
systems (p = 0.33). Additionally, both systems had a sig-
nificant increase in peak medial gastrocnemius activation 
relative to baseline (plantar pressure-based: 82 ± 51%, 
p < 0.05; EMG-based: 71 ± 35%, p < 0.01), but no differ-
ence was observed between systems (p = 0.36). There 
were strong relationships between the two systems for 
both mean (R = 0.94, p < 0.01, Fig. 3C) and peak (R = 0.90, 
p < 0.01, Fig.  3D) medial gastrocnemius activation. See 
Additional file  2 for individual medial gastrocnemius 
activation curves for these conditions.

A significant effect of walking condition on ankle 
CCI was found (p < 0.01; Fig.  5); pairwise comparisons 
indicated a significant increase for the EMG-based sys-
tem relative to baseline walking (52 ± 41%, p = 0.03), 
but no difference between the plantar pressure-based 
system and baseline walking (p = 0.07) or between the 
two systems (p = 0.07). No significant effects of walking 
condition were observed for the lower limb kinematic 
measures (peak knee extension angle: p = 0.6, peak ankle 
plantar flexion angle: p = 0.5; see Additional file  3 for 
individual joint angle curves).

Discussion
We achieved our primary goal of validating a plantar 
pressure biofeedback system for increasing ankle plan-
tar flexor muscle activity relative to EMG biofeedback, 
and demonstrated several expected and one surpris-
ing potential benefit of our novel system compared 
to the “gold-standard.” The findings from this study 
partially supported our hypothesis that both plantar 

Fig. 2  Average A mean and B peak propulsive phase soleus activation relative to baseline activity for the two audiovisual biofeedback systems, 
and C representative soleus activation curves (average of 20 gait cycles) across the three walking conditions: baseline (blue), plantar pressure-based 
biofeedback (orange), and EMG-based biofeedback (yellow); Error bars represent standard error of the mean, brackets indicate pairwise 
comparisons between plantar pressure-based and EMG-based systems, upward arrows represent pairwise comparisons between baseline walking 
and the respective audiovisual biofeedback system; *p < 0.05
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Fig. 3  Relationships between the EMG-based and plantar pressure-based systems for A mean soleus activation, B peak soleus activation, C mean 
medial gastrocnemius activation, and D peak medial gastrocnemius activation, where all values were normalized to baseline; *p < 0.05

Fig. 4  Average A mean and B peak propulsive phase medial gastrocnemius activation relative to baseline activity for the two audiovisual 
biofeedback systems, and C representative medial gastrocnemius activation curves (average of 20 gait cycles) across the three walking conditions: 
baseline (blue), plantar pressure-based biofeedback (orange), and EMG-based biofeedback (yellow); Error bars represent standard error of the mean, 
brackets indicate pairwise comparisons between plantar pressure-based and EMG-based systems, upward arrows represent pairwise comparisons 
between baseline walking and the respective audiovisual biofeedback system; *p < 0.05
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pressure-based and EMG-based audiovisual biofeed-
back systems would increase ankle plantar flexor mus-
cle activity while walking, with significant increases in 
mean soleus muscle activity and mean and peak medial 
gastrocnemius muscle activity relative to baseline for 
both systems, and trends toward increases in peak soleus 
activity. Importantly, there was no statistical difference in 
activation between the two biofeedback modalities, and 
strong relationships for all primary outcome variables 
between the two systems. Our finding of consistent lower 
limb gait kinematics across both biofeedback conditions, 
and relative to baseline walking, indicated that partici-
pants did not adopt any compensatory movement strate-
gies in response to feedback that could negatively affect 
their gait.

While an ankle plantar flexor EMG-based audiovisual 
biofeedback system provides direct feedback of a muscle’s 
activation level, a plantar pressure-based system provides 
indirect feedback of a muscle’s activation level, focus-
ing instead on the functional output of the muscle (i.e., 
plantar flexor force). With the EMG-based system, a user 
could raise the bar past their target level by contracting 
their soleus muscle without necessarily increasing plan-
tar flexor force if the antagonist dorsiflexor muscle (i.e., 
tibialis anterior) was contracting at the same time. Our 
finding of increased co-contraction at the ankle with the 
EMG-based system relative to baseline indicates that this 
strategy was indeed adopted by our study participants. 

With the plantar pressure-based system, on the other 
hand, increasing co-contraction at the ankle would coun-
ter the desired output of increase plantar flexor force, 
likely explaining why we did not observe increases with 
this system relative to baseline. With the goal of using a 
biofeedback system to train improved neuromuscular 
control at the ankle for enhanced walking ability, the use 
of a plantar pressure-based system may result in a more 
functional outcome. This is corroborated by the obser-
vation reported in the literature that external focus of 
attention (i.e., increased force against an FSR) is superior 
to internal focus of attention (i.e., increased activation 
of the soleus) for functional motor learning [26]. To our 
knowledge, this is only the second study to evaluate the 
ability of an audiovisual biofeedback system to influence 
ankle plantar flexor muscle activity while walking in CP. 
The previous study focused on spatiotemporal and kin-
ematic outcomes, and did not report the neuromuscu-
lar response (i.e., relative triceps surae activation) while 
walking with feedback [13]. The findings from the present 
study, therefore, are particularly enlightening, indicating 
that providing feedback in this manner to children and 
young adults with CP results in significantly increased 
neuromuscular recruitment while walking after only a 
few minutes of acclimation.

We observed statistically significant increases in mean 
and peak propulsive phase medial gastrocnemius activa-
tion with both biofeedback systems. The medial gastroc-
nemius serves a unique role relative to the soleus during 
walking, contributing more to forward propulsion [20]. 
It has been observed that individuals with CP have defi-
cits in neuromuscular control of the medial gastrocne-
mii during the push-off phase of gait, leading to reduced 
ankle power and a slow and inefficient gait pattern [27]. 
Our finding of increased recruitment of this essential 
plantar flexor muscle, specifically during the propulsive 
phase of gait, supports the potential of this audiovisual 
biofeedback system to positively impact walking perfor-
mance in this population.

There are instances where an EMG-based biofeedback 
system may be more advantageous than a plantar pres-
sure-based system, such as barefoot walking or for a user 
whose orthotics are not compatible with a pressure-sen-
sitive insole. This study, however, was motivated by the 
desire to test a more clinically accessible form of audio-
visual biofeedback to improve neuromuscular control at 
the ankle while walking. From our anecdotal observations 
on the amount of time required to set up both systems, it 
became clear that a plantar pressure-based system was a 
less resource- and time-intensive process. For example, 
one can consider the complexity of placing the sensor for 
the two systems: for the plantar pressure-based system, it 
simply requires placing the sensor on the medial forefoot 

Fig. 5  Average co-contraction index (CCI) between the soleus 
and tibialis anterior during the stance phase of gait for the two 
audiovisual biofeedback systems alone; Error bars represent standard 
error of the mean, brackets indicate pairwise comparisons between 
plantar pressure-based and EMG-based systems, and upward arrows 
represent pairwise comparisons between baseline walking and the 
respective audiovisual biofeedback system
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of the shoe insole. For the EMG-based system, one must 
utilize anatomical landmarks to locate an appropriate 
measurement spot of a muscle belly, which can be chal-
lenging for young children with low muscle volume; 
carefully prepare the skin interface by shaving hair and 
swabbing with alcohol; and carefully securing the sen-
sor components to the skin to mitigate disturbances in 
the signal from movement artifacts. In addition, there are 
notable differences in the cost required for both systems, 
with materials required for a plantar pressure-based sys-
tem coming in at a fraction of the price of the materials 
required for an EMG-based system. These practical dif-
ferences, in conjunction with the findings from this study 
that a plantar pressure-based system is able to produce 
comparable or even more-favorable neuromuscular con-
trol at the ankle, support the future investigation of plan-
tar pressure-based systems in clinical settings.

There are notable limitations of this study. First, we 
tested a relatively small sample of individuals with CP, 
which is an inherently heterogenous condition. Still, we 
observed relatively consistent increases in muscle activ-
ity across our participants with both audiovisual biofeed-
back systems. In addition, the primary aim of this study 
was to validate the plantar pressure-based system against 
an EMG-based system for a clinical population, and not 
necessarily to demonstrate any kind of training effect that 
may require greater statistical power. Second, this clini-
cal validation was limited to individuals with CP. The pri-
mary outcome of improved plantar flexor recruitment, 
however, could be valuable to several patient popula-
tions with deficits in neuromuscular control at the ankle. 
Third, our validation was limited to treadmill walking, 
which was necessary to isolate the comparison between 
biofeedback systems and provide continuous visual feed-
back to the participants. Future work will explore the 
translation of the plantar pressure-based system to an 
overground walking context with audio-only biofeed-
back. Finally, this study did not include qualitative assess-
ments of how the user experience compared between the 
two biofeedback systems, which should be explored in 
future applications of this plantar pressure-based system 
to confirm clinical viability.

Conclusion
In conclusion, we demonstrated that a simple plan-
tar pressure-based biofeedback system is capable of 
increasing functional recruitment of the ankle plantar 
flexor muscles in children and young adults with CP. 
We observed comparable or even more-favorable neu-
romuscular control at the ankle when using this system 
relative to direct EMG biofeedback. We also confirmed 
that these neuromuscular responses were not a result of 

compensatory walking patterns, with consistent lower 
limb kinematics compared to baseline walking. Future 
studies and clinical interventions should evaluate if 
functional training with this simple, low-cost system 
can result in lasting improvements in walking ability in 
CP and other patient populations.
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