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Abstract 

Background  Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor 
related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyo-
graphy, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use 
of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC net-
works (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing 
data from stroke patients with healthy participants during simple hand tasks.

Methods  EEG (61 sensors) and EMG (8 muscles per arm) were simultaneously recorded from 12 stroke (EXP) and 12 
healthy participants (CTRL) during simple hand movements performed with right/left (CTRL) and unaffected/affected 
hand (EXP, UH/AH). CMC networks were estimated for each movement and their properties were analyzed by means 
of indices derived ad-hoc from graph theory and compared among groups.

Results  Between-group analysis showed that CMC weight of the whole brain network was significantly reduced 
in patients during AH movements. The network density was increased especially for those connections entailing 
bilateral non-target muscles. Such reduced muscle-specificity observed in patients was confirmed by muscle degree 
index (connections per muscle) which indicated a connections’ distribution among non-target and contralateral 
muscles and revealed a higher involvement of proximal muscles in patients. CMC network properties correlated with 
upper-limb motor impairment as assessed by Fugl-Meyer Assessment and Manual Muscle Test in patients.

Conclusions  High-density CMC networks can capture motor abnormalities in stroke patients during simple hand 
movements. Correlations with upper limb motor impairment support their use in a BCI-based rehabilitative approach.
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Background
Disability after stroke is largely due to residual upper 
limb motor deficit [1]. This latter is the target of 
several novel rehabilitation approaches including those 
based on Brain-Computer Interfaces—BCIs [2, 3]. 
BCIs for post-stroke motor rehabilitation rely on the 
principle that reinforcement of close-to-normal motor 
related brain activity (most frequently derived from 
electroencephalogram—EEG), results in an improvement 
of motor function [4]. Hybrid BCIs exploit physiological 
signals other than brain activity, such as muscular activity 
derived from surface electromyography (EMG), in order 
to increase the classification performance [5]. However, 
such hybrid systems could be employed in the context 
of post-stroke motor rehabilitation to monitor motor 
abnormalities, such as spasticity, co-contractions, motor 
overflow [6–10] in order to reinforce close-to-normal 
muscular activation.

To this purpose, we recently explored the potential 
of cortico-muscular coherence (CMC) patterns 
derived from high-density EEG/EMG as a feature for a 
rehabilitative hybrid BCI in healthy subjects performing 
simple hand movements (most commonly employed 
in BCI paradigms) obtaining high classification 
performances with the most discriminant EEG–EMG 
features [11]. With respect to currently available 
hybrid BCI systems which combine different signals 
at the classification stage, CMC can be conceived as an 
intrinsically hybrid feature per se allowing simultaneous 
monitoring of the interaction between brain (EEG) and 
muscular (EMG) activity.

Indeed, CMC is a measure of brain-muscle interplay 
during movement, derived from EEG–EMG coupling 
within motor relevant EEG frequency bands [12]. CMC 
is altered after stroke, showing mainly a reduction in 
EEG–EMG coupling [13]. Until recently, most CMC 
studies in stroke patients have limited the observation 
to few EEG electrodes in the affected hemisphere and 
the target muscle [12–15]. Similarly, the implementation 
of CMC-based BCIs has been limited to few EEG–
EMG couples determined a priori [16]. However, the 
complexity of post-stroke recovery is such that several 
brain regions and muscles participate in post-lesional 
re-arrangements [17–20]. Lately, stroke-related CMC 
studies have broadened the observation to multi-channel 
recordings to describe complex phenomena such as 
the contralesional hemisphere contribution [21] or 
the abnormal recruitment of antagonists and proximal 
muscles [14, 22, 23]. All this evidence supports the 
potential role of CMC control feature in a rehabilitative 
BCI paradigm for its capability to encode both volitional 
control over movement and possible deviations from 
the physiological motor system activation, thus well 

beyond the purpose of increasing system classification 
performance.

A successful introduction of CMC control feature 
in rehabilitative BCIs requires to first identify which 
properties of the widespread corticomuscular network 
(namely which EEG–EMG features) would best outline 
the complexity of post-stroke motor deficit to ensure that 
such hybrid BCI will favor functional motor recovery and 
eventually discourage maladaptive changes.

In the present study, CMC patterns were estimated 
by means of high-density recordings to best capture the 
widespread corticomuscular network properties in stroke 
patients during the execution of simple hand movements 
such as grasping and finger extension. With this aim, 
the network’s properties were then characterized by 
means of ad hoc indices derived from a graph theoretical 
approach [24]. Statistical analysis was performed to 
outline differences between healthy subjects and patients, 
performing the movements both with the affected and 
unaffected hand (AH, UH), and to seek correlation with 
upper limb motor impairment as assessed by clinical 
scales.

Methods
Participants
Twelve stroke participants were included in the study 
(EXP group: 6 females/6males age 52.5 ± 18.5  yr) 
according to the following inclusion criteria: (1) first-ever 
unilateral, cortical, subcortical, or mixed stroke, caused 
by ischemia or hemorrhage (confirmed by magnetic 
resonance imaging), that occurred 3 to 12 months prior 
to study inclusion; (2) upper limb hemiparesis that 
was caused by the stroke; and (3) age between 18 and 
80  years. The exclusion criteria were the presence of: 
(i) neuropsychological deficits preventing the ability to 
understand the instructions related to the experiment; 
(ii) concomitant diseases affecting the upper limb motor 
function (i.e., orthopedic injuries or other neurologic 
diseases affecting reaching or grasping); (iii) spasticity 
of each segment of the upper limb scored higher than 
4 on the Modified Ashworth Scale (MAS [25]). All 
stroke participants were recruited within the inpatients 
and outpatients services of Fondazione Santa Lucia, 
IRCCS, Rome, Italy and were undergoing a rehabilitative 
treatment (usual care).

Twelve healthy participants (CTRL group: 9 females/3 
males, age 43.6 ± 15.3  yr) participated in the study as a 
control group. Subjects did not present any evidence/
known history of neurologic or neuromuscular disorders, 
nor any permanent/transient condition that could affect 
upper limb motor function.
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The study was approved by the local ethics board 
at Fondazione Santa Lucia, IRCCS, Rome, Italy (CE 
PROG.752/2019) and all the participants signed an 
informed consent.

Clinical and functional evaluation was performed by 
expert physiotherapists before data acquisition (same 
day) by means of the following scales: (i) the National 
Institute of Health Stroke Scale (NIHSS) to assess general 
impairment derived from stroke [26]; (ii) the Manual 
Muscle Test (MMT) to assess strength in the paretic 
upper limb testing shoulder abduction, elbow flexion/
extension and wrist flexion/extension [27]; (iii) the MAS 
scale to assess spasticity of shoulder, elbow and wrist 
muscles [25]. The upper extremity section of the Fugl-
Meyer Assessment scale (FMA), comprising the four 
sub-scales “Upper Limb”, “Wrist”, “Hand”, “Coordination 
and Velocity” was performed to extensively describe the 
paretic upper limb residual function [28]. Handedness 
was assessed in all participants by means of the short 
form of the Edinburgh Handedness Inventory (EHI [29]).

Experimental design and data acquisition
The EEG and EMG signals were acquired simultaneously 
and sampled at 1 and 2  kHz, respectively. 61-channel 
EEG was recorded from the scalp by means of active 
electrodes (Brain Products GmbH, Germany) arranged 
according to an extension of 10–20 International System 
(reference on left mastoid and ground on right mastoid). 
Surface bipolar EMG signals were recorded by means of 
Pico EMG sensors (Cometa S.r.l., Italy) from the following 
16 muscles: extensor digitorum (ED), flexor digitorum 
superficialis (FD), lateral head of the triceps muscle (TRI), 
long head of the biceps brachii muscle (BIC), pectoralis 
major (PEC), lateral deltoid (Lat_DELT), anterior deltoid 
(Ant_DELT) and upper trapezius (TRAP) of both sides 
(L: left, R: right for healthy subjects, AH: affected hand, 
UH: unaffected hand for stroke participants). EEG and 
EMG signals were amplified by means of BrainAmp 
(Brain Products GmbH, Germany) and Wave plus 16 
channels (Cometa S.r.l., Italy) amplifiers, respectively.

The experimental setting is illustrated in Fig. 1. All par-
ticipants were seated in a comfortable chair or wheel-
chair if needed, with their forearms resting on a pillow 
placed over a table (Fig. 1a). Participants were presented 
with visual cues displayed on a screen (1  m distance). 
The experimental session consisted of 4 runs (intermin-
gled with breaks adapted to the patients’ necessities) 
during which the participant was asked to perform fin-
ger extension (Ext) and grasping (Grasp) with the right 
and the left hand separately (UH, AH for stroke partici-
pants). Each run comprised 40 trials (20 “task” trials of 
8 s each and 20 “rest” trials of 4 s each in random order). 

The inter-trial-interval lasted 3  s during which partici-
pants were required to fixate a cross in the middle of the 
screen. “Task” trials started with 4 s of preparation (”get 
ready” instruction) afterward a go stimulus appeared 
(”task” instruction) and the participant had to perform 
the task for 4 s (Fig. 1b). In “rest” trials participants had 
to relax for 4 s (“relax” instruction—Fig. 1c). Participants 
were instructed to perform the task as fast as they could 
and to hold it at 15% of Maximum Voluntary Contrac-
tion (MVC) of the target muscle until the end of the trial 
(the experimenter guided the participants via online 
visualization of EMG traces). MVCs were recorded for 
each muscle at the beginning of the experiment for 5  s. 
Stroke participants attempted the movements with their 
affected limb to the best of their own residual ability, fol-
lowing the same instructions.

Data analysis
EEG–EMG data pre‑processing
EEG data were band-pass filtered [3–60]  Hz and 
Independent Component Analysis was used to remove 
ocular artifacts (Vision Analyzer 1.05 software, Brain 
Products GmbH, Gilching, Germany). EMG signals were 
downsampled to 1000 Hz, band-pass filtered [3–500] Hz 
and the electrocardiographic (ECG) component was 
rejected through template matching approach. A 
notch filter at 50  Hz was applied to remove power-line 
artifacts on both EEG and EMG signals. Task trials were 
segmented in 8 s epochs while Rest trials were segmented 
in 4  s epochs, both from the cue onset. To obtain EEG 
and EMG artifact-free trials, we applied a semi-automatic 
procedure. Specifically, for the EEG trials we defined 
a voltage threshold (∓ 100  μV) and rejected all trials in 
which 5 channels exceeded the threshold, otherwise a 
spherical interpolation was performed to replace noisy 
channels and the trial was saved. As for the EMG trials, 
we applied a statistical criterion based on the comparison 
between the EMG characteristics of each trial and the 
median EMG characteristics of all trials (reference 
characteristic) [30] then the selected trials were visually 
inspected and validated.

As for the EXP group, the EEG time series recorded 
over different scalp positions from patients with right-
sided lesions were flipped along the midsagittal plane 
so that the ipsilesional side was common to all patients. 
Similar procedure was also applied to EMG data in all the 
patients with left affected hand (right hemisphere lesion). 
Both flipping procedures thus ensured to label the left 
hemisphere and contralateral right hand as “affected” in 
all the patients, independently from their actual lesion 
side.
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Corticomuscular coherence (CMC) pattern computation
The EEG signals were re-referenced according to the com-
mon average reference (CAR) to correctly localize CMC 
peaks over sensorimotor areas in agreement with physiol-
ogy of movement, as it has been demonstrated elsewhere 
[31]. The EEG edge electrodes were excluded from the 
analysis due to the possible presence of artifacts related 
to facial movements, thus only 41 EEG electrodes were 
included in the analysis. EMG signals were rectified before 
entering the coherence computation.

Coherence is an indicator of the linear connection 
between two signals, and it is an extension of Pearson 
correlation coefficient in the frequency domain. It is 
defined as cross-spectra normalized by auto-spectra [32]:

where Sxy
(

fj
)

 is the cross-spectrum of signal x and y, 
while Sxx

(

fj
)

 and Syy
(

fj
)

 are the power spectral densities 
of x and y respectively at a given frequency fj.

Typically to test whether CMC is significant, its 
values are compared to the chance level. However, 
in motor tasks it is mandatory to go beyond the null-
case validation and thus, to assess the significance of 
the connections against rest condition to ensure that 
only the relationships related to the executed task are 
kept. Accordingly, we decided to use a non-normalized 
version of the CMC in (1) to prevent the detection of 
false positives in CMC when the muscle activation level 

(1)Cohxy fj =
Sxy fj

2

Sxx fj · |Syy fj |

Fig. 1  Experimental setting. a Participant setting; b, c experiment timeline for Task (movement) and rest trials. The red dotted line represents the 
activation profile required to correctly complete the task as for the target muscle (ED for Ext and FD for Grasp) and Rest. In addition to EEG and 
EMG data, the recording included also kinematic data. They were collected at 100 Hz by means of 8 IMUs (MTw Awinda, Xsens Technologies, The 
Netherlands). The IMUs were placed by a double-sided medical tape on the following anatomical points: hand, mid forearm, mid arm of both upper 
limbs, over the clavicular notch and at the lumbar vertebrae level. Such data were not included in this study
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is around 0, as expected in the rest time interval of our 
experiment [33].

The CMC was computed in a 2 s-window which were 
selected differently for Task and Rest condition. As 
for “task” trials, the interval of [5–7]  s from cue onset 
was selected whereas we selected the first artifact-free 
interval of 2 s length in “rest” trials.

CMC values were estimated in the range [1–60]  Hz 
for each participant, movement (ExtR/AH, ExtL/UH, 
GraspR/AH, or GraspL/UH) and interval of interest 
(Task, Rest). Two different procedures were followed for 
the CMC estimation: across-trials and single-trials for 
Group Analysis and Single Subject Analysis, respectively. 
As for the across-trials approach (periodogram window 
length of 1  s with 0% overlap) a single CMC pattern 
was estimated from all trials in the dataset of a single 
participant, in order to have an average of CMC pattern 
for each single participant to enter in the grand average 
(see Statistical analysis—GA patterns). As for the single-
trial approach (periodogram window length of 0.250  s 
with 50% overlap), a CMC spectrum was estimated for 
each trial in the dataset, to obtain different observations 
of CMC patterns for each single participant. The CMC 
values were then extracted for the 3 considered frequency 
bands defined as alpha (8–12  Hz), beta (13–30  Hz) 
and gamma (31–60  Hz). For each of these bands, we 
identified the characteristic frequency as the frequency 
in which CMC showed the highest value for each pair of 
signals. The characteristic frequency was specific for each 
pair of signals, it was computed in the Task condition and 
used also for the Rest in order to compare patterns at the 
same frequency.

Analysis of CMC patterns properties by graph theory indices
CMC networks estimated at single-subject level were 
assessed against chance level and thus transformed into 
weighted CMC adjacency matrices. The single-subject 
CMC adjacency matrices were built as follows: for each 
EEG–EMG pair we applied an unpaired t-test between 
task and rest conditions on CMC values estimated by 
means the single-trial procedure. The significance level 
was set to 0.05. False Discovery Rate (FDR) was used 
to control family-wise error rate [34]. Such statistical 
comparison was used to assess CMC values obtained 
during movement execution/attempt against chance level 
using as null-case statistical threshold the corresponding 
CMC values in rest condition. The application of this test 
allowed to obtain for each subject and each movement a 
CMC adjacency matrix where null-values correspond to 
EEG–EMG connections not significantly different from 
rest while non-null values correspond to connections 
where CMC values were significantly higher during 

movement than rest condition. The comparison between 
task and rest conditions allowed also to reduce the 
presence of spurious connections in CMC networks due 
to volume conduction which is an intrinsic phenomenon 
of the EEG signals.

The Graph Theory was applied to the obtained CMC 
adjacent matrices to extract a set of ad hoc indices which 
synthetically described the main properties of the CMC 
patterns. This procedure aimed at reducing the CMC 
matrix complexity and thus allowing its interpretation.

Such computation was repeated for each subject, 
movement, and band.

Global network properties:

–	 CMC Weight is defined as the average of CMC 
values of the existing connections in the network. 
It is a measure of the strength of the EEG–EMG 
connections which is well-known to be reduced in 
stroke patients [13].

–	 Network Density (ND) computed as the total number 
of existing connections in the pattern normalized for 
the possible number of connections.

Network density was also calculated for each of the 
identified 4 sub-networks as follows (local networks 
properties):

–	 Density (of ) Contralateral Hemisphere (DCH) 
calculated as the total number of existing connections 
that link the target muscle (FD in Grasp and ED in 
Ext) with EEG electrodes in contralateral hemisphere 
(normalized for the possible number of connections 
in this sub-network).

–	 Density (of ) Ipsilateral Hemisphere (DIH) calculated 
as the total number of existing connections that link 
the target muscle (FD in Grasp and ED in Ext) with 
EEG electrodes in ipsilateral hemisphere (normalized 
for the possible number of connections in this sub-
network).

–	 Density (of ) Involved Side (DIS) calculated as the total 
number of existing connections entailing muscles 
in the side involved in a given motor task – target 
muscles (normalized for the possible number of 
connections in this sub-network).

–	 Density (of ) Uninvolved Side (DUS) calculated as 
the total number of existing connections entailing 
muscles in the side which is not involved in a given 
motor task – non-target muscles (normalized for the 
possible number of connections in this sub-network).

To further investigate the selective engagement of 
muscles, we computed:
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–	 Muscle Degree (MD) defined as the total number of 
connections that each muscle establishes with EEG 
channels normalized for the maximum number of 
possible connections involving it. This index allowed 
us to measure the involvement of each muscle in the 
pattern and to identify the muscles with a dominant 
role (higher degree) with respect to others. It was 
calculated for each of the recorded 16 muscles 
both during Ext and Grasp, and then a qualitative 
comparison was performed between the muscle 
degree values relative to the movement involved and 
uninvolved side.

–	 Distal/Proximal Degree Ratio (DPDR) was computed 
considering the degree of the muscles of the 
movement involved side, that were labeled as distal 
(FD and ED) and proximal (BIC, TRI, Ant_DELT, 
Lat_DELT, PEC, TRAP). It was defined as the ratio 
between the degree of distal muscles and the sum of 
degrees in distal and proximal muscles. DPDR value 
was set as equal to: 1 if the activation regarded only 
distal muscles; 0 for the activation of only proximal 
muscles; 0.5 in the case of both proximal and distal 
muscle activation with the same weight.

Statistical analysis
Grand average (GA) CMC patterns
Each movement was described by a coherence pattern as 
a result of a GA analysis computed for the CMC values 

across participants (see Figs.  2 and 3). A paired sample 
t-test with the interval (Task vs Rest) as independent var-
iable and the CMC values computed in the across-trials 
procedure as dependent variable was applied to each 
movement type, frequency band and channel pair. The 
significance level was set to 0.05. FDR was used to con-
trol family-wise error rate.

Between‑groups differences in CMC pattern properties
A Kruskal–Wallis test was applied on each graph theory 
derived index considering as factor the three groups: 
CTRL—control group executing the task with the right 
hand; EXP_UH—stroke group executing the task with 
the unaffected hand; EXP_AH—stroke group executing 
the task with the affected hand. A Tukey’s post hoc 
test was applied to assess between groups differences. 
We selected the right hand for CTRL group since no 
significant differences were observed in the graph indices 
between left and right hand.

Correlation between brain network indices and functional/
clinical scales
Brain network indices that significantly described the 
CMC patterns of stroke patients performing movements 
with the affected arm were correlated with the scores 
obtained from the following clinical scales: FMA total, 
FMA sub-scales and MMT. The Spearman’s correlation 

Fig. 2  Grand average corticomuscular coherence patterns in CTRL group estimated for each of the 3 frequency bands, alpha (8–12 Hz), beta 
(13–30 Hz), gamma (31–60 Hz). Ext: CMC patterns obtained for the extension movement executed with left (a) and right (b) hand. Grasp: CMC 
patterns obtained for the grasping movement, executed with left (c) and right (panel d) hand. The 2D body model is seen from the above: scalp 
with nose pointing up the top and arms in front of the participant. Only statistically significant CMC values are represented (paired t-test between 
task and rest trials, α = 0.05 FDR correction). The color bar codes for the CMC average value (across participants, N = 12) in the task trial
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test was applied with the indices values as the dependent 
variable and the clinical scales’ scores as the independent 
variable.

Results
Participants
No significant between group (EXP and CTRL groups) 
differences were found in age (t-test p = 0.22) and number 
of subjects per gender (Chi-square test p = 0.08). All 
subjects in the CTRL group were right-handed according 
to the EHI. Ten patients in the EXP group were also 
right-handed while 2 were ambidextrous. Stroke severity 
was mild according to NIHSS which was lower or equal 
to 4 in all EXP participants [35]. Upper limb deficit as 
classified with FMA was mild to moderate, ranging from 
23/66 to 63/66 [36]. See Table 1 for further details about 
participants.

CMC grand average (GA) patterns
The Fig.  2 illustrates the GA CMC patterns obtained 
for the Ext (left panel) and Grasp (right panel) executed 
with left (panel a,c) and right (panel b, d) hand in CTRL 
group. As expected, these results confirmed our recent 
findings in [11]. In Ext condition (Fig.  2, Ext, panel a, 
b), we found the highest CMC values for connections 
involving mainly the target muscle (ED) and most of the 
bilateral sensorimotor EEG electrodes, in alpha and beta 

bands. In gamma band, CMC patterns were more diffuse 
involving almost all the muscle of the relative side and 
showed lower values of coherence with respect to those 
in the alpha and beta band. The Grasp condition (Fig. 2, 
Grasp, panel c, d) showed CMC values lower than those 
obtained in Ext. The target muscle FD was connected 
with almost all the electrodes over the bilateral senso-
rimotor areas in alpha band, whereas ED and proximal 

Fig. 3  Grand average corticomuscular coherence patterns in EXP (stroke) group estimated for each of the 3 frequency bands, alpha (8–12 Hz), beta 
(13–30 Hz), gamma (31–60 Hz). Ext: CMC patterns obtained for the extension movement executed with UH (a) and AH (b). Grasp: CMC patterns 
obtained for the grasping movement, executed with UH (c) and AH (d). The 2D body model is seen from the above: scalp with nose pointing up 
the top and arms in front of the participant. Only statistically significant CMC values are represented (paired t-test between task and rest intervals, 
α = 0.05 FDR correction). The color bar codes for the CMC average value (across participants, N = 12) in the task trial

Table 1  Demographic and clinical characteristics of the patients 
(means ∓ standard deviation)

C: Chronic; FMA: Fugl-Meyer Assessment scale, upper limb section, ranging from 
0 (most affected) to 66 (least affected); H: Hemorrhagic; I: Ischemic; L: left; LH: 
left-handed; MH: mixed-handed; MAS: Modified Ashworth Scale; NIHSS: National 
Institute of Health Stroke Scale; R: right; RH: right-handed S: Subacute

GROUP EXP (N = 12) CTRL (N = 12)

AGE (YR) 52.5 (± 18.5) 43.6 (± 15.3)

HANDEDNESS 10RH + 2MH 12 RH

TIME FROM EVENT (MO) 5.5 (± 3.3) –

TYPE (S/C) 6S + 6C –

ETIOLOGY (I/H) 6I + 6H –

SIDE OF LESION (R/L) 7L + 5R –

FMA 49.4 (± 13) –

NIHSS 2.42 (± 1.3) –

MAS 0.9 (± 1.4) –

MMT 20.3 (± 4.8) –
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muscles were more involved in higher frequency bands 
(Beta, Gamma).

Different CMC patterns were observed in the stroke 
group (EXP) as illustrated in Fig.  3. First, the GA CMC 
patterns obtained in all experimental conditions showed 
a lower number of connections and lower CMC val-
ues with respect to the CTRL group (Fig. 3, Ext, Grasp), 
being the CMC lowest values observed in the AH con-
dition (attempted movements; Fig.  3 b,d). The UH con-
dition (Fig.  3a–c) revealed CMC patterns that mainly 
linked the bilateral sensorimotor areas with ED in Ext 
and FD in Grasp, respectively. Similar to what observed 
for the CTRL group, both tasks were characterized by 
a reduction of CMC values and a less specificity of the 

muscles involved in the task as the frequency increased. 
The GA CMC patterns were poor of significant con-
nections when Ext and Grasp were executed with the 
affected hand (Fig.  3b–d). Very few connections were 
found between ED and bilateral sensorimotor areas dur-
ing Ext. The CMC patterns were denser in Grasp con-
dition with respect to Ext but they show less muscle 
selectivity, involving muscles other than the target ones 
even in alpha band.

Analysis of CMC patterns by graph theory indices
In Table 2 we reported the results of the between-group 
(CTRL, EXP-UH, EXP-AH) analysis on graph theory 
derived indices which characterized the CMC patterns 

Table 2  Results of the kruskal–wallis test (p-values) obtained considering as dependent variables the different graph theory indices 
separately and as between factor the group (CTRL, EXP-UH, EXP-AH)

Tests were repeated for each frequency band (alpha, beta, gamma) and each movement (Ext, Grasp). ND: network density; DIS: density involved side; DUS:  density 
uninvolved side; DCH: density contralateral hemisphere; DIH: density ipsilateral hemisphere; DPDR: distal/proximal degree ratio

* indicates statistical significance

Extension Grasping

Alpha Beta Gamma Alpha Beta Gamma

CMC weight 0.113 0.009* 0.014* 0.068 0.003* 0.006*

ND 0.033* 0.005* 0.001* 0.84 0.719 0.831

DCH 0.55 0.31 0.73 0.62 0.89 0.46

DIH 0.28 0.87 0.7 0.45 0.32 0.77

DIS 0.344 0.133 0.029* 0.934 0.776 0.384

DUS 0.012* 0.0001* 0.011* 0.125 0.337 0.299

DPDR 0.071* 0.004* 0.014* 0.503 0.551 0.982

Fig. 4  Box-plot diagrams reporting the distribution of graph theory derived indices characterizing CMC patterns in beta band during extension 
movement for the three different groups (CTRL, EXP-UH, EXP-AH). Each panel refers to as a specific index: a CMC weight, b network density, c 
density (of ) involved side d density (of ) uninvolved side, e degree ratio of distal/proximal muscle. The symbol * indicates a statistical difference as 
revealed by the post-hoc test
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in the different frequency bands and movements. The 
trends relative to these statistical differences are reported 
in Fig. 4 for beta band during Ext movement. A similar 
behavior was observed in the other two frequency bands 
(data not shown).

The CMC weight index estimated in beta and gamma 
bands was significantly different between the EXP and 
CTRL group in both Ext and Grasp conditions, showing 
lower weight when the EXP group performed Ext with 
AH with respect to UH and to the CTRL group (Fig. 4a).

A significant effect of the group factor was found for ND 
only for the Ext movement in all the frequency bands: higher 
connection density was observed for AH with respect to the 
UH in the EXP group (Fig. 4b). As for the sub-network den-
sity analysis, no between-group differences were found for 
densities in both ipsi- and contra-lateral hemispheres. On 
the other hand, significantly higher density of connections 
with muscles of the uninvolved side (DUS) were observed in 
all frequency bands (Table 2) when the movement was per-
formed by the EXP group with AH (Fig. 4d) with respect to 
UH and to the CTRL group. A similar trend was observed 
for density in the involved side (Fig. 4c), reaching statistical 
significance only in gamma band (Table 2).

Figure  5 illustrates the degree distribution for each 
of the 8 considered muscle in both arms for the 3 fre-
quency bands during extension movement performed 
by CTRL and EXP group (similar results were observed 
for grasping). As for the CTRL group (Fig. 5a), maximum 
degree was observed for ED and FD in the involved side 
in all the frequency bands. The median was around 90% 
with a very short inter-quartile range, indicating a high 
reproducibility of this result across healthy participants. 
Degree close to zero was obtained for all the other mus-
cles both in involved and uninvolved side in alpha and 
beta bands. Small degree (around 10%) was found only 
in gamma band for all the muscles in the involved side 
other than FD and ED reflecting the more diffuse CMC 
patterns at high frequencies.

As for the EXP group, a different behavior was found 
when the Ext was executed with unaffected (Fig.  5b) 
and affected (Fig.  5c) hand. Under the UH condition, 
the maximum degree was found for ED muscle (median 
around 95%) in almost all the patients (short inter-quar-
tile range). Degree distribution for FD muscle showed 
a median around 60% with a high inter-quartile range, 
reflecting the variability among patients in the engage-
ment of the FD during Ext task. The degree distribution 
of all the other muscles was similar to that described in 
CTRL group: zero degree of the uninvolved side in all 
the frequency bands; zero degree of all the muscles in 
the involved side other than ED and FD in alpha and beta 
bands; small degree (around 10%) for all the non-target 
muscles in the involved side in gamma band.

The observation of muscle degree distribution during 
movement attempt with AH showed a degree different 
from zero for most of the non-target muscles in the 
involved side with a high variance across the patients in 
all the frequency bands. Furthermore, a non-null degree 
was observed in muscles in the side not involved in the 
task (the unaffected side), especially of ED and FD in 
alpha and beta bands and of all other muscles in gamma 
band.

Significant between-group differences were observed 
for DPDR index for Ext movement in all frequency bands 
(Table  2). The EXP group showed a significantly lower 
DPDR when the movement was performed with AH 
with respect to UH and to the CTRL group (Fig. 4e). The 
DPDR is almost 1 in CTRL and in EXP-UH, reflecting 
the exclusive engagement of distal muscles in movement 
execution. Such ratio decreased to a median of 0.7 in the 
EXP group when the movement was attempted with AH, 
revealing a contribution of proximal muscles.

Correlation of CMC patterns properties with clinical scales
Table  3 reports the results of the correlation analysis 
conducted between graph theory derived indices which 
significantly characterized the CMC patterns in Ext and 
Grasp movements, and the clinical scale scores describing 
upper limb motor function and strength (FMA total and 
subsections and MMT). Positive correlation was found 
between CMC weight and FMA-”Hand” subsection 
scores for Ext and between CMC weight and MMT 
for Grasp, in all the frequency bands. The DPDR index 
positively correlated with MMT for Grasp only in beta 
band. Negative correlation was observed between DIS 
index and FMA-”Hand” scores in alpha and beta bands 
for Ext and in gamma band for Grasp.

Discussion
The main objective of this study was to identify 
corticomuscular network properties which would 
describe the upper limb motor impairment in stroke 
patients, to ultimately guide the design of a novel hybrid 
BCI for motor recovery. To this aim, we analyzed and 
compared the CMC networks related to simple hand 
movements attempted with the affected hand and 
executed with the unaffected hand in stroke patients and 
those obtained from a sample of age-matched healthy 
participants performing the same movements with right 
and left hand.

As for healthy participants, our results retrace those 
recently obtained by our group [11]. We confirmed that 
CMC patterns observed during simple hand movements 
(Fig. 2) are widely distributed over the sensorimotor scalp 
areas, muscle involvement is more selective to the target 
muscle during extension than grasping, and less specific 
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in higher bands for both movements. Furthermore, CMC 
values are lower for the grasping movement with respect 
to extension.

Grand average patterns obtained from stroke patients 
(Fig.  3) show much less connections with lower CMC 
values, both in the UH and AH conditions, probably 
due to a higher inter-subject variability as well as to the 
expected reduction in CMC weight (Table  2). Indeed 
CMC weight had significantly lower values in patients for 

both movements, under UH and AH conditions in beta 
and gamma bands, already identified as most significant 
to highlight brain-muscle communication disorders [8].

As evident in Fig. 3, grand average patterns in patients 
during AH are almost devoid of connection, especially 
for extension movement. As mentioned, we impute this 
shortage of connections in the grand average pattern to 
a high inter-subject variability among patients, that was 
possibly higher in the extension task with respect to 

Fig. 5  Degree distribution for each muscle in both involved and uninvolved sides for the 3 frequency bands during extension movement. Panels 
refer to as the CTRL group executing movement with right side (a) and the EXP group when the movement was executed with unaffected (UH, b) 
and affected (AH, c) side
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grasping (see Additional file  1 for single-subject CMC 
patterns). Indeed, it might be argued that the extension 
task resulted more challenging to our patients and thus 
lead to individually distinct compensation strategies. The 
pattern for grasping with AH is slightly richer, possibly 
because grasping holds a high behavioral and functional 
complexity and that our patients were all undergoing a 
standard rehabilitative program likely including upper 
limb functional exercises when the experiments were 
performed. Nevertheless, with respect to grasping pat-
terns from healthy subjects, patients showed lower mus-
cle specificity in all bands. This result is largely expected 
from a revision of CMC literature in stroke patients, 
showing involvement of proximal muscles to compen-
sate for distal impairment [22] or higher contribution of 
antagonist muscles with respect to healthy subjects [14, 
23]. More generally, alterations of muscular involve-
ment in post-stroke patients have largely been described 
through the phenomena of motor-overflow, co-activation 
of agonists and antagonists, spasticity and appearance of 
mirror movements [8].

To characterize these alterations through CMC pattern 
evaluation in a quantifiable and objective manner, we 
defined indices derived from graph theory and applied 
those to single-subject networks.

Overall network density was higher in the patient 
group for the AH condition (Ext movement only), sug-
gesting that a higher number of connections in the net-
work is required to accomplish the task. In classical graph 
theory, indeed, an increase in overall network density is 
described as a deterioration of such an optimal criterion 
according to which physiological networks are organized 
(well-known as small-world networks) [37]. This increase 
in overall density could be ascribed to compensatory 
strategies which were more relevant in the extension 

task. To further interpret this result and thus, to char-
acterize deviations from the physiological condition, we 
split the index considering four sub-networks relative to 
the hemispheres contra- or ipsi- lateral to the hand task, 
and to the muscles on the side involved and uninvolved 
(contralateral) in the task.

As for the distribution of connections on the scalp, no 
statistical differences were observed in indices describing 
scalp lateralization of CMC patterns. Such bilateral 
distribution of connections was already observed in 
healthy subjects and discussed in our previous work 
[11]. The current findings on patients demonstrate that 
the presence of a unilateral stroke lesion does not affect 
this pattern distribution that remains balanced between 
the ipsilateral and contralateral hemisphere during 
movement with the healthy or paretic hand. This is not 
entirely expected according to the widely described 
interhemispheric unbalance of electrical activity after 
stroke [38]. However, our patients were all in subacute 
to chronic phase, with low level of impairment and 
undergoing a standard rehabilitative treatment when the 
experiments were performed. A lack of interhemispheric 
unbalance has already been associated with good 
recovery [39], thus it could be that more severe patients 
recorded closely to the stroke event might still show the 
differences in CMC pattern distribution between the 
affected and unaffected hemisphere that were not seen in 
our sample.

As for sub-networks related to muscles on the involved 
and uninvolved task side, while density values were higher 
in both the involved and uninvolved side (Fig. 4 panels c 
and d), the uninvolved side density only was significantly 
higher in patients for AH condition, demonstrating an 
abnormal recruitment of healthy side muscles during 
the extension task with the paretic side. Visible mirror 

Table 3  Results of the correlation between the scores obtained for the two clinical scales, FMA and MMT, and each of the graph 
theory derived indices which significantly characterized the CMC patterns in stroke patients during AH condition

The analysis was repeated for each frequency band (alpha, beta and gamma) and each movement (Ext, Grasp). ND: network density; DIS: density involved side; DUS: 
density uninvolved side; DPDR: distal/proximal degree ratio

* indicates statistical significance

FMA Hand MMT

Extension Grasping Extension Grasping

Alpha Beta Gamma Alpha Beta Gamma Alpha Beta Gamma Alpha Beta Gamma

CMC weight 0.75* 0.72* 0.59* 0.36 0.46 0.44 0.57 0.53 0.49 0.62* 0.62* 0.58*

ND − 0.55 − 0.55 − 0.52 − 0.54 − 0.53 − 0.58* − 0.25 − 0.25 − 0.23 − 0.28 − 0.27 − 0.33

DIS − 0.59* − 0.59* − 0.41 − 0.52 − 0.5 − 0.59* − 0.24 − 0.28 − 0.12 − 0.27 − 0.26 − 0.31

DUS − 0.53 − 0.3 − 0.44 − 0.35 − 0.2 − 0.17 − 0.3 − 0.12 − 0.3 − 0.06 − 0.002 0.08

DPDR 0.48 0.14 0.16 0.55 0.39 0.55 0.2 − 0.15 − 0.18 0.46 0.59* 0.48
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movements were not present in our sample during AH 
tasks (except for two patients), however the occurrence of 
non-paretic upper limb movements during paretic motor 
attempts in stroke is largely described [7, 19]. Thus, we 
speculate that our analysis on CMC network properties 
might reveal subclinical alterations.

Muscle degree, i.e. the number of connections involving 
each recorded muscle was employed in order to quantify 
muscle specificity for each task. As expected, the target 
muscle of the involved side holds the highest degree in 
both groups and conditions (in Fig.  5, red ED bars). 
However, in the CTRL group and only in UH condition 
for EXP group all other muscles have very low degrees 
(except for low values appearing mainly in gamma 
band), while in the AH conditions several muscles are 
represented from the involved and contralateral side. 
Among those, the highest values are observed in the 
ipsilateral BIC muscle. The bicep is crucial for post 
stroke upper limb flexion spasticity [40] as testified by 
clinical studies [41, 42]. Despite the low or absent clinical 
spasticity in our patients (as assessed by MAS) we argue 
that this finding may represent a subclinical substrate for 
elbow flexion spasticity; future studies involving stroke 
patients showing higher level of spasticity are needed to 
definitely corroborate this argumentation.

As for the distal/proximal degree ratio, our results show 
that during AH in the EXP group, proximal muscles were 
involved confirming a compensatory proximal activity 
during hand motor tasks in paretic patients [14].

Altogether these findings confirm that CMC is a 
promising metric to analyze post-stroke changes in upper 
limb motor activity as it allows us to quantify commonly 
reported alterations (co-activation of proximal and 
contralateral muscles as possible substrates for spasticity 
and for mirror movements). To further evaluate the 
solidity of such a method to describe post-stroke upper 
limb motor impairment, we tested correlation of CMC 
indices with clinical/functional scales of the upper limb. 
Significant results were found for the FMA “Hand” 
subscale (mainly for the extension movement) and 
for MMT (grasping only). In particular, CMC weight 
was lower in more impaired patients. Similarly, the 
distal/proximal muscle degree ratio was lower in more 
impaired patients, proving the higher need of proximal 
compensation. Conversely, density and involved side 
muscle density were negatively correlated, showing a 
network organization that was more similar to healthy 
subjects in less impaired patients (lower density as a 
possible indicator of a higher network efficiency). With 
the caution required by the relatively small sample in 
our study, these results could be interpreted taking into 
account the differences between the two clinical scales. 
Indeed, FMA is a fairly complex scale which entails 

several aspects such as reflex activity, different functional 
movements and synergies, coordination, and speed; on 
the other hand, MMT is merely a measure of residual 
strength in different upper limb segments. It might be 
speculated that grasping being less challenging for stroke 
patients as compared to extension could be responsive 
to a grosser evaluation such as MMT, while correlations 
with FMA are observed for extension task as the scale 
reflects motor functional improvement in a more 
complex fashion.

To our knowledge, the present work is among the first 
to analyze CMC in stroke patients in terms of a widely 
distributed network (ie. considering several EEG scalp 
positions and muscles) [14, 21–23], and the first to apply 
a graph theoretical approach to such networks. In a 
recent study [43], Xi et al. applied graph theory to CMC 
networks in healthy subjects. The present work moves a 
step forward by defining specific indices apt to describe 
post-stroke movement alterations in a quantifiable and 
objective manner.

The ultimate goal of our investigation is to drive the 
design and implementation of a novel hybrid BCI system 
which will reinforce only those CMC network features 
that most resemble normal activation and thus subside 
favorable motor outcome. The findings of the present 
work indeed confirmed that the reinforcement of CMC 
throughout a BCI paradigm is desirable, as a reduction 
of its weight is correlated with upper limb motor impair-
ment. Moreover, we identified CMC features that describe 
derangements from physiological motor system activation 
which will be discouraged along the BCI training protocol 
to counteract maladaptive changes. Preliminary studies 
are being carried out in our laboratory to translate CMC 
estimation in an online paradigm to optimize the timing 
of feedback delivery [44].

A major limitation of the present study is that the small 
number of patients included resulted in a consequent 
low variability in the degree of impairment. Indeed, most 
enrolled patients were mildly impaired and with little or 
no spasticity. This was mainly due to the complex experi-
mental setup and relatively long experiment that could 
result too tiring (if at all doable) for more severe patients. 
Future steps will require an optimization of the setup and 
experimental protocol (even according to the results pre-
sented here) to be able to include more patients with dif-
ferent levels of impairment.

Conclusions
In this paper, we showed that analysis of high-density 
CMC networks by means of graph theory indices 
can describe motor abnormalities in stroke patients 
during simple hand movements, which are the most 
commonly employed motor tasks in rehabilitative BCI 
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paradigms. Our results will drive the implementation of 
a novel hybrid BCI system able to reinforce those CMC 
network features that most resemble normal activation 
and thus, subside favorable motor outcome. Indeed, 
correlations of graph theory indices with upper limb 
motor impairment support their use in wider clinical and 
rehabilitative applications. As an example, correlations 
between CMC network properties and clinical scales are 
promising for the application of such measurements as 
rehabilitation outcome metrics, in line with the constant 
need for evidence-based and personalized rehabilitation 
approaches [45, 46].
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