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Abstract 

Background  Virtual and augmented reality (AR) have become popular modalities for training myoelectric prosthesis 
control with upper-limb amputees. While some systems have shown moderate success, it is unclear how well the 
complex motor skills learned in an AR simulation transfer to completing the same tasks in physical reality. Limb load‑
ing is a possible dimension of motor skill execution that is absent in current AR solutions that may help to increase 
skill transfer between the virtual and physical domains.

Methods  We implemented an immersive AR environment where individuals could operate a myoelectric virtual 
prosthesis to accomplish a variety of object relocation manipulations. Intact limb participants were separated into 
three groups, the load control (CGLD; N = 4 ), the AR control (CGAR; N = 4 ), and the experimental group (EG; N = 4 ). 
Both the CGAR and EG completed a 5-session prosthesis training protocol in AR while the CGLD performed simple 
muscle training. The EG attempted manipulations in AR while undergoing limb loading. The CGAR attempted the 
same manipulations without loading. All participants performed the same manipulations in physical reality while 
operating a real prosthesis pre- and post-training. The main outcome measure was the change in the number 
of manipulations completed during the physical reality assessments (i.e. completion rate). Secondary outcomes 
included movement kinematics and visuomotor behavior.

Results  The EG experienced a greater increase in completion rate post-training than both the CGAR and CGLD. This 
performance increase was accompanied by a shorter motor learning phase, the EG’s performance saturating in less 
sessions of AR training than the CGAR.

Conclusion  The results demonstrated that limb loading plays an important role in transferring complex motor skills 
learned in virtual spaces to their physical reality analogs. While participants who did not receive limb loading were 
able to receive some functional benefit from AR training, participants who received the loading experienced a greater 
positive change in motor performance with their performance saturating in fewer training sessions.
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Background
The loss of a limb is debilitating, complicates various 
aspects of an individual’s daily life, and often results in 
decreased autonomy [1]. According to recent statistics, 
nearly two million individuals live with a limb amputa-
tion in the United States, 41,000 of which have an upper 
extremity amputation [2, 3]. Upper extremity amputa-
tions result in particularly difficult functional deficits, 
such as inabilities to perform stable object grasping and 
decreased dexterity [4]. To overcome these deficits, indi-
viduals with limb loss (LL) will often use a prosthesis. 
A popular paradigm of prosthesis control, myoelectric 
control, leverages the electromyogram (EMG) signals of 
the muscles in the residual limb to control the degrees 
of freedom (DoF) of the prosthetic device [5]. While 
simple prostheses can be effectively controlled using a 
two-channel direct proportional scheme [6, 7], more 
advanced devices with expanded DoFs often require 
more complicated myoelectric pattern recognition-based 
controllers [8–10].

Regardless of the myoelectric control method imple-
mented, control of an upper-limb prosthesis can be a 
mentally and physically taxing task [11]. Prosthesis train-
ing regimens are necessary to teach the user how to oper-
ate their prosthesis effectively [12, 13]. Traditionally, 
these training regimens are conducted in collaboration 
with a clinical team consisting of prosthetists, orthotists, 
and other rehabilitation professionals. Furthermore, 
training regimens are often scheduled after an individ-
ual receives their permanent prosthesis, approximately 
6 months post-surgery [14]. The lag between surgery and 
prosthesis fabrication is generally the result of waiting for 
the significant anatomical changes that the residual limb 
undergoes during the healing process to stabilize [15].

However, this traditional timeline is not as effective 
as it could be. Previous work has shown that the time at 
which a prosthetic intervention is introduced post-sur-
gery has a significant effect on long-term rehabilitation 
outcomes. Malone et al. defined a “golden period” of less 
than 30  days wherein beginning the prosthesis training 
process with an individual decreases the time to reha-
bilitation completion as well as increases the successful 
rehabilitation rate. Furthermore, early training interven-
tion was shown to be critical in reducing the phantom 
pain incidence rate in the population studied [16]. Unfor-
tunately, the hypersensitivity of the residual limb during 
this “golden period” makes traditional, physical prosthe-
sis training regimens difficult to implement.

To circumvent limitations with traditional prosthe-
sis training regimens, augmented reality (AR) has been 
leveraged as a rehabilitation technology. In AR sys-
tems, virtual objects are generated and combined with 
the real, physical environment of the user. AR boasts 

several advantages over related modalities (e.g. virtual 
reality), such as more accurate depth perception due to 
the incorporation of real world distance cues [17] and a 
reduced risk of adverse effects like virtual reality sickness 
[18]. Several rehabilitation systems have been developed 
wherein the user dons a virtual prosthesis and manipu-
lates virtual objects via a myoelectric control strategy 
[19–21]. These systems have been shown to be valuable 
in that they: (1) allow for self-paced, at-home training 
[22], (2) increase user motivation for habitual practice 
[23], and (3) can offer real-time feedback on grasp char-
acteristics such as optimal force or aperture [24, 25].

Despite AR prosthesis training having several advan-
tages over traditional methods, the efficacy of AR train-
ing is still unclear. Although previous work has shown 
that some of the skills that are acquired performing vir-
tual object manipulations are useful for physical prosthe-
sis operation [21], the learning and transference of more 
complex motor skills has shown to be difficult to achieve 
[26]. In studies of individuals with motor deficits, it has 
been found that the spatiotemporal characteristics of 
reach-and-grasp movement kinematics vary significantly 
between virtual and physical environments [27–29]. 
While some of this discrepancy may be due to a general 
unfamiliarity with virtual environments, this gap may 
also be due to differences in sensorimotor cues between 
virtual simulations and their real-life analogs [30–32]. For 
example, Rohrbach et al. showed in an object lifting task 
that while an AR object’s visual cues initially dominate 
cues from the physical environment and prior cognitive 
knowledge about grasp parameters such as force, these 
sensorimotor predictions are discarded when conflicting 
with cues from other senses such as proprioception [33]. 
Furthermore, functional imaging studies have shown sig-
nificant differences in activation profiles in sensorimotor 
areas of the brain when comparing virtual reality move-
ment tasks to their real-life counterparts [34, 35].

Therefore, an avenue to enhance the effectiveness of 
virtual environment-based rehabilitation is to increase 
the sensory fidelity of such systems. When operating in 
augmented reality, both tactile and proprioceptive senses 
are uncoupled from the virtual interactions displayed 
visually. Previous studies have shown that by providing 
haptic feedback, both user immersion and performance 
in rehabilitation regimens increase due to the provided 
sense of touch during virtual object interactions [36–38]. 
Feedback on the position, motion, or loading of a joint 
(commonly referred to as “proprioception”) is a less-
explored modality in this context [39]. In physical reality, 
there exists a load on the residual limb while operating 
a prosthesis due to the mass of the device applied to the 
socket interface. Chappell et  al. showed that by artifi-
cially applying this socket force during virtual object 
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interactions, participants become more proficient in dex-
terous manipulation tasks than if that force is absent [40].

In this work, we investigate the effect limb loading has 
on skill transfer between augmented and physical reality 
tasks used in LL rehabilitation. Participants underwent a 
7-session longitudinal study wherein they trained the use 
of their prosthetic limb using traditional muscle training 
or the Prosthetic Hand Assessment Measure in AR (AR-
PHAM) [41–43]. Using the AR-PHAM, participants were 
asked to complete a variety of dexterous object manipu-
lations in AR with some performing these manipulations 
with loads applied to the limb controlling the prosthesis. 
The amount of skill transfer that occurred during their 
training period was measured via a pre- and post-train-
ing assessment using a functional, prosthesis control out-
come measure in physical reality. As a complement to 
the work in Chappell et  al., secondary metrics focusing 
on objective measures of motor strategy execution were 
computed along with traditional measures of functional 
task performance.

Methods
Augmented reality system overview
The presented AR system allows a participant to oper-
ate a virtual upper-limb prosthesis to manipulate virtual 
objects through the AR-PHAM. The prosthesis extends 
from a bypass socket worn by the participant on their 
operating limb. Participants control the virtual prosthe-
sis during rehabilitation tasks using the EMG signals col-
lected from their operating limb. The system also logs 
task kinematic and electrophysiological data for offline 
analysis, including limb position, gaze behavior, and raw 
EMG (Fig. 1).

To render the AR environment, the system uses the 
VIVE Pro Eye head-mounted display (HMD) (HTC Cor-
poration, New Taipei City, Taiwan). The HMD includes 
a pair of 640× 480 stereo cameras on the anterior of 
the headset. These cameras project video of the physical 
environment into the background of the virtual scene to 
create an augmented reality view. The HMD also contains 
internal eye-tracking hardware that allows the system 
to measure visuomotor behavior such as gaze direction 
and visual attention (Tobii Technology AB, Stockholm, 
Sweden).

In the AR environment, participants operate a virtual 
prosthetic limb modelled after the Modular Prosthetic 
Limb (MPL) from the Johns Hopkins Applied Phys-
ics Laboratory [44]. For the virtual prosthetic limb, we 
implemented 5 hand movement classes that mirror those 
available with the physical prosthetic system: rest (RE), 
hand open (HO), hand close (HC), wrist pronation (WP), 
and wrist supination (WS).

Virtual objects, such as the virtual prosthetic limb and 
AR-PHAM are anchored to locations in the physical 
environment using HTC VIVE trackers. These trackers 
combine infrared, optical LEDs with inertial measure-
ment units to provide their 3D positions and orientations 
to the AR system. The AR system uses two of these kin-
ematic trackers: one to anchor the virtual prosthesis to 
the operating limb and another to anchor the AR-PHAM 
to the participant’s physical environment. To anchor the 
virtual prosthesis, a tracker was affixed to a bypass socket 
attached to the user’s operating limb. To anchor the AR-
PHAM, the other tracker was placed at a location on the 
floor with enough clearance in the physical world.

Surface EMG data acquisition was accomplished 
using a wireless, eight-channel EMG band (Thalmic 
Labs, Ontario, Canada). Each electrode recorded bipo-
lar surface EMG signals with a sampling rate of 200 Hz. 
Features were extracted from the EMG signal with a 
250 ms sliding window with 50 ms of overlap. For each 
channel of EMG, the following time-domain features 
were extracted: mean absolute value, variance, waveform 
length, zero crossings, and slope sign change [8]. These 
features were then used to train a linear discriminant 
analysis (LDA) classifier for forward prosthesis control 
[45]. LDA was chosen as the control algorithm for its 
simplicity and wide availability in commercial pattern 
recognition systems. Predictions from the LDA classifier 

Fig. 1  An overview of the augmented reality (AR) system. The 
head-mounted display (HMD) uses anterior, stereo cameras to 
pass-through the physical environment to the participant. This 
pass-through video is combined with virtual representations of 
a prosthetic limb as well as the AR-PHAM to create the AR scene. 
Virtual objects are anchored to locations in the physical environment 
through the kinematic trackers. Participants are tasked to complete a 
series of object manipulations in this AR environment. To control the 
virtual prosthesis, participants wear an EMG band on their dominant 
limb. The resultant EMG signals are then fed into an LDA classifier, 
translating the EMG data into one of five hand movement classes: 
rest (RE), hand open (HO), hand close (HC), wrist pronate (WP), or 
wrist supinate (WS)
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were post-processed using a 5-decision uniform vote fil-
ter to improve classifier stability.

Kinematic data, such as positions and orientations 
from the HTC VIVE tracker, was filtered using a 6-Hz 
second-order Butterworth low-pass filter in both the for-
ward and backward directions, resulting in fourth-order 
filtering with zero phase-distortion [46]. Gaze data, such 
as the virtual gaze vector, was filtered using a 10-Hz sec-
ond-order Butterworth low-pass filter [47].

Experimental protocol
Participants
This study was conducted in accordance with a proto-
col approved by the Johns Hopkins University School 
of Medicine Institutional Review Board. Before being 
tested, each participant gave his or her written informed 
consent. The participants consisted of twelve individu-
als with intact limbs (IL). IL participants include 7 males 
and 5 females and range in age from 18 to 31 years old. 
All IL participants were right-hand dominant and naïve 
to pattern recognition myoelectric control. Participants 
were randomly assigned to either the load control group 
(CGLD; N = 4 ) which underwent traditional muscle 
training, the AR control group (CGAR; N = 4 ) which 
underwent no-load AR training, or the experimental 
group (EG; N = 4 ) whose members underwent AR train-
ing while simultaneously loading their limb with weight.

Physical reality pre‑ and post‑test
Participant prosthesis control proficiency was assessed 
before and after training using the Prosthetic Hand 
Assessment Measure (PHAM) [41].

For the physical assessment, the user operated a pros-
thetic system including a bebionic3 prosthetic hand 
(Ottobock, Duderstadt, Germany) and Motion Con-
trol Wrist Rotator (Fillauer LLC, Chattanooga, TN). As 
mentioned previously, the prosthetic system implements 
5 hand movement classes: RE, HO, HC, WP, and WS. 
An EMG band was placed circumferentially around the 
forearm of the participant’s dominant limb. The EMG 
band’s location and orientation were recorded to ensure 
a similar configuration between the pre- and post-test. 
Kinematic trackers were also mounted at joint locations 
on the operating limb: at the shoulder, the elbow, and 
the wrist. This prosthetic system was incorporated into 
the bypass socket to allow for end-effector consistency 
between all participants (Fig. 2).

The physical testing protocol began with training the 
myoelectric pattern recognition classifier. While wear-
ing the bypass socket, participants were presented with 
a series of visual cues, each prompting the activation of 
a specific hand movement class. Movement cues were 

presented for 5 s, of which EMG data was only collected 
for the last 3 s. For HO/HC, participants performed the 
anatomically correct hand movement, while for WP/
WS, participants substituted wrist rotation with wrist 
flexion/extension for easier discriminability by the clas-
sifier. Furthermore, participants were instructed to 
activate each hand movement class with muscle con-
tractions between 60 and 80% of their max voluntary 
amplitude. This was done to reduce the effect of mus-
cle fatigue on classifier performance during prolonged 
assessments [48]. Participants were also instructed to 
perform this process in three limb positions: (1) limb 
at side with elbow at 90°, (2) limb reaching forward at 
chest-level with elbow straight, and (3) limb reaching 
forward above the head with elbow straight. This was 
done to reduce the effect that different limb positions 
have on myoelectric control performance [49].

EMG features were then extracted from the collected 
data and used to train the LDA classifier. Classifier vali-
dation was accomplished using a 67/33 train/test split. 
If the validation accuracy for each movement class was 
greater than or equal to 80%, the classifier was consid-
ered valid, and the participant proceeded to the next 
stage of validation. If not, the participant repeated the 
training data acquisition described previously until this 
threshold was achieved. Preliminary testing and pre-
vious results found 80% to be a reasonable threshold 
since training data was collected in multiple limb posi-
tions while the participant wore a bypass socket [50].

In the next stage of validation, participants were 
allowed to practice operating the prosthetic system for 
a maximum of 5 min. If the participant was unable to 
elicit each hand movement class with reliability in a 
neutral limb posture (limb at side with elbow at 90°), 
they were given the opportunity to retrain the LDA 
classifier and restart the validation process. Once the 

Fig. 2  The experimental setup for the physical assessment. 
Participants use their EMG signals to control a multi-articulated 
prosthetic hand and wrist attached via a bypass socket. Participants 
also wear multiple trackers that measure their limb kinematics
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participant felt comfortable controlling the prosthesis, 
they proceeded to attempt the PHAM.

The PHAM consists of a series of object manipulations 
within a participant’s 3D reaching volume. Participants 
are tasked with transporting a cylinder from one start 
location on the PHAM’s frame to a prompted end loca-
tion within a time limit. Each object transport requires 
2 DoF, HO/HC and WP/WS. Tasks were considered 
unsuccessful if the participant dropped the cylinder dur-
ing manipulation or if the participant was unable to com-
plete the manipulation within the allotted time of 15 s. 
Participants were asked to complete a total of 4 tasks, 10 
times each, prompted in a random order (Fig. 3). Partici-
pants were given the opportunity to rest between each 
task to counteract the effects of muscle fatigue.

Augmented reality training
Participants in the CGAR and EG underwent prosthesis 
training in AR using the AR-PHAM platform. Similar 
to the physical assessment, participants wore the EMG 
band around the forearm of their dominant limb. Partici-
pants then performed the same myoelectric pattern rec-
ognition training and validation protocol as outlined for 
the pre- and post-tests. Once the classifier was trained, 
participants were instrumented with the AR-specific 
hardware, such as the HMD. Participants in the EG also 
wore the physical prosthesis system on the limb with the 
EMG band, although it was not operational. This was 
done to accustom the user to the load of the prosthetic 
system (1.17 kg).

At the beginning of each training session, partici-
pants were allowed to explore and become familiar 
with the AR environment for a maximum of 10 min. 
During each training session, participants were asked 
to accomplish a series of object relocation tasks on the 
AR-PHAM frame. Participants operated the virtual 
prosthetic limb via pattern recognition to manipu-
late cylinders from some initial configuration to some 
final configuration. Each pair of initial and final object 

configurations was characterized by 3 properties: (1) a 
positional change in elevation, (2) a positional cross-
ing of the participant’s midline, and (3) a 90° change in 
object orientation. With this, each object manipulation 
task required 2 DoF (HO/HC and WS/WP) and profi-
cient control in a large portion of the user’s reaching 
space. The tasks performed with the AR-PHAM are the 
same as those prompted during the physical assessment 
(Fig. 3).

Each AR-PHAM task is self-initiated by the user by 
pressing the AR-PHAM’s central button. Once a task 
begins, a cylinder appears in 1 of the 4 initial configura-
tions with the corresponding final configuration high-
lighted on the AR-PHAM frame. To complete a task, 
participants must reach out with the virtual prosthesis, 
grasp the cylinder, and transport the cylinder to the 
prompted destination. Once there, the operator must 
release the cylinder onto the AR-PHAM frame with the 
appropriate orientation to trigger the end of the trial 
(Fig. 4).

Virtual object grasping was mediated by contact 
points defined on the distal phalanges of the virtual 
prosthetic limb. When all 5 phalanges made contact 
with the cylinder, virtual connections were created in 
the simulation to adhere the cylinder to the fingers. 
These connections were configured with a break force 
of 0.5 N, the normal force required to overcome the 
frictional force of the cylinder [51]. If the participant 
opened the virtual prosthesis during grasping, the con-
nections broke and the cylinder would begin to slip and 
fall, until all 5 phalanges made contact with the cylin-
der again. No explicit visual feedback was provided to 
the participant on the state of the grasping interaction, 
so as to maintain parity with the physical assessment. 
Participants may fail a manipulation task if they exceed 
the time limit of 15 s or if they drop the cylinder on the 
floor. Participants were asked to complete each of the 4 
motor tasks 10 times for a total of 40 trials.

Fig. 3  An illustration of the 4 rehabilitation tasks for the physical and augmented reality PHAM. Cylinders will start in an initial location and 
orientation (red) with the corresponding target location and orientation being highlighted on the PHAM frame (green). Each rehabilitation task 
requires: a positional change in elevation, a positional crossing of the participant’s midline, and a 90° change in object orientation
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Muscle load training
Instead of AR training, participants in the CGLD under-
went a muscle strengthening protocol during the 5-ses-
sion training period. During each session, participants 
wore the non-operational physical prosthesis system on 
their dominant limb. Participants were then asked to per-
form a series of arm lift exercises. Each arm lift required 
the participant to raise the prosthesis from a position at 
their side to a position with their limb reaching forward 
at chest-level with their elbow straight. Participants were 
instructed to hold this posture for 15 s before returning 
the prosthesis to their side, after which they would have 
15 s to rest before the next arm lift. Participants repeated 
this sequence for a total of 40 arm lifts each training 
session.

Data segmentation
Each object manipulation task of the AR-PHAM was 
segmented into four phases to allow for more granu-
lar analysis of a participant’s task motor strategy. These 
phases are: Reach, Grasp, Transport, and Release (Fig. 5). 
A task began in the Reach phase after the AR-PHAM’s 
central button was pressed and sequentially progressed 
through the remaining phases with the following transi-
tion criteria: 

1	 Reach–Grasp The prosthesis was within 15 cm of the 
object’s starting position and the myoelectric control 
signal output five consecutive, non-rest classifica-
tions

2	 Grasp–Transport The participant had sent at least 
one HC command to the prosthesis and the prosthe-
sis and the target object were greater than 2 cm from 
the object’s starting position

3	 Transport–Release The object was within 5 cm of its 
target position and moving less than 0.15 m/s

The end of the Release phase (and the end of the manipu-
lation task) is defined as when the object is within 2 cm 
of its target position and 15° of its target orientation and 
the participant sends a HO command to the prosthesis. 
All transition thresholds were determined experimentally 
using preliminary data.

Data analysis
The main outcome measure reported is the change in 
the task completion rate for the physical PHAM. Experi-
mental data from the AR-PHAM training period was also 
analyzed along two secondary dimensions: compensatory 

Fig. 4  Different stages of a user completing an AR-PHAM rehabilitation task. a The AR-PHAM is anchored in the user’s physical environment and 
prompts the user to begin a task by pressing the central red button. b Once started, the task spawns a red cylinder on the AR-PHAM frame and 
prompts a target location and orientation by highlighting an AR-PHAM object holder red. c The user then reaches for and manipulates the cylinder 
using the virtual prosthesis, controlling the device via their EMG signals and the LDA classifier. d The user transports the cylinder to the target 
location and releases it onto the object holder with the appropriate orientation

Fig. 5  The four phases of a successfully completed AR-PHAM 
rehabilitation task. a Beginning with the Reach phase, the user visually 
focuses the red cylinder and moves the virtual prosthesis into the 
cylinder’s proximity. b Followed by the Grasp phase, the user operates 
the virtual prosthesis via myoelectric control to grab the cylinder. c 
During the Transport phase, the user visually focuses the cylinder’s 
destination and moves the virtual prosthesis to relocate the cylinder. 
d In the final Release phase, the user again operates the virtual 
prosthesis to place the correctly aligned cylinder onto the destination 
location
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motion and visuomotor behavior. Evaluation along these 
secondary dimensions was used to assess the quality of 
the movements achieved during virtual object manipu-
lation. Secondary analyses included data only from suc-
cessfully completed tasks.

Compensatory motion was quantified by computing 
the angular range of motion (RoM) for the glenohumeral 
and elbow joints. Of the upper-limb DoF, we computed 
the RoM for shoulder flexion and extension ( θFLEX ), 
shoulder abduction and adduction ( θABAD ), and elbow 
flexion and extension ( φFLEX ). θFLEX and θABAD were 
computed as the angles that the participant’s upper arm 
( vua , defined as the normalized vector from their shoul-
der position to their elbow position) made with the ana-
tomical planes of their trunk. The angle the upper arm 
made with the coronal plane of the participant’s trunk 
was defined as shoulder flexion (+) and extension (−). 
The angle the upper arm made with the sagittal plane of 
the participant’s trunk was defined as shoulder abduction 
(+) and adduction (−). Equations 1 and 2 were used to 
compute the magnitude of the glenohumeral angles:

The sign of these angles was determined to be the sign of 
the component of vua normal to the projection plane (i.e. 
y-component for θFLEX , x-component for θABAD).
φFLEX was defined as the angle made between the par-

ticipant’s upper arm ( vua ) and forearm ( vfa , defined as 
the normalized vector from their elbow position to their 
wrist position). φFLEX was computed using Eq. 3:

Joint angular RoM was then computed as the difference 
between the maximum and minimum values along these 
DoF.

Visuomotor behavior was quantified using the metrics 
defined by the Gaze and Movement Assessment (GaMA) 
[47, 52, 53]. The GaMA is concerned with describing the 
spatiotemporal relationship between prosthesis move-
ment and the user’s visual attention and fixation. For the 
PHAM object manipulation tasks, the following areas 
of interest (AOI) were defined: the prosthetic hand, the 
manipulable object, the object’s starting location, the 
object’s ending location, and the PHAM’s central button. 
While GaMA provides a variety of visuomotor metrics to 
consider, we report the percent fixation time of the object 
during transport.

(1)θFLEX = arccos vua ·
vua · [1 0 1]

⊤

�vua · [1 0 1]
⊤�

(2)θABAD = arccos

(

vua ·
vua · [0 1 1]

⊤

�vua · [0 1 1]
⊤�

)

(3)φFLEX = arccos
(

vua · vfa
)

Statistical analysis was performed using Python 3.7 and 
MATLAB R2019b. The non-parametric Mann-Whitney 
test was used due to the limited sample size. For all met-
rics, the threshold for statistical significance was set at 
p < 0.05.

Results
Training EMG validation
To validate the integrity of the initial EMG data used to 
train the LDA algorithm on each day, an upper bound on 
the multi-class probability of error ( Pe ) was calculated. Pe 
refers to the probability that any EMG sample is misclas-
sified by the LDA algorithm and is defined as the minimi-
zation of the expected pairwise Bhattacharyya distances 
(B) between the EMG feature distributions defining each 
possible movement classification (Eq. 4) [54]:

For all IL participants, the multi-class probability of error 
did not exceed 4% and for most participants, this error 
did not exceed 1.5% (Fig. 6).

Physical assessment performance
Participants who underwent the AR training with limb 
loading experienced a significantly greater increase 
in completion rate between the pre- and post-test 
assessment when compared to both participants 
who underwent the AR training with no limb load-
ing and participants who did simple muscle train-
ing ( p < 0.05 , Mann–Whitney) (Fig.  7). Participants 

(4)Pe ≤





N
�

i=1

N
�

j=1

1

2
e−Bij



−
1

2

Fig. 6  Maximum probability of a classification error ( Pe ) in the initial 
training set for each session for all IL participants using the LDA 
algorithm. For all IL participants, Pe did not exceed 4%. Sample size, 
N = 8 for days 2 through 6, N = 12 otherwise
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in the EG experienced an increase in task completion 
rate of 31.25± 10.23% while participants in the CGAR 
experienced an increase of only 6.88± 9.42% and par-
ticipants in the CGLD experienced an increase of only 
6.25± 3.75% . While all participants in the EG exhibited 
more functional prosthesis control during the post-test 
assessment than they did during the pretest assessment, 
this was not the case for all participants in the CGAR. 
Some CGAR participants reported no change, or even a 
slight decrease, in performance.

Augmented reality training performance
While training with the AR-PHAM, participants in the 
CGAR experienced a significant increase of + 31.25% 
in the average task completion rate between sessions 1 
and 5 ( p < 0.05 , Mann–Whitney). For participants in 
the EG, this increase in performance was more mild at 
+ 16.88% (Fig.  8). Both assessment groups seemed to 
experience a steady increase in functional performance 
over the first few sessions with performance eventually 

reaching a steady-state value by the final session. Despite 
the difference in performance increase, the EG still out-
performed the CGAR during the final training session: 
59.38± 13.62% (EG) vs 47.5± 10.75% (CGAR).

Joint range of motion
For both the pre-test and the post-test, participants 
in all groups presented with similar joint RoM. Dur-
ing the pre-test, the CGLD presented with a shoulder 
flexion range of 69.57± 6.23 °, a shoulder abduction 
range of 67.89± 9.67 °, and an elbow flexion range of 
102.62± 25.98 °. This is in comparison with participants 
in the CGAR, who completed pre-test manipulations with 
a shoulder flexion range of 75.75± 28.38 °, a shoulder 
abduction range of 60.24 ± 22.73 °, and an elbow flex-
ion range of 84.72± 39.15 °, and participants in the EG, 
who completed pre-test manipulations with a shoul-
der flexion range of 77.77± 7.01 °, a shoulder abduction 
range of 43.07± 12.12 °, and an elbow flexion range of 
71.36± 13.54°.

During the post-test, the CGLD completed manipula-
tions with a shoulder flexion range of 88.77± 26.89 °, 
a shoulder abduction range of 72.51± 4.81 °, and an 
elbow flexion range of 116.00± 10.77 °. Participants 
in the CGAR completed the same set of manipula-
tions with a shoulder flexion range of 80.04 ± 30.43 °, 
a shoulder abduction range of 54.83± 20.40 °, and an 
elbow flexion range of 77.05± 31.93 °. Participants in 
the EG completed these manipulations with a shoulder 

Fig. 7  Change in performance between the pre- and post-test 
PHAM. Participants in the experimental group (EG) experienced an 
average increase in task completion rate of 31.25%, while participants 
in the load (CGLD) and AR (CGAR) control groups experienced an 
average increase in performance of 6.25% and 6.88%, respectively. 
Error bars denote standard deviation. *Denotes p < 0.05 for the 
Mann–Whitney Test. Sample size, N = 4

Fig. 8  Performance of participants during the AR-PHAM training. 
Participants in the CGAR experienced an average increase in 
performance of + 31.25% during training while participants in the EG 
experienced a + 16.88% increase over the same time period. Despite 
a greater change in performance, the EG still outperformed the 
CGAR in the final training session: 59.38% vs 47.5%. Error bars denote 
standard deviation. *Denotes p < 0.05 for the Mann–Whitney Test. 
Sample size, N = 4
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flexion range of 83.87± 20.66 °, a shoulder abduction 
range of 52.76± 20.56 °, and an elbow flexion range of 
88.29± 37.58°.

During AR training, for each upper-limb DoF of inter-
est, the EG produced a greater average joint RoM when 
successfully completing an object manipulation when 
compared to the CGAR. For the EG, the average joint 
RoM produced during successful manipulations over all 
AR training sessions was 82.34 ± 33.47 °, 44.38± 20.14 °, 
and 80.80± 29.90 ° for shoulder flexion, shoulder abduc-
tion, and elbow flexion. For the CGAR, the produced 
joint ranges were 49.79± 21.36 °, 22.76± 15.02 °, and 
46.62± 22.21 °, respectively. Differences in joint RoM 
were significant in the final two AR training sessions 
( p < 0.05 , Mann–Whitney) (Fig. 9).

Visual fixation percentage
The amount of time that an individual fixated on their 
prosthetic hand during successful task completion in AR 
was different between the two assessment groups. For 
the CGAR, the average percentage of time spent fixating 

on the prosthesis was 64.09 ± 23.85% of the total time 
spent attempting to transport a successfully grasped 
object. For the EG, the respective average percentage 
was 90.37 ± 13.32%. While these averages do not seem 
to meaningfully change throughout the course of the AR 
training, this trend in visuomotor behavior exists within 
all 5 training sessions with significant differences existing 
in training sessions 3 and 4 ( p < 0.05 , Mann–Whitney) 
(Fig. 10).

Discussion
In this manuscript, we investigate the effect that limb 
loading has on skill transfer between AR upper-limb 
prosthesis training and its real-world analog. The 
results of the three-group longitudinal study show that 
individuals that undergo a virtual prosthesis training 
regimen with a load applied to their operating limb expe-
rience a greater increase in dexterous functionality with 
a physical prosthesis post-training than individuals who 
undergo the same training with no load and individuals 
who only undergo traditional muscle training (Fig.  7). 

Fig. 9  Upper-limb joint range of motion (RoM) during successfully completed tasks. (Top) In both the pre-test and post-test, all IL participants 
presented similar joint RoM on average for all upper-limb DoF. (Bottom) Across AR training all sessions, the EG presented a greater mean RoM than 
the CGAR in the following upper-limb DoF: shoulder flexion ( 82.34± 33.47 ° vs 49.79± 21.36°), shoulder abduction ( 44.38± 20.14 ° vs 22.76± 15.02

°), and elbow flexion ( 80.80± 29.90 ° vs 46.62± 22.21°). Error bars denote standard deviation. *Denotes p < 0.05 for the Mann–Whitney Test. Sample 
size, N = 4
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Additionally, this greater increase in performance is 
accompanied by a quicker time to saturation for perfor-
mance in the AR training environment. For participants 
in the EG, there was no significant difference in their 
performance between session 1 and session 5 of the AR 
training period. This suggests that most of the benefit 
gained during the loaded AR training was immediate, 
gained after only a single session. This is contrary to the 
CGAR, which required nearly the entire training period to 
reach steady-state performance (Fig.  8). This difference 
in saturation time is particularly important for rehabili-
tation protocols, for which there is a general difficulty in 
ensuring that patients return for multiple sessions.

The task performance results bring attention to a 
limitation with not only AR but also physical prosthesis 
training platforms. Gravity compensation of the prosthe-
sis load during training or evaluation [55–57] is a com-
mon concept often used to reduce muscle fatigue during 
prosthesis operation. However, the results of this study 
show that the motor skills learned while operating a pros-
thesis with no loading information do not transfer effi-
ciently to traditional prosthesis operation. This suggests 
that in order to provide users with the most benefit from 
their prosthesis training (in terms of transferable perfor-
mance), protocol designers should avoid the use of grav-
ity compensation techniques.

One important distinction that was reinforced in this 
study is the unreliability of offline training accuracy as 
an indicator of online functionality. For all participants, 
the maximum probability of a classification error in a 
session’s initial training set was less than 4% (Fig.  6). 

This is in stark contrast to, for example, the range of 
task completion rates achieved during the AR-PHAM 
training: 12.5–67.5% (Fig. 8). Furthermore, this dispar-
ity exists despite collecting training data in multiple 
limb positions both with and without loading the limb. 
While previous literature suggests this sort of dynamic 
training can improve the utility of real-world prosthe-
sis use [50, 58], offline validation results remained a 
poor indicator of prosthesis control functionality for 
this task. A possible explanation for this could be the 
“all-or-nothing” nature of the manipulations prompted 
in this experiment. For example, a participant could 
be generating the correct movement classifications 
for the majority of an object manipulation, however, a 
brief instant of misclassifications may cause the task to 
become irrecoverable (e.g. dropping the cylinder). It is 
possible a less strict control task may show better con-
gruence between offline and online performance, but 
such lax tasks are not indicative of real-world use and 
so have limited usefulness.

This study also highlights a kinematic difference 
between accomplishing a motor task with and without 
the proprioceptive input of a prosthesis load. While pre-
vious work has shown that upper-limb prosthesis users 
produce compensatory movements in the proximal limb 
joints during object manipulation, these studies suggest 
that compensatory movements arise primarily from a 
lack of distal DoFs in a user’s prosthesis [59, 60]. Results 
from this study support that compensatory motions are 
not solely the result of a lack of DoFs in an upper-limb 
prosthesis or a lack of reliable control in the DoFs that are 
present. If so, we would expect the angular RoM between 
the CGAR and EG to be the same during virtual prosthesis 
operation. Instead, we see that the EG consistently pro-
duces a larger angular RoM than the CGAR, even though 
both groups have the same distal DoFs and training 
errors (Fig.  9). An explanation for this kinematic differ-
ence is that compensatory movements are partially a con-
sequence of the altered energetics of the limb-prosthesis 
system. Participants may support the external load of the 
prosthesis by altering their movement strategy to engage 
the more developed musculature of their trunk, chest, 
and upper arm. This explanation is further supported by 
the fact that the angular RoM for the CGAR is greater in 
the pre- and post-test, when their limb is loaded, than 
during AR training, when their limb is unloaded, for each 
DoF. This is in contrast to the EG, whose members expe-
rienced limb loading during both the pre- and post-test 
and the AR training and did not present a difference in 
angular RoM between the physical and AR manipulation 
tasks. It is possible that a follow-up study with individu-
als using an osseointegrated prosthetic solution, in which 
the prosthesis load is supported by the user’s skeletal 

Fig. 10  Percentage of time spent visually fixating to the prosthetic 
hand during object transport during successfully completed 
tasks. Across all sessions, the EG presented a greater mean fixation 
percentage ( 90.37± 13.32% ) than the CGAR ( 64.09± 23.85% ). Error 
bars denote standard deviation. *Denotes p < 0.05 for the Mann–
Whitney Test. Sample size, N = 4
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system, may provide more insight on the importance of 
external loads to compensatory movement strategies.

Secondary analysis also shows the effect limb load-
ing has on a prosthesis user’s visuomotor behavior in 
virtual spaces. When comparing visuomotor behavior 
between the two participant groups, the EG produced a 
much higher mean fixation percentage on the hand dur-
ing object transport than the CGAR: 90.37% vs 64.09%. 
Functionally, this shows that EG participants found 
themselves more often visually verifying that their vir-
tual prosthesis continued stable grasping of the cylinder 
during object transport. One explanation for this differ-
ence in visual fixation between the two groups is that the 
load applied to a user’s limb draws more cognitive atten-
tion simply by being an external stimulus that the user is 
not habituated to. It is possible that for an experienced 
prosthesis user, the level of visual fixation during trans-
port would reduce to that of the CGAR, even with limb 
loading.

Both the EG and the CGAR visually fixated on their 
hand during object transport more frequently than 
prosthesis users performing object manipulations with 
a physical prosthesis (mean of 29.7% over two types of 
object manipulations [53]). One explanation for this dif-
ference between the virtual and the physical prosthesis 
fixation percentages could be the lack of haptic feedback 
in the grasping for the virtual case. Without haptic feed-
back, it is natural for a user to rely on visual information 
to assess the validity of an object grasp [61]. Although 
the physical prosthesis users did not use specific haptic 
interfaces in Hebert et al., the majority of the users were 
operating body-powered prostheses which provide grasp 
information through the tension of their Bowden cables. 
In fact, a further study showed that visual fixation can be 
reduced to normative levels when providing appropri-
ate feedback using a physical myoelectric prosthesis with 
haptic interfaces [62].

Our study was not without limitations. Most appar-
ently, the longitudinal study was not conducted with a 
population of LL participants. While previous literature 
has shown that IL participants construct similar motor 
strategies as individuals with LL when using a bypass 
prosthesis, the results of this study can be strengthened 
with an extension of this work that explicitly includes the 
target population [63]. Another limitation of this study 
is that general motor performance was characterized by 
only a single outcome measure: the PHAM. An exten-
sion of this work should include multiple functional out-
come measures to better understand how limb loading 
enhances motor performance more generally [52, 64, 65].

Another limitation of this work was the location of the 
prosthesis relative to the limb. In the AR environment, 
the virtual prosthesis was mounted as an extension of the 

user’s limb, as if the user was wearing a traditional socket 
interface. In contrast, the physical prosthesis system 
mounted the prosthesis parallel to the operating arm, off-
set by 4 cm. This is due to a limitation of the AR system’s 
rendering pipeline. Because the AR system renders the 
real-world environment using stereoscopic camera pass-
through, it is not possible to render a virtual object (like 
the prosthesis) behind a real-world object (like the intact 
limb). Doing so would produce significant visual arti-
facts at the boundaries of the overlapping real and virtual 
objects due to insufficient resolution of the depth data 
measured from the HMD.

It is unclear what effect this lack of offset may have had 
on a participant’s ability to embody the prosthesis. Page 
et  al. claimed that prosthesis embodiment “depends on 
congruence (plausible anatomical orientation), temporal 
and spatial synchrony (between visual and proprioceptive 
or tactile feedback), and ‘bodily resemblance’” [66]. While 
not offsetting the virtual prosthesis increases congru-
ence, it also decreases spatial synchrony with the socket’s 
proprioceptive feedback. However, literature does sug-
gest that an offset, beside-the-hand configuration for a 
prosthesis simulator is biomechanically valid and does 
not have any significant effect on the joint kinematics of a 
user with an intact limb [67]. Nevertheless, an extension 
of this work should include subjective questionnaires and 
cortical imaging to understand the strength and progres-
sion of device embodiment in virtual training protocols.

A limitation of the training framework proposed in 
this study is that proprioceptive information was pro-
vided by physically loading the participant’s operating 
limb. As stated previously, the residual limb of a pros-
thesis user may be hypersensitive to physical loading in 
the time right after the surgery, when a prosthesis train-
ing intervention may be the most valuable [15, 16]. This 
hypersensitivity would make limb loading unfeasible. To 
overcome this limitation, proprioceptive information can 
be provided using less strenuous methods of joint-torque 
feedback [68, 69] or transcutaneous stimulation [70].

Conclusion
This study investigated the effect that limb loading has 
on complex motor skill transfer from virtual to physical 
upper-limb prosthesis control. Participants who under-
went an AR prosthesis training regimen with their 
operating limb loaded produced a significantly greater 
post-training increase in functionality when compared 
to participants who underwent the same training with-
out the limb loading. Secondary analyses show that 
both compensatory motion and hand fixation percent-
age are increased when performing manipulations with 
the operating limb loaded, irrespective of prosthesis 
control capacity. Overall, the increased sensory fidelity 
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afforded by limb loading helped to increase the level of 
skill transfer from an augmented reality prosthesis con-
trol task to an analog in physical reality.

Abbreviations
AR	� Augmented reality
LL	� Limb loss
EMG	� Electromyogram
DoF	� Degree of freedom
PHAM	� Prosthetic Hand Assessment Measure
HMD	� Head-mounted display
MPL	� Modular prosthetic limb
RE	� Rest
HO	� Hand open
HC	� Hand close
WP	� Wrist pronate
WS	� Wrist supinate
LDA	� Linear discriminant analysis
IL	� Intact limb
CGAR	� Augmented reality control group
CGLD	� Load control group
EG	� Experimental group
RoM	� Range of motion
GaMA	� Gaze and movement assessment

Acknowledgements
The authors would like to thank the human subjects who participated in this 
study; Infinite Biomedical Technologies; the National Institutes of Health; the 
Department of Defense; and The Johns Hopkins University. Additionally, we 
thank the Johns Hopkins Applied Physics Laboratory (JHU/APL) for making 
available the virtual MPL, developed under the Revolutionizing Prosthetics 
program and based upon work supported by the Defence Advanced Research 
Projects Agency (DARPA) under Contract No. N66001-10-C-4056. Any opinions, 
findings and conclusions or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of DARPA or JHU/
APL.

Author contributions
Each author made substantial contributions to the conception and design of 
the work. CLH, JSH, MGF, RRK, and NVT designed the study. CLH, YS, and AWS 
designed the system and developed the software. CLH and SW conducted 
the experiments and collected the data. CLH performed the data analysis. CLH 
drafted the manuscript, while YS, SW, AWS, JSH, MGF, RRK, and NVT revised the 
text. All authors read and approved the final manuscript.

Funding
This work was funded under the National Institutes of Health Grant No. 
DM190888 and under the Department of Defense Grant No. 136019.

Availability of data and materials
The data used in the current study are available from the corresponding 
author upon reasonable request.

Declarations

Ethics approval and consent to participate
The experimental protocol was approved by the Johns Hopkins School 
of Medicine institutional review board and written informed consent was 
obtained from all participants.

Consent for publication
Written informed consent for the publication of the images used in this study 
was obtained from the individual depicted in Fig. 2.

Competing interests
Dr. Thakor has an ownership interest in Infinite Biomedical Technologies, a 
prosthesis technology company. Dr. Kaliki is employed by Infinite Biomedical 

Technologies. Competing interest are managed by the Johns Hopkins Univer‑
sity Conflict Review Committee.

Received: 10 May 2022   Accepted: 10 January 2023

References
	1.	 Resnik L, Borgia M, Cancio J, Heckman J, Highsmith J, Levy C, Phillips S, 

Webster J. Dexterity, activity performance, disability, quality of life, and 
independence in upper limb veteran prosthesis users: a normative study. 
Disabil Rehabil. 2020;44:1–12.

	2.	 Staff N. Amputation statistics by cause, limb loss in the united states. 
Knoxville: National Limb Loss Information Center; 2008.

	3.	 Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. 
Estimating the prevalence of limb loss in the United States: 2005 to 2050. 
Arch Phys Med Rehabil. 2008;89(3):422–9.

	4.	 Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, 
Zollo L. Literature review on needs of upper limb prosthesis users. Front 
Neurosci. 2016;10:209.

	5.	 Parker PA, Scott RN. Myoelectric control of prostheses. Crit Rev Biomed 
Eng. 1986;13(4):283–310.

	6.	 Toledo C, Simon A, Muñoz R, Vera A, Leija L, Hargrove L. A comparison 
of direct and pattern recognition control for a two degree-of-freedom 
above elbow virtual prosthesis. In: 2012 annual international conference 
of the IEEE engineering in medicine and biology society. IEEE; 2012. p. 
4332–5.

	7.	 Resnik L, Huang HH, Winslow A, Crouch DL, Zhang F, Wolk N. Evaluation 
of EMG pattern recognition for upper limb prosthesis control: a case 
study in comparison with direct myoelectric control. J Neuroeng Rehabil. 
2018;15(1):1–13.

	8.	 Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelec‑
tric control. IEEE Trans Biomed Eng. 1993;40(1):82–94.

	9.	 Englehart K, Hudgins B. A robust, real-time control scheme for multifunc‑
tion myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848–54.

	10.	 Hargrove LJ, Miller LA, Turner K, Kuiken TA. Myoelectric pattern recogni‑
tion outperforms direct control for transhumeral amputees with targeted 
muscle reinnervation: a randomized clinical trial. Sci Rep. 2017;7(1):1–9.

	11.	 Wurth SM, Hargrove LJ. A real-time comparison between direct control, 
sequential pattern recognition control and simultaneous pattern recog‑
nition control using a Fitts-law style assessment procedure. J Neuroeng 
Rehabil. 2014;11(1):1–13.

	12.	 Powell MA, Kaliki RR, Thakor NV. User training for pattern recognition-
based myoelectric prostheses: improving phantom limb movement 
consistency and distinguishability. IEEE Trans Neural Syst Rehabil Eng. 
2013;22(3):522–32.

	13.	 Powell MA, Thakor NV. A training strategy for learning pattern recognition 
control for myoelectric prostheses. J Prosthet Orthot. 2013;25(1):30.

	14.	 Johnson SS, Mansfield E. Prosthetic training: upper limb. Phys Med Reha‑
bil Clin. 2014;25(1):133–51.

	15.	 Sanders JE, Fatone S. Residual limb volume change: systematic review of 
measurement and management. J Rehabil Res Dev. 2011;48(8):949.

	16.	 Malone J, Fleming L, Roberson J, Whitesides T Jr, Leal J, Poole J, Grodin 
R. Immediate, early, and late postsurgical management of upper-limb 
amputation. J Rhabil Res Dev. 1984;21(1):33–41.

	17.	 Jones JA, Swan JE, Singh G, Kolstad E, Ellis SR. The effects of virtual reality, 
augmented reality, and motion parallax on egocentric depth perception. 
In: Proceedings of the 5th symposium on applied perception in graphics 
and visualization; 2008. p. 9–14.

	18.	 Vovk A, Wild F, Guest W, Kuula T. Simulator sickness in augmented reality 
training using the Microsoft HoloLens. In: Proceedings of the 2018 CHI 
conference on human factors in computing systems. 2018. p. 1–9.

	19.	 Boschmann A, Dosen S, Werner A, Raies A, Farina D. A novel immersive 
augmented reality system for prosthesis training and assessment. In: 
2016 IEEE-EMBS international conference on biomedical and health 
informatics (BHI). IEEE; 2016. p. 280–3.

	20.	 Nishino W, Yamanoi Y, Sakuma Y, Kato R. Development of a myoe‑
lectric prosthesis simulator using augmented reality. In: 2017 IEEE 



Page 13 of 14Hunt et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:16 	

international conference on systems, man, and cybernetics (SMC). IEEE; 
2017. p. 1046–51.

	21.	 Boschmann A, Neuhaus D, Vogt S, Kaltschmidt C, Platzner M, Dosen S. 
Immersive augmented reality system for the training of pattern clas‑
sification control with a myoelectric prosthesis. J Neuroeng Rehabil. 
2021;18(1):1–15.

	22.	 Lendaro E, Middleton A, Brown S, Ortiz-Catalan M. Out of the clinic, 
into the home: the in-home use of phantom motor execution aided by 
machine learning and augmented reality for the treatment of phantom 
limb pain. J Pain Res. 2020;13:195.

	23.	 Anderson F, Bischof WF. Augmented reality improves myoelectric 
prosthesis training. Int J Disabil Hum Dev. 2014;13(3):349–54.

	24.	 Clemente F, Dosen S, Lonini L, Markovic M, Farina D, Cipriani C. Humans 
can integrate augmented reality feedback in their sensorimotor con‑
trol of a robotic hand. IEEE Trans Hum Mach Syst. 2016;47(4):583–9.

	25.	 Markovic M, Dosen S, Cipriani C, Popovic D, Farina D. Stereovision and 
augmented reality for closed-loop control of grasping in hand prosthe‑
ses. J Neural Eng. 2014;11(4):046001.

	26.	 Levac DE, Huber ME, Sternad D. Learning and transfer of complex 
motor skills in virtual reality: a perspective review. J Neuroeng Rehabil. 
2019;16(1):1–15.

	27.	 Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF. Comparison 
of grasping movements made by healthy subjects in a 3-dimen‑
sional immersive virtual versus physical environment. Acta Psychol. 
2011;138(1):126–34.

	28.	 Levin MF, Magdalon EC, Michaelsen SM, Quevedo AA. Quality of grasp‑
ing and the role of haptics in a 3-D immersive virtual reality environ‑
ment in individuals with stroke. IEEE Trans Neural Syst Rehabil Eng. 
2015;23(6):1047–55.

	29.	 Hussain N, Alt Murphy M, Sunnerhagen KS. Upper limb kinematics in 
stroke and healthy controls using target-to-target task in virtual reality. 
Front Neurol. 2018;9:300.

	30.	 Wright WG. Using virtual reality to augment perception, enhance 
sensorimotor adaptation, and change our minds. Front Syst Neurosci. 
2014;8:56.

	31.	 de Mello Monteiro CB, Massetti T, da Silva TD, van der Kamp J, de Abreu 
LC, Leone C, Savelsbergh GJ. Transfer of motor learning from virtual 
to natural environments in individuals with cerebral palsy. Res Dev 
Disabil. 2014;35(10):2430–7.

	32.	 Quadrado VH, Silva TDD, Favero FM, Tonks J, Massetti T, Monteiro 
CBDM. Motor learning from virtual reality to natural environments in 
individuals with Duchenne muscular dystrophy. Disabil Rehabil Assist 
Technol. 2019;14(1):12–20.

	33.	 Rohrbach N, Hermsdörfer J, Huber L-M, Thierfelder A, Buckingham G. 
Fooling the size-weight illusion-using augmented reality to eliminate 
the effect of size on perceptions of heaviness and sensorimotor predic‑
tion. Virtual Real. 2021;25(4):1061–70.

	34.	 Diers M, Kamping S, Kirsch P, Rance M, Bekrater-Bodmann R, Foell J, 
Trojan J, Fuchs X, Bach F, Maaß H, et al. Illusion-related brain activa‑
tions: a new virtual reality mirror box system for use during functional 
magnetic resonance imaging. Brain Res. 2015;1594:173–82.

	35.	 Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La 
Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving 
motor performance as revealed by EEG: a randomized clinical trial. J 
Neuroeng Rehabil. 2017;14(1):1–16.

	36.	 Ebrahimi E, Babu SV, Pagano CC, Jörg S. An empirical evaluation of 
visuo-haptic feedback on physical reaching behaviors during 3D 
interaction in real and immersive virtual environments. ACM Trans Appl 
Percept. 2016;13(4):1–21.

	37.	 Cameirao MS, Badia SBI, Duarte E, Frisoli A, Verschure PF. The combined 
impact of virtual reality neurorehabilitation and its interfaces on upper 
extremity functional recovery in patients with chronic stroke. Stroke. 
2012;43(10):2720–8.

	38.	 Ramírez-Fernández C, Morán AL, García-Canseco E. Haptic feedback 
in motor hand virtual therapy increases precision and generates less 
mental workload. In: 2015 9th international conference on pervasive 
computing technologies for healthcare (PervasiveHealth). IEEE; 2015. p. 
280–6.

	39.	 Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling 
body shape, body position and movement, and muscle force. Physiol 
Rev. 2012;92(4):1651–97.

	40.	 Chappell D, Son HW, Clark AB, Yang Z, Bello F, Kormushev P, Rojas N. 
Virtual reality pre-prosthetic hand training with physics simulation and 
robotic force interaction. IEEE Robot Autom Lett. 2022;7(2):4550–7.

	41.	 Hunt C, Yerrabelli R, Clancy C, Osborn L, Kaliki R, Thakor N. Pham: pros‑
thetic hand assessment measure. In: Proceedings of; MEC17, myoelectric 
controls symposium—a sense of what’s to come. 2017. p. 221.

	42.	 Sharma A, Hunt CL, Maheshwari A, Osborn L, Lévay G, Kaliki RR, Soares AB, 
Thakor N. A mixed-reality training environment for upper limb prosthesis 
control. In: 2018 IEEE biomedical circuits and systems conference (Bio‑
CAS). IEEE; 2018. p. 1–4.

	43.	 Sun Y, L. Hunt C, Niu W, Li Z, Cyrino G, Cavalcante R, Lamounier E, B Soares 
A, V Thakor N. A comparison between virtual reality and augmented real‑
ity on upper-limb prosthesis control. In: 2021 international symposium 
on electrical, electronics and information engineering. 2021. p. 521–8.

	44.	 Johannes MS, Bigelow JD, Burck JM, Harshbarger SD, Kozlowski MV, Van 
Doren T. An overview of the developmental process for the modular 
prosthetic limb. Johns Hopkins APL Tech Digest. 2011;30(3):207–16.

	45.	 Hargrove LJ, Scheme EJ, Englehart KB, Hudgins BS. Multiple binary clas‑
sifications via linear discriminant analysis for improved controllability of a 
powered prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):49–57.

	46.	 Murphy MA, Willén C, Sunnerhagen KS. Kinematic variables quantifying 
upper-extremity performance after stroke during reaching and drinking 
from a glass. Neurorehabil Neural Repair. 2011;25(1):71–80.

	47.	 Lavoie EB, Valevicius AM, Boser QA, Kovic O, Vette AH, Pilarski PM, Hebert 
JS, Chapman CS. Using synchronized eye and motion tracking to deter‑
mine high-precision eye-movement patterns during object-interaction 
tasks. J Vis. 2018;18(6):18.

	48.	 Tkach D, Huang H, Kuiken TA. Study of stability of time-domain features 
for electromyographic pattern recognition. J Neuroeng Rehabil. 
2010;7(1):1–13.

	49.	 Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl Ø. Resolving the 
limb position effect in myoelectric pattern recognition. IEEE Trans Neural 
Syst Rehabil Eng. 2011;19(6):644–51.

	50.	 Beaulieu RJ, Masters MR, Betthauser J, Smith RJ, Kaliki R, Thakor NV, Soares 
AB. Multi-position training improves robustness of pattern recognition 
and reduces limb-position effect in prosthetic control. J Prosthet Orthot. 
2017;29(2):54.

	51.	 Burstedt MK, Flanagan JR, Johansson RS. Control of grasp stability in 
humans under different frictional conditions during multidigit manipula‑
tion. J Neurophysiol. 1999;82(5):2393–405.

	52.	 Williams HE, Chapman CS, Pilarski PM, Vette AH, Hebert JS. Gaze and 
movement assessment (GaMA): inter-site validation of a visuomotor 
upper limb functional protocol. PLoS ONE. 2019;14(12):0219333.

	53.	 Hebert JS, Boser QA, Valevicius AM, Tanikawa H, Lavoie EB, Vette AH, Pilar‑
ski PM, Chapman CS. Quantitative eye gaze and movement differences in 
visuomotor adaptations to varying task demands among upper-extrem‑
ity prosthesis users. JAMA Netw Open. 2019;2(9):1911197.

	54.	 Babu C. On the probability of error and the expected Bhattacharyya 
distance in multiclass pattern recognition. Proc IEEE. 1972;60(11):1451–2.

	55.	 Weeks DL, Wallace SA, Anderson DI. Training with an upper-limb pros‑
thetic simulator to enhance transfer of skill across limbs. Arch Phys Med 
Rehabil. 2003;84(3):437–43.

	56.	 Fu Q, Shao F, Santello M. Inter-limb transfer of grasp force perception 
with closed-loop hand prosthesis. IEEE Trans Neural Syst Rehabil Eng. 
2019;27(5):927–36.

	57.	 Mouchoux J, Carisi S, Dosen S, Farina D, Schilling AF, Markovic M. 
Artificial perception and semiautonomous control in myoelectric hand 
prostheses increases performance and decreases effort. IEEE Trans Robot. 
2021;37(4):1298–312.

	58.	 Teh Y, Hargrove LJ. Understanding limb position and external load effects 
on real-time pattern recognition control in amputees. IEEE Trans Neural 
Syst Rehabil Eng. 2020;28(7):1605–13.

	59.	 Carey SL, Highsmith MJ, Maitland ME, Dubey RV. Compensatory move‑
ments of transradial prosthesis users during common tasks. Clin Biomech. 
2008;23(9):1128–35.

	60.	 Major MJ, Stine RL, Heckathorne CW, Fatone S, Gard SA. Comparison of 
range-of-motion and variability in upper body movements between 
transradial prosthesis users and able-bodied controls when executing 
goal-oriented tasks. J Neuroeng Rehabil. 2014;11(1):1–10.

	61.	 Camponogara I, Volcic R. Grasping movements toward seen and hand‑
held objects. Sci Rep. 2019;9(1):1–8.



Page 14 of 14Hunt et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:16 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	62.	 Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, Shehata 
AW, Williams HE, Wilson KR. Neurorobotic fusion of prosthetic touch, kin‑
esthesia, and movement in bionic upper limbs promotes intrinsic brain 
behaviors. Sci Robot. 2021;6(58):eabf3368.

	63.	 Williams HE, Chapman CS, Pilarski PM, Vette AH, Hebert JS. Myoelectric 
prosthesis users and non-disabled individuals wearing a simulated pros‑
thesis exhibit similar compensatory movement strategies. J NeuroEng 
Rehabil. 2021;18(1):1–15.

	64.	 Resnik L, Adams L, Borgia M, Delikat J, Disla R, Ebner C, Walters LS. 
Development and evaluation of the activities measure for upper limb 
amputees. Arch Phys Med Rehabil. 2013;94(3):488–94.

	65.	 Boyle A, Prejean B, Ruhde L, Pool K, Bollinger C, Miguelez J, Conyers D, 
Ryan T, Kontson KL. Capacity assessment of prosthetic performance for 
the upper limb (CAPPFUL): characterization of normative kinematics and 
performance. PM &R. 2020;12(9):870–81.

	66.	 Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, 
Hutchinson DT, Clark GA. Motor control and sensory feedback enhance 
prosthesis embodiment and reduce phantom pain after long-term hand 
amputation. Front Hum Neurosci. 2018;12:352.

	67.	 Matias A, Bennett C, Estelle S, Roper JL, Smith BW. Biomechanical 
comparison of the validity of two configurations of simulators for body-
powered hand prostheses. In: 2020 8th IEEE RAS/EMBS international 
conference for biomedical robotics and biomechatronics (BioRob). IEEE; 
2020. p. 422–7.

	68.	 Kim H, Guo HH, Asbeck AT. Just noticeable differences for joint torque 
feedback during static poses. In: 2020 IEEE international conference on 
robotics and automation (ICRA). IEEE; 2020. p. 11096–102.

	69.	 Kim H, Asbeck AT. Just noticeable differences for elbow joint torque 
feedback. Sci Rep. 2021;11(1):1–14.

	70.	 Rangwani R, Park H. A new approach of inducing proprioceptive 
illusion by transcutaneous electrical stimulation. J NeuroEng Rehabil. 
2021;18(1):1–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Limb loading enhances skill transfer between augmented and physical reality tasks during limb loss rehabilitation
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Augmented reality system overview
	Experimental protocol
	Participants
	Physical reality pre- and post-test
	Augmented reality training
	Muscle load training

	Data segmentation
	Data analysis

	Results
	Training EMG validation
	Physical assessment performance
	Augmented reality training performance
	Joint range of motion
	Visual fixation percentage

	Discussion
	Conclusion
	Acknowledgements
	References


