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Abstract 

Background Significant clinician training is required to mitigate the subjective nature and achieve useful reliability 
between measurement occasions and therapists. Previous research supports that robotic instruments can improve 
quantitative biomechanical assessments of the upper limb, offering reliable and more sensitive measures. Further-
more, combining kinematic and kinetic measurements with electrophysiological measurements offers new insights 
to unlock targeted impairment-specific therapy. This review presents common methods for analyzing biomechanical 
and neuromuscular data by describing their validity and reporting their reliability measures.

Methods This paper reviews literature (2000–2021) on sensor-based measures and metrics for upper-limb biome-
chanical and electrophysiological (neurological) assessment, which have been shown to correlate with clinical test 
outcomes for motor assessment. The search terms targeted robotic and passive devices developed for movement 
therapy. Journal and conference papers on stroke assessment metrics were selected using PRISMA guidelines. Intra-
class correlation values of some of the metrics are recorded, along with model, type of agreement, and confidence 
intervals, when reported.

Results A total of 60 articles are identified. The sensor-based metrics assess various aspects of movement perfor-
mance, such as smoothness, spasticity, efficiency, planning, efficacy, accuracy, coordination, range of motion, and 
strength. Additional metrics assess abnormal activation patterns of cortical activity and interconnections between 
brain regions and muscle groups; aiming to characterize differences between the population who had a stroke and 
the healthy population.

Conclusion Range of motion, mean speed, mean distance, normal path length, spectral arc length, number of peaks, 
and task time metrics have all demonstrated good to excellent reliability, as well as provide a finer resolution com-
pared to discrete clinical assessment tests. EEG power features for multiple frequency bands of interest, specifically the 
bands relating to slow and fast frequencies comparing affected and non-affected hemispheres, demonstrate good 
to excellent reliability for populations at various stages of stroke recovery. Further investigation is needed to evaluate 
the metrics missing reliability information. In the few studies combining biomechanical measures with neuroelec-
tric signals, the multi-domain approaches demonstrated agreement with clinical assessments and provide further 
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information during the relearning phase. Combining the reliable sensor-based metrics in the clinical assessment 
process will provide a more objective approach, relying less on therapist expertise. This paper suggests future work on 
analyzing the reliability of metrics to prevent biasedness and selecting the appropriate analysis.

Keywords Stroke, Reliability, Robot-assisted therapy, Exoskeleton, Neurological assessment, Biomechanical 
assessment, Rehabilitation, Motor function, Electroencephalography, Multimodal

Background
Stroke is one of the leading causes of death and disabil-
ity in developed countries. In the United States, a stroke 
occurs every 40 s, ranking stroke as the fifth leading cause 
of death and the first leading cause of disability in the 
country [1]. The high prevalence of stroke, coupled with 
increasing stroke survival rates, puts a growing strain on 
already limited healthcare resources; the cost of therapy is 
elevated [2] and restricted mostly to a clinical setting [3], 
leading to 50% of survivors that reach the chronic stage 
experiencing severe motor disability for upper extremities 
[4]. This highlights the need for refined (improved) assess-
ment which can help pair person-specific impairment 
with appropriately targeted therapeutic strategies.

Rehabilitation typically starts with a battery of stand-
ardized tests to assess impairment and function. This 
initial evaluation serves as a baseline of movement capa-
bilities and usually includes assessment of function dur-
ing activities of daily living (ADL). Because these clinical 
assessments rely on trained therapists as raters, the scor-
ing scale is designed to be discrete and, in some cases, 
bounded. While this improves the reliability of the met-
ric [5] (i.e., raters more likely to agree), it also reduces the 
sensitivity of the scale. Furthermore, those assessment 
scales that are bounded, such as the Fugl-Meyer Assess-
ment (FMA) [6], Ashworth or Modified Ashworth (MA) 
Scale [7], and Barthel Index [8], suffer from floor/ceiling 
effects where the limits of the scales become insensitive 
to the extremes of impairment and function. It is there-
fore important to develop new clinical assessment meth-
ods that are objective, quantifiable, reliable, and sensitive 
to change over the full range of function and impairment.

Over the last several decades, robotic devices have been 
designed and studied for administering post-stroke move-
ment therapy. These devices have begun being adopted into 
clinical rehabilitation practice. More recently, research-
ers have proposed and studied the use of robotic devices 
to assess stroke-related impairments as an approach to 
overcome the limitations of existing clinical measures 
previously discussed [9–12]. Robots may be equipped 
with sensitive measurement devices that can be used to 
rate the person’s performance in a predefined task. These 
devices can include measuring kinematic (position/
velocity), kinetic (force/torque), and/or neuromuscular 

(electromyography/electroencephalography) output from 
the subject during the task. Common sensor-based robotic 
metrics for post-stroke assessment included speed of 
response, planning time, movement planning, smoothness, 
efficiency, range, and efficacy [13, 14]. Figure  1 demon-
strates an example method for comprehensive assessment 
of a person who has suffered a stroke with data acquired 
during robotically administered tests. Furthermore, there 
is potential for new and more comprehensive knowledge to 
be gained from a wider array of assessment methods and 
metrics that combine the benefits of biomechanical (e.g., 
kinematic and kinetic) and neurological (e.g., electromyo-
graphic and electroencephalographic) measures [15–22].

Biomechanical assessment
Many classical methods of assessing impairment or func-
tion involve manual and/or instrumented quantification of 
performance through measures of motion (i.e., kinematic) 
and force (i.e., kinetic) capabilities. These classical methods 
rely on the training of the therapist to evaluate the capabili-
ties of the person through keen observation (e.g., FMA [6] 
and MA [7]). The quality of kinematic and kinetic measures 
can be improved with the use of electronic-based meas-
urements [23]. Robotic devices equipped with electronic 
sensors have the potential to improve the objectivity, sensi-
tivity, and reliability of the assessment process by providing 
a means for more quantitative, precise, and accurate infor-
mation [9–12, 24–28]. Usually, the electronic sensors on a 
rehabilitation robotic device are used for control purposes 
[29–31]. Robotics can also measure movement outputs, 
such as force or joint velocities, which the clinician may 
not be able to otherwise measure as accurately (or simul-
taneously) using existing clinical assessment methods [23]. 
With accurate and repeatable measurement of forces and 
joint velocities, sensor-based assessments have the poten-
tial to assess the person’s movement in an objective and 
quantifiable way. This article reviews validity and reliability 
of biomechanical metrics in relationship to assessment of 
motor function for upper extremities.

Electrophysiological features for assessment
Neural signals that originate from the body can be 
measured using non-invasive methods. Among oth-
ers, electroencephalograms (EEG) measure cortical 
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electrical activity, and electromyograms (EMG) meas-
ure muscle electrical activity. The relative low cost, as 
well as the noninvasive nature of these technologies 
make them suitable for studying changes in cortical 
or muscle activation caused by conditions or injuries 
of the brain, such as the ones elicited by stroke lesions 
[32].

Initially, EMG/EEG were used strictly as clinical diag-
nostic tools [33, 34]. Recent improvements in signal 
acquisition hardware and computational processing 
methods have increased their use as viable instruments 
for understanding and treating neuromuscular dis-
eases and neural conditions [32]. Features extracted 
from these signals are being researched to assess their 
relationship to motor and cognitive deficits [35–42] 
and delayed ischemia [34, 43], as well as to identify dif-
ferent uses of the signals that could aid rehabilitation 
[44]. Applications of these features in the context of 
stroke include: (1) commanding robotic prostheses [45, 
46], exoskeletons [21, 47, 48], and brain-machine inter-
faces [44, 49–51]; and (2) bedside monitoring for sub-
acute patients and thrombolytic therapy [52–54]. Here 
we review the validity and reliability of metrics derived 
from electrophysiological signals in relationship to 
stroke motor assessment for upper extremity.

Reliability of metrics
Robotic or sensor-based assessment tools have not 
gained widespread clinical acceptance for stroke assess-
ment. Numerous barriers to their clinical adoption 
remain, including demonstrating their reliability and 
providing sufficient validation of robotic metrics with 
respect to currently accepted assessment techniques 
[55]. In the assessment of motor function with sensor-
based systems, several literature reviews reveal a wide 
spectrum of sensor-based metrics to use for stroke reha-
bilitation and demonstrate their validity [13, 42, 56–59, 
63, 64]. However, in addition to demonstrating validity, 
new clinical assessments must also demonstrate good or 
excellent reliability in order to support their adoption in 
the clinical field. This is achieved by: (1) comparing mul-
tiple measurements on the same subject (test–retest reli-
ability), and (2) checking agreement between multiple 
raters of the same subject (inter-rater reliability). Reliabil-
ity quantifies an assessment’s ability to deliver scores that 
are free from measurement error [65]. Previous literature 
reviews have presented limited, if any, information on the 
reliability of the biomechanical robotic metrics. Murphy 
and Häger [66], Wang et al. [56], and Shishov et al. [67] 
reviewed reliability, but omitted some important aspects 
of intra-class correlation methods used in the study (e.g., 

Impairment 
Assessment

Assessment Report
• Speed of Response
• Planning time
• Movement Planning
• Smoothness Score
• Efficiency Score
• Range Score
• Efficacy Score

Measurement Instrument

Position/Force 
Measure
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Bioelectric EEG, EMG
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Fig. 1 Example of instrument for upper extremities bilateral biomechanical and neuromuscular assessment. From this data, a wide variety of 
measures and metrics for assessment of upper-extremity impairment and function may be reported
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the model type and/or the confidence interval), which are 
required when analyzing intra-class correlation methods 
for reliability [68]. If the reliability is not properly ana-
lyzed and reported, the study runs the risk of having a 
biased result. Murphy and Häger [66] also found a lack 
of studies determining the reliability of metrics in 2015. 
Since electronic-based assessments require the use of a 
therapist or an operator to administer the test, an inter-
observer reliability test should be investigated to observe 
the effect of the test administrators on the assessment 
process. Therefore, both test–retest and inter-observer 
reliability in biomechanical and electrophysiological met-
rics are reviewed to provide updated information on the 
current findings of the metrics’ reliability.

Integrated metrics
Over the past 50 years, numerous examples of integrated 
metrics have provided valuable insight into the inner 
workings of human arm function. In the 1970s EMG was 
combined with kinematic data in patients with spastic-
ity to understand muscle patterns during ballistic arm 
reach movements [69], the affects of pharmacological 
intervention on spastic stretch reflexes during passive 
vs. voluntary movement [70], and in the 1990s EMG was 
combined with kinetic data to understand the effects of 
abnormal synergy patterns on reach workspace when lift-
ing the arm against gravity [71]. This work dispelled long-
standing theories of muscular weakness and spasticity 
alone being the major contributors to arm impairment. 
More recently, quantified aspects of processed EEG and 
EMG signals are being combined with kinematic data 
to investigate the compensatory role, and relation to 
shoulder-related abnormal muscle synergies of the con-
tralesional secondary sensorimotor cortex, in a group 
of chronic stroke survivors [72]. These and other works 
demonstrate convincingly the value of combined metrics 
and the insights they can uncover that isolated metrics 
cannot discover alone.

To provide further information on the stroke sever-
ity and the relearning process during stroke therapy, 
researchers are investigating a multi-modal approach 
using biomechanical and neuromuscular features [15, 16, 
18, 19, 21, 22]. Combining both neuromuscular and bio-
mechanical metrics will provide a comprehensive assess-
ment of the person’s movement starting from motor 
planning to the end of motor execution. Neuromuscular 
output provides valuable information on the feedforward 
control and the movement planning phase [22]. However, 
neuromuscular signals provides little information on the 
movement quality that is often investigated with move-
ment function tests or biomechanical output [21]. Also, 
using neuromuscular data will provide information to 
therapist on the neurological status and nervous system 

reorganization of the person that biomechanical infor-
mation cannot provide [73]. The additional information 
can assist in developing more personalized care for the 
person with stroke, as well as offer considerable informa-
tion on the changes that occur at the physiological level.

Paper overview
This paper reviews published sensor-based methods, for 
biomechanical and neuromuscular assessment of impair-
ment and function after neurological damage, and how 
the metrics resulting from the assessments, both alone 
and in combination, may be able to provide further infor-
mation on the recovery process. Specifically, methods 
and metrics utilizing digitized kinematic, kinetic, EEG, 
and EMG data were considered. The “Methods” section 
explains how the literature review was performed. In 
“Measures and methods based on biomechanical per-
formance” section, prevailing robotic assessment met-
rics are identified and categorized including smoothness, 
resistance, efficiency, accuracy, efficacy, planning, range-
of-motion, strength, inter-joint coordination, and intra-
joint coordination. In “Measures and methods based 
on neural activity using EEG/EMG” section, EEG- and 
EMG-derived measures are discussed by the primary 
category of analysis performed to obtain them, including 
frequency power and coherence analyses. The relation-
ship of each method and metric to stroke impairment 
and/or function is also discussed. Section “Reliability of 
measures” discusses the reliability of sensor-based met-
rics and some of the complications in demonstrating the 
effectiveness of the metrics. Section “Integrated metrics” 
reviews previous studies on combining biomechanical 
and neuromuscular data to provide further information 
on the changes occurring during assessment and train-
ing. Finally, Section “Discussions and conclusions” con-
cludes the paper with a discussion on the advantages 
of combining multi-domain data, which of the metrics 
from the earlier sections should be considered in future 
robotic applications, as well as the ones that still require 
more investigation for either validity and/or reliability.

Methods
A literature review was performed following PRISMA 
guidelines [74] on biomechanical and neuromuscu-
lar assessment in upper-limb stroke rehabilitation. The 
review was composed of two independent searches on 
(1) biomechanical robotic devices, and (2) electrophysi-
ological digital signal processing. Figures  2 and 3 show 
the selection process of the electrophysiological and bio-
mechanical papers, respectively. Each of these searches 
applied the following steps: In step 1, each researcher 
searched in Google Scholar for papers between 2000 and 
2021 (see Table 1 for search terms and prompts). In step 



Page 5 of 32Maura et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:21  

2, resulting titles and abstracts were screened to remove 
duplicates, articles in other languages, and articles not 
related to the literature review. In step 3, researchers 
read the full texts of articles screened in step 2, papers 
qualifying for inclusion using the Literature Review Cri-
teria in Table 1 were selected. Finally, in step 4, selected 
articles from independent review process were read by 
the other researcher. Uncertainties in determining if a 
paper should be included/excluded were discussed with 
the whole research group. Twenty-four papers focus 
on biomechanical measures (kinematic and kinetic), 
thirty-three focus on electrophysiological measures 
(EEG/EMG), and six papers on multimodal approaches 

combining biomechanical and neuromuscular measures 
to assess stroke. Three of the six multimodal papers are 
also reported in the biomechanical section and 3 papers 
were hand-picked. A total of 60 papers are reviewed and 
reported.

Measures and methods based on biomechanical 
performance
This review presents common robotic metrics which 
have been previously used to assess impairment and 
function after stroke. Twenty-five biomechanical papers 
are reviewed, which used both sensor-based and tra-
ditional clinical metrics to assess upper-extremity 

Fig. 2 PRISMA flowchart on the selection for electrophysiological papers
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impairment and function. The five common metrics 
included in the reviewed studies measured the number 
of velocity peaks (~ 9 studies), path-length ratio (~ 8 stud-
ies), the max speed of the arm (~ 7 studies), active range 
of motion (~ 7 studies), and movement time (~ 7 studies). 
The metrics are often compared to an established clini-
cal assessment to determine validity of the metric. The 
sensor-based metrics can be categorized by the aspect 
in which they evaluate movement quality similar to De 
Los Reyes-Guzmán et al.: smoothness, efficiency, efficacy, 
accuracy, coordination, or range of motion [14]. Resist-
ance, Movement Planning, Coordination, and Strength 
are included as additional categories since some of the 

reviewed sensor-based metrics best evaluate those move-
ment aspects. Examples of common evaluation activities 
and specific metrics that have been computed to quantify 
movement quality are outlined in Table 2.

Smoothness
Lack of arm movement smoothness is a key indicator 
of underlying impairment [79]. Traditional therapist-
administered assessments do not computationally meas-
ure smoothness leaving therapists unable to determine 
the degree to which disruption to movement smooth-
ness is compromising motor function and, therefore, 
ADL. Most metrics that have been developed to quantify 

Fig. 3 PRISMA flow chart for the selection for biomechanical papers



Page 7 of 32Maura et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:21  

smoothness are based on features of the velocity pro-
file of an arm movement, such as speed [80, 81], speed 
arc length [79], local minima of velocity [10], velocity 
peaks [75, 76, 81], tent [80], spectral [25], spectral arc 
length [25, 81], modified spectral arc length [79], and 
mean arrest period ratio [76]. Table  3 summarizes the 
smoothness metrics and their corresponding equations 
with equation numbers for reference. The speed metric 
is expressed as a ratio between the mean speed and the 
peak speed (Eq.  1). The speed arc length is the tempo-
ral length of the velocity profile (Eq. 2). Local minima of 

velocity and the velocity peaks metrics are measured by 
counting the number of minimum (Eq.  3) or maximum 
(Eq. 4) peaks in the velocity profile, respectively. The tent 
metric is a graphical approach that divides the area under 
the velocity curve by the area of a single peak velocity 
curve (Eq.  5). The spectral metric is the summation of 
the maximal Fourier transformed velocity vector (Eq. 6). 
The spectral arc-length metric is calculated from the 
frequency spectrum of the velocity profile by perform-
ing a fast Fourier transform operation and then comput-
ing the length (Eq.  7). The modified spectral arc length 

Table 1 Literature review criteria

Kinematic and kinetic measures Neuromuscular measures (EEG/EMG)

Keywords Stroke OR Stroke Assessment & Upper Limb Exoskeleton OR Upper 
Limb Robot OR Sensor Based & Relability OR Test Retest Reliability 
OR Inter Rater Reliability -gait

Stroke & EEG & EMG & assessment & motor function & upper extrem-
ity & corticomuscular coherence & CMC

Stroke Rehabilitation & Electroencephalography & Kinematic & reli-
ability & robotics -gait

Stroke & EEG & EMG & assessment & motor function & QEEG & post-
stroke) OR (stroke + EEG OR EMG & assessment & "motor function" & 
"upper extremity" & QEEG & poststroke

Stroke Rehabilitation & Upper Limb Exoskeleton OR Upper Limb 
Robot OR Sensor Based AND Reliability OR Test Retest Reliability OR 
Inter Rater Reliability -gait

Stroke & EEG & EMG & (Multimodal or Multidomain) & Robotic 
Assessment & motor function & (reliability or ICC)

Stroke Rehabilitation OR Stroke Assessment & Upper Limb Exoskel-
eton OR Upper Limb Robot OR Sensor Based & Reliability OR Test 
Retest Reliability OR Inter Rater Reliability -gait -TMS

("upper extremity" OR "upper-limb") & ("motor score" OR "motor 
function" OR "motor recovery") & ("connectivity measures" & 
"functional connectivity" OR "cortical connectivity" OR coherent OR 
coupling OR network) & biomarkers & (stroke OR "acute stroke “ OR 
“chronic stroke”)

Inclusion Has been shown to be valid by evidence of relationship to standard assessments. The methods section was screened to include groups 
with various levels of impairment due to stroke, and during different stroke stages (acute, subacute and chronic). Records included for 
reliability must perform Intra-Class Correlation (ICC) for multiple sessions (test–retest) and/or raters (inter-rater)

Exclusion Studies prior to 2000
Literature reviews
Lower limb, trunk displacement, and finger studies
Articles not written in English
Functional Electrical Stimulation

Database Google Scholar, JNER, PubMed, IEEE Xplore, SAGE, Frontiers for Neuroscience

Table 2 Evaluation activities, measures, and metrics for both uni- and bi-manual assessment via upper-extremity robotic devices

Evaluation activity Metrics Measured aspect of movement quality

Point-to-point reaching or path following Spectral [25], jerk [75], peaks [75, 76], minima 
speed count [10], amount of assistance [25], 
movement synergy [25], task time [25, 77, 78], 
accuracy [25], mean & peak speed [78], mean 
absolute value of the distance [75], path length 
ratio [75], active movement index [75], distance to 
path ratio [77], standard deviation on the target 
[77], reaction time [75]

Smoothness, efficacy, intra-limb coordination, effi-
ciency, accuracy, movement planning

ADL: circle drawing and games The axes ratio, joint angle correlation [78] Intra- and inter-limb coordination, efficacy, efficiency

Arm position matching task Standard deviation of the active hand’s position, 
range of workspace matched by the active hand 
relative to the passive, mean of the mean error 
between the active and passive hands [77]

Inter-limb coordination

Joint and directional strength Mean shoulder strength [78] Strength

Resistance to passive movement assessment Joint torque resistance [76] Resistance to single joint to passive movement
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adapts the cutoff frequency according to a given thresh-
old velocity and an upper-bound cutoff frequency (Eq. 8). 
The modified spectral arc length is then independent 
of temporal movement scaling. The mean arrest period 
ratio is the time portion that movement speed exceeds a 
given percentage of peak speed (Eq. 9).

Another commonly used approach is to analyze the jerk 
(i.e., the derivative of acceleration) profile. The common 
ways to assess smoothness using the jerk profile are root 
mean square jerk, mean rectified jerk, normalized jerk, 
and the logarithm of dimensionless jerk. The root mean 
square jerk takes the root-mean-square of the jerk that is 
then normalized by the movement duration [82] (Eq. 10). 
The mean rectified jerk (normalized mean absolute jerk) 
is the mean of the magnitude jerk normalized or divided 
by the peak velocity [80, 82] (Eq.  11). The normalized 

jerk (dimensionless-squared jerk) is the square of the jerk 
times the duration of the movement to the fifth power 
over the length squared (Eq. 12). It is then integrated over 
the duration and square rooted. The normalized jerk can 
be normalized by mean speed, max speed, or mean jerk 
[80]. The logarithm of dimensionless jerk (Eq. 13) is the 
logarithm of normalized jerk defined in Eq. 12 [81].

It has yet to be determined which smoothness metric 
is more effective for characterizing recovery of smooth 
movement. According to Rohrer et  al. [80], the metrics 
of speed, local minima of velocity, peaks, tent, and mean 
arrest period ratio showed increases in smoothness for 
inpatient recovery from stroke, but the mean rectified 
jerk metric seemed to show a decrease in smoothness as 
survivors of stroke recovered. Rohrer et  al. warned that 
a low smoothness factor in jerk does not always mean 

Table 3 Velocity profile and jerk profile based smoothness metrics found in reviewed papers

Equations have been rewritten using consistent variables where:  v(ω) is the frequency domain of the limb’s velocity; ti is time at instant i; vpeak is the peak velocity 
of the end-effector; ωc is the cutoff frequency; vspeak is the single peak velocity profile; v̂ is the normalized velocity vector; v  is the normalized zero-padded velocity 
vector; and V  is a given threshold of the velocity in the frequency domain

Metric Description Equation Eqn

Velocity profile based 
metrics

Speed [80, 81] Ratio of mean speed to peak 
speed

ηspeed = vmean/vpeak (1)

Speed arc length [79] Temporal length of the velocity 
profile ηspal = − ln ∫

t2
t1

1
t2−t1

2
+ dv̂

dt

2
dt

(2)

Local minima of velocity [10] Number of minimums in the 
velocity profile

ηminima =
∑

Min(v(t)) (3)

Velocity peaks [75, 76, 81] Number of maximums in the 
velocity profile

ηpeaks =
∑

Max(v(t)) (4)

Tent [80] Ratio of area under the entire 
velocity profile to area under a 
single-peak velocity profile

ηtent = ∫
t2
t1
v(t)dt

/

∫
t2
t1
vspeak(t)dt

(5)

Spectral [25] Summation of maxima Fourier 
transformed velocity vector

Smoothness = −
∑

Maximav(ω) (6)

Spectral arc length [25, 81] Vector norm of the frequency 
spectrum of the fast Fourier 
transformed velocity profile

SAL = −
ωc

∫
0

√

(

1
ωc

)2
+

(

dV̂(ω)
dω

)2

dω
(7)

Modified spectral arc length [79] Spectral Arc Length with the 
cutoff frequency modified to a 
given threshold velocity and an 
upper-bound cutoff frequency

Eqn. 7 w/ ωc = min{ωmax
c , min

{

ω, V̂(r)
〈

V∀r
〉

ω

}

}
(8)

Mean arrest period ratio [76] Time portion that movement 
speed exceeds a given percent-
age of peak speed

ηMAPR = tvc
ttotal

, vc ≥ .1vpeak (9)

Jerk profile based 
metrics

Root mean square jerk [82] Root-mean-square of the jerk 
normalized by the movement 
duration

ηrmsj = −

√

1
t2−t1

t2
∫
t1

∣

∣

∣

d2v
dt2

∣

∣

∣

2
dt

(10)

Normalized mean absolute jerk [80, 
82]

Mean of the magnitude jerk 
normalized or divided by the peak 
velocity

ηnmaJ = − 1
vpeak (t2−t1)

∫
t2
t1

∣

∣

∣

d2v
dt2

∣

∣

∣
dt

(11)

Dimensionless-squared jerk [80] Square root of the integral of the 
square of the jerk times the dura-
tion of the movement to the fifth 
power over the length squared

ηdj = − (t2−t1)
3

v2peak

t2
∫
t1

∣

∣

∣

d2v
dt

∣

∣

∣

2
dt

(12)

Log dimensionless jerk [81] Logarithm of normalized jerk 
defined in equation ηldj = − ln

(

(t2−t1)
3

v2peak

t2
∫
t1

∣

∣

∣

d2v
dt

∣

∣

∣

2
dt

)

(13)
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the person is highly impaired. The spectral arc-length 
metric showed a consistent increase in smoothness as 
the number of sub-movements decreased [25], whereas 
the other metrics showed sudden changes in smooth-
ness. For example, the mean arrest period ratio and the 
speed metric showed an increase in smoothness with two 
or more sub-movements, but when two sub-movements 
started to merge, the smoothness decreased. As a result, 
the spectral arc-length metric appears to capture change 
over a wider range of movement conditions in recovery 
in comparison to other metrics.

Resistance
The presence of a velocity-dependent hyperactive stretch 
reflex is referred to as spasticity [83]. Spasticity results in a 
lack of smoothness during both passive and active move-
ments and is more pronounced with activities that involve 
simultaneous shoulder abduction loading and extension of 
the elbow, wrist, or fingers [83], which are unfortunately 
quite common in ADL. A standard approach to assessing 
spasticity by a therapist involves moving a subject’s pas-
sive arm at different velocities and checking for the level 
of resistance. While this manual approach is subjective, 
electronic sensors have the potential to assess severity 
of spasticity in much more objective ways. Centen et  al. 
report a method to assess the spasticity of the elbow using 
an upper-limb exoskeleton [84] involving the measure-
ment of peak velocity, final angle, and creep. Sin et al., sim-
ilarly performed a comparison study between a therapist 
moving the arm versus a robot moving the arm. An EMG 
sensor was used to detect the catch and compared with a 
torque sensor to detect catch angle for the robotic motion 
[85]. The robot moving the arm seemed to perform bet-
ter with the inclusion of either an EMG or a torque sen-
sor than with the therapist moving the arm and the robot 
simply recording the movement. A related measure that 
may be correlated with spasticity is the assessment of joint 
resistance torques during passive movement [76]. This can 
provide an assessment of the velocity-dependent resist-
ance to movement that arises following stroke.

Efficiency
Efficiency measures movement fluency in terms of both 
task completion times and spatial trajectories. In point-
to-point reaching, people who have suffered a stroke 
commonly display inefficient paths in comparison to 
their healthy side or compared to subjects who are unim-
paired [10]. During the early phases of recovery after 
stroke, subjects may show slow overall movement speed 
resulting in longer task times. As recovery progresses, 
overall speed tends to increase and task times decrease, 
indicating more effective and efficient motor plan-
ning and path execution. Therapists usually observe the 

person’s efficiency in completing a task and then rate the 
person’s ability in completing a task in a timely manner. 
Therefore, both task time (or movement time) [10, 76, 77, 
86, 87] and mean speed [25, 75, 77, 81, 86] are effective 
ways to assess temporal efficiency. Similar measures used 
by Wagner et al. include peak-hand velocity and time to 
peak-hand velocity [87]. To measure spatial efficiency of 
movement, both Colombo et al. [75], Mostafavi [77], and 
Germanotta [86] calculated the movement path length 
and divided it by the straight-line distance between the 
start and end points. This is known as the path-length 
ratio.

Movement planning
Movement planning is associated with feedforward sen-
sorimotor control, elements that occur before the initial 
phase of movement. A common approach is to use reac-
tion time to assess the duration of the planning phase. 
In a typical clinical assessment, a therapist can only 
observe/quantify whether movement can be initiated or 
not, but has no way to quantify the lag between the signal 
to initiate movement and initiation of movement. Kel-
ler et al., Frisoli et al., and Mostafavi et al. quantified the 
reaction time to assess movement planning [10, 76, 77] in 
subjects who have suffered a stroke. Mostafavi assessed 
movement planning in three additional ways by assessing 
characteristics of the actual movement: change in direc-
tion, movement distance ratio, and maximum speed ratio 
[77]. The change in direction is the angular deviation 
between the initial movement vector and the straight line 
between the start and end points. The first-movement-
distance ratio is the ratio between the distance the hand 
traveled during the initial movement and the total dis-
tance between start and end points. The first-movement-
maximum speed ratio is the ratio of the maximum hand 
speed during the initial phase of the movement divided 
by the global hand speed for the entire movement task.

Movement efficacy 
Movement efficacy measures the person’s ability to 
achieve the desired task without assistance. While thera-
pists can assess the number of completed repetitions, 
they have no means to kinetically quantify amount of 
assistance required to perform a given task. Movement 
efficacy is quantified by robot sensor systems that can 
measure: (a) person-generated movement, and/or (b) the 
amount of work performed by the robot to complete the 
movement (e.g., when voluntary person-generated move-
ment fails to achieve a target). Hence, movement efficacy 
can involve both kinematic and kinetic measures. A kin-
ematic metric that can be used to represent movement 
efficacy is the active movement index, which is calculated 
by dividing the portion of the distance the person is to 
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complete by the total target distance for the task [75]. 
An example metric based on kinetic data is the amount 
of assistance metric, proposed by Balasubramanian et al. 
[25]. It is calculated by estimating the work performed by 
the robot to assist voluntary movement, and then divid-
ing it by the work performed by the robot as if the person 
performs the task without assistance from the robot. A 
similar metric obtained by Germanotta et  al. calculates 
the total work by using the movement’s path length, 
but Germanotta et al. also calculate the work generated 
towards the target [86].

Movement accuracy
Movement accuracy has been characterized by the error 
in the end-effector trajectory compared to a theoreti-
cal trajectory. It measures the person’s ability to follow a 
prescribed path, whereas movement efficiency assesses 
the person’s ability to find the most ideal path to reach 
a target. Colombo et  al. measured movement accuracy 
in people after stroke by calculating the mean-absolute 
value of the distance, which is the mean absolute value 
of the distance between each point on the person’s path 
and the theoretical path [75]. Figure 4 demonstrates the 
difference between path-length ratio and mean-absolute 
value of the distance. The mean-absolute value of the dis-
tance computes the error between a desired trajectory 
and the actual, and the path-length ratio computes the 
total path length the person’s limb has traveled. Another 

similar metric is the average inter-quartile range, which 
quantifies the average “spread” among several trajecto-
ries [15]. Balasubramanian et al. characterized movement 
accuracy as a measure of the subject’s ability to achieve 
a target during active reaching. They refer to the metric 
as movement synergy [25], and calculate it by finding the 
distance between the end-effector’s final location and the 
target location.

Intra‑limb coordination
Intra-limb (inter-joint) coordination is a measure of the 
level of coordination achieved by individual joints of a 
limb or between multiple joints of the same limb (i.e., 
joint synergy) when performing a task. Since the upper 
limb consists of kinematic redundancies, the human 
arm can achieve a desired outcome in multiple ways. For 
example, a person might choose to move an atypical joint 
in order to compensate for a loss of mobility in another 
joint. Frisoli et al. and Bosecker et al. used the shoulder 
and elbow angle to find a linear correlation between the 
two angles in a movement task that required multi-joint 
movement [10, 78]. In terms of clinical assessment, joint 
angle correlations can illustrate typical or atypical contri-
bution of a joint while performing a multi-joint task.

Inter‑limb coordination
Inter-limb coordination refers to a person’s ability to 
appropriately perform bilateral movements with affected 

Start

End

Start

End

A. B.

Fig. 4 Difference between path-length ratio and mean absolute value of the distance. A Path-length ratio. dref  is the theoretical distance the 
hand should travel between the start and end point. dtotal is the total distance the hand travelled from Start to End. B Mean absolute value of the 
distance. di is the distance between the theoretical path and the actual hand path
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and unaffected arms. Therapists observe the affected 
limb by often comparing to the unaffected limb during a 
matching task, such as position matching. Matching can 
either be accomplished with both limbs moving simulta-
neously or sequentially, and typically without the use of 
vision. Dukelow et  al. used position matching to obtain 
measures of inter-limb coordination [24], including trial-
to-trial variability, spatial contraction/expansion, and 
systematic shifts. Trial-to-trial variability is the standard 
deviation of the matching hand’s position for each loca-
tion in the x (distal/proximal), y (anterior/posterior), and 
both in x and y in the transverse plane. Spatial contrac-
tion/expansion is the ratio of the 2D work area of the 
target hand to the 2D work area of the matching hand 
during a matching task. Systematic shifts were found by 
calculating the mean absolute position error between the 
target and matching hand for each target location.

Semrau et  al. analyzed the performance of subjects 
in their ability to match their unaffected arm with the 
location of their affected arm [88]. In the experiment, a 
robot moved the affected arm to a position and the per-
son then mirrored the position with the unaffected side. 
The researchers compared the data when the person was 
able to see the driven limb versus when they were unable 
to see the driven limb. The initial direction error, path 
length ratio, response latency, peak speed ratio, and their 
variabilities were calculated to assess the performance of 
the person’s ability to perform the task.

Range of motion
Range of motion is a measure of the extent of mobility in 
one or multiple joints. Traditionally, range of motion can 
be measured with the use of a goniometer [89]. The goni-
ometer measures the individual joint range of motion, 
which takes considerable time. Range of motion can be 
expressed as a 1-DOF angular measure [76, 89], a 2-DOF 
planar measure (i.e., work area) [82], or a 3-DOF spatial 
measure (i.e., workspace) [77]. Individual joints are com-
monly measured in joint space, whereas measures of area 
or volume are typically given in Cartesian space. In per-
forming an assessment of work area or workspace with 
a robotic device, the measure can be estimated either by: 
(a) measuring individual joint angles with an exoskeleton 
device and then using these angles to compute the region 
swept out by the hand, or (b) directly measuring the hand 
or fingertips with a Cartesian (end-effector) device. The 
measurement of individual joint range of motion (ROM) 
as well as overall workspace have significant clinical 
importance in assessing both passive (pROM) and active 
(aROM) range of motion. To measure pROM, the robot 
drives arm movement while the person remains pas-
sive. The pROM is the maximum range of motion the 
person has with minimal or no pain. For aROM, a robot 

may place the arm in an initial position/orientation from 
which the person performs unassisted joint movements 
to determine the ROM of particular joints [76], or the 
area or volume swept by multiple joints. Lin et al. quanti-
fied the work area of the elbow and shoulder using poten-
tiometers and derived test–retest reliability [89]. The 
potentiometer measurements were then compared to 
therapist measurements to determine validity.

Strength
Measures of strength evaluate a person’s ability to gen-
erate a force in a direction or a torque about a joint. 
Strength measurements may involve single or multi-
ple joints. At the individual joint level, strength is typi-
cally measured from a predefined position of a person’s 
arm and/or hand. The person then applies a contrac-
tion to produce a torque at the assessed joint [76, 78]. 
Multi-joint strength may also be measured by assess-
ing strength and/or torque in various directions at dis-
tal locations along the arm, such as the hand. Lin et  al. 
compared the grip strength obtained from load cells to 
a clinical method using precise weights, which showed 
excellent concurrent validity [89].

Measures and methods based on neural activity 
using EEG/EMG
Although much information can be captured and ana-
lyzed using the kinematic and kinetic measures listed 
above, their purview is limited. These measures provide 
insight into the functional outcomes of neurological 
system performance but provide limited perspective on 
potential contributing sources of measured impairment 
[90]. For a deeper look into the neuromuscular system, 
measures based on neurological activation are often 
pursued. As a complement to biomechanical measures, 
methods based on quantization of neural activity like 
EEG and EMG have been used to characterize the impact 
of stroke and its underlying mechanisms of impairments 
[91, 92]. Over the past 20  years, numerous academic 
research studies have used these measures to explore the 
effects of stroke, therapeutic interventions, or time on 
the evolution of abnormal neural activity [91]. Groups 
with different levels of neurological health are com-
monly compared (e.g., chronic/acute/subacute stroke 
vs. non-impaired, or impairment level) or other specific 
experimental characteristics (e.g., different rehabilitation 
paradigms [93, 94]). With this evidence, the validity of 
these metrics has been tested; however, the study of reli-
ability of these metrics is needed to complete the jump 
from academic to clinical settings.

Extracting biomarkers from non-invasive neural activ-
ity requires careful decomposition and processing of raw 
EEG and EMG recordings [32]. Various methods have 
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been used, and the results have produced a growing body 
of evidence for the validity of these biomarkers in provid-
ing insight on the current and future state of motor, cog-
nitive, and language skills in people after stroke [38, 95]. 
Some of the biomarkers derived from EEG signals include: 
power-related band-specific information [34, 35, 43, 47, 53, 
54, 96–101], band frequency event-related synchroniza-
tion and desynchronization (ERS/ERD) [22, 51, 102, 103], 
intra-cortical coherence or functional connectivity [39, 59, 
73, 94, 104–109], corticomuscular coherence (CMC) [37, 
110–113], among others [114, 115]. Biomarkers extracted 
from EEG can be used to assess residual functional abil-
ity [38, 54, 73, 97–99], derive prognostic indicators [34, 43, 
104], or categorize people into groups (e.g., to better match 
impairments with therapeutic strategies) [39, 47, 58, 116].

In the following subsections, valid biomarkers derived 
mostly from EEG signal features (relationship with motor 
outcome for a person after stroke) will be discussed and 
introduced theoretically. Distinctions will be made about 
the stage after stroke when signals were taken. Findings 
are reported from 33 studies that have examined the rela-
tionship between extracted neural features and motor 
function for different groups of people after stroke. 
These records are grouped by quantization methods used 
including approaches based on measures of frequency 
spectrum power (n = 9), inter-regional coherence (n = 10 
for cortical coherence and n = 9 for CMC), and reliability 
(n = 5).

Frequency spectrum power
Power measures the amount of activity within a signal 
that occurs at a specific frequency or range of frequen-
cies. Power can be computed in absolute or relative terms 
(i.e., with respect to other signals). It is often displayed as 
a power density spectrum where the magnitudes of signal 
power can be seen across a range of frequencies. In elec-
tro-cognitive research, the representation of power within 
specific frequency bands has been useful to explain brain 
activity and to characterize abnormal oscillatory activity 
due to regional neurological damage [32, 117].

Frequency bands in EEG content
Electrical activity in the brain is dominated primarily by 
frequencies from 0–100  Hz where different frequency 
bands correspond with different states of activity: Delta 
(0–4  Hz) is associated with deep sleep, Theta (4–8  Hz) 
with drowsiness, Alpha (8–13 Hz) with relaxed alertness 
and important motor activity [117], and Beta (13–31 Hz) 
with focused alertness. Gamma waves (> 32 Hz) are also 
seen in EEG activity; however, their specific relationship 
to level of alertness or consciousness is still debated [32, 
117]. Important cognitive tasks have been found to trig-
ger activity in these bands in different ways. Levels of 

both Alpha and Delta activity have also been shown to 
be affected by stroke and can therefore be examined as 
indicators of prognosis or impairment in sub-acute and 
chronic stroke [52, 100, 118].

Power in acute and sub‑acute stroke
For individuals in the early post-stroke (i.e., sub-acute) 
phase, abnormal power levels can be an indicator of neu-
rological damage [98]. Attenuation of activity in Alpha 
and Beta bands have been observed in the first hours after 
stroke [100] preceding the appearance of abnormally 
high Delta activity. Tolonen et al. reported a high corre-
lation between Delta power and regional Cerebral Blood 
Flow (rCBF). This relationship appears during the sub-
acute stroke phase and has been used to predict clinical, 
cognitive, and functional outcomes [119]. Delta activity 
has also been shown to positively correlate with 1-month 
National Institutes of Health Stroke Scale (NIHSS) [52] 
and 3-month Rankin scale [36] assessments.

Based on these findings, several QEEG (Quantita-
tive Electroencephalography) metrics involving ratios 
of abnormal slow (Delta) and abnormal fast (Alpha 
and Beta) activity have been developed. The Delta-
Alpha Ratio (DAR), Delta-Theta Ratio (DTR), and 
(Delta + Theta)/(Alpha + Beta) Ratio (DTABR also 
known as PRI for Power Ratio Index) relate amount of 
abnormal slow activity with the activity from faster bands 
and have been shown to provide valuable insight into 
prognosis of stroke outcome and thrombolytic therapy 
monitoring [98]. Increased DAR and DTABR have been 
repeatedly found to be the QEEG indices that best pre-
dict worse outcome for the following: comparing with 
the Functional Independence Measure and Functional 
Assessment Measure (FIM-FAM) at 105 days [53], Mon-
treal Cognitive Assessment (MoCa) at 90  days [54], 
NIHSS at 1 month [35], modified ranking scale (mRS) at 
6 months [105], NIHSS evolution at multiple times [120], 
and NIHSS at 12 months [96]. DAR was also used to clas-
sify people in the acute phase and healthy subjects with 
an accuracy of 100% [58].

The ability of basic EEG monitoring to derive useful 
metrics during the early stage of stroke has made EEG 
collection desirable for people who have suffered a stroke 
in intensive care settings. The derived QEEG indices 
have proven to be helpful to determine Delayed Cerebral 
Ischemia (DCI), increased DAR [43], and increased Delta 
power [34, 118]. However, finding the electrode montage 
with the least number of electrodes that still reveals the 
necessary information for prognoses is one of the big-
gest challenges for this particular use of EEG. Comparing 
DAR from 19 electrodes on the scalp with 4 electrodes 
on the frontal cortex suggests that DAR from 4 frontal 
electrodes may be enough to detect early cognitive and 
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functional deficits [53]. Studies explored the possibility of 
a single-electrode montage over the Fronto-Parietal area 
(FP1); the DAR and DTR from this electrode might be a 
valid predictor of cognitive function after stroke when 
correlated with the MoCA [54], relative power in Theta 
band correlated with mRS and modified Barthel Index 
(mBI) 30 and 90 days after stroke [121].

Power in chronic stroke
The role of power-related QEEG indices during chronic 
stroke and progression of motor functional performance 
have been examined with respect to rehabilitation thera-
pies, since participants have recovered their motion to a 
certain degree [4]. Studies have shown that therapy and 
functional activity improvements correlate with changes 
of the shape and delay of event-related desynchroni-
zation and synchronization (ERD-ERS) for time–fre-
quency power features when analyzing Alpha and Beta 
bands on the primary motor cortex for ipsilesional and 
contralesional hemispheres [21, 22, 122]. Therapies with 
better outcome tend to have reduced Delta rhythms and 
increased Alpha rhythms [122].

Bertolucci [47] compared starting power spectrum 
density in different bands for both hemispheres with 
changes in WMFT and FMA over time. Increased global 
Alpha and Beta activity was shown to correlate with bet-
ter WMFT evolution while, increase in contralesional 
Beta activity was shown to be correlated with FMA evo-
lution. Metrics combining slow and fast activity have 
also been tested in the chronic stage of stroke, significant 
negative correlation between DTABR (PRI) at the start 
of therapy was related to FMA change during robotic 
therapy [99]. This finding suggests that DTABR may have 
promise as prognostic indicators for all stages of stroke.

Brain Symmetry Index (BSI) is a generalized measure 
of “left to right” (affected to non-affected) power symme-
try of mean spectral power per hemisphere. These inter-
hemispheric relationships of power have been used as 
prognostic measures during all stages of stroke. Baseline 
BSI (during the sub-acute stage) was found to correlate 
with the FMA at 2 months [73], mRS at 6 months [123], 
and FM-UE predictor when using only theta band BSI for 
patients in the chronic stage [124]. BSI can be modified to 
account for the direction of asymmetry, the directed BSI 
at Delta and Theta bands proved meaningful to describe 
evolution from acute to chronic stages of upper limb 
impairment as measured by FM-UE [120, 125]. Table  4 
and Table 11 in Appendix 1 communicate power-derived 
metrics across different stages of stroke documented in 
this section and their main reported relationships with 
motor function. Findings are often reported in terms of 
correlation with clinical tests of motor function.

Brain connectivity (cortical coherence)
Brain connectivity is a measure of interaction and syn-
chronization between distributed networks of the brain 
and allows for a clearer understanding of brain function. 
Although cortical damage from ischemic stroke is focal, 
cortical coherence can explain abnormalities in function-
ality of remote zones that share functional connections to 
the stroke-affected zone [59].

Several estimators of connectivity have been pro-
posed in the literature. Coherency, partial coherence 
(pCoh) [125], multiple coherence (mCoh), imaginary 
part of coherence (iCoh) [126], Phase Lagged Index (PLI), 
weighted Phase Lagged Index (wPLI) [127], and simple 
ratios of power at certain frequency bands [73] describe 

Table 4 Summary of EEG signal power metrics and relationship to motor function or outcome in stroke

An extended version of this table that includes demographic information can be found in Table 11 in Appendix 1

*Records added manually

Metric Stage Correlation with clinical measures/findings [references]

Global Beta power
Global Alpha power

Acute First noticeable electrical changes during stroke [58], 105-day FIM FAM [53], 12-months 
NIHSS [96]

Delta power, Theta power Sub-Acute 1-month NIHSS [52], 30 and 90 days mBI and mRS [121]

Delta-Alpha Ratio (DAR)
Delta-Theta Ratio (DTR)
(Delta + Theta)/(Alpha + Beta) Ratio (DTABR)

Sub-Acute cognitive deficit [53], 90-days MoCA [54], 6-months mRS [105], 12 months NIHSS[96], 
6-months FIM FAM [97], NIHSS evolution 3 weeks to 6-months [120]

Brain Symmetry Index (BSI)
Pairwise derived brain symmetry index (pdBSI)

Sub-Acute 2-months FMA [104]*, 6-months mRS [125]

Global Delta Chronic motor therapy gains [122]

Delta-Alpha Ratio (DAR)
Power Ratio Index (PRI)

Chronic FMA evolution [99]
No relation with FM-UE [125]

Brain Symmetry Index (BSI) Chronic FM-UE [125], directional BSI delta band correlated with FM-UE improvement and NIHSS 
evolution [120]
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synchronic symmetric activity between ROIs and are 
referred to as non-directed or functional connectivity 
[128]. Estimators based on Granger’s prediction such as 
partial directed coherence (PDC) [129–131], or directed 
transfer Function (DTF) [132, 133] and any of their 
normalizations describe causal relationships between 
variables and are referred to as directed or effective con-
nectivity [134]. Connectivity also allows the analysis of 
brain activity as network topologies, borrowing methods 
from graph theory [32, 134]. Network features such as 
complexity, linearity, efficiency, clustering, path length, 
node hubs, and more can be derived from graphs [128]. 
Comparisons of these network features among groups 
with impairment and healthy controls have proven to be 
interesting tools to understand and characterize motor 
and functional deficits after stroke [108].

Studies have used intra- and inter-cortical coherence 
to expand the clinical understanding of the neural reor-
ganization process [59, 106–109], as a clinical motor and 
cognitive predictor [38, 94, 104, 135, 136], and as a tool to 
predict the efficacy of rehabilitation therapy [94]. Table 5 
and Table 12 in Appendix 2 briefly summarize the main 
metrics discussed in this section and their results that are 
related with motor function assessment. In general, stud-
ies have shown that motor deficits in stroke survivors are 
related to less connectivity to main sensory motor areas 
[38, 94, 104, 137], weak interhemispheric sensorimo-
tor connectivity [109, 138], less efficient networks [106, 
135], with less “small world” network patterns [108, 134] 
(small-world networks are optimized to integrate special-
ized processes in the whole network and are known as an 
important feature of healthy brain networks).

Survivors of stroke tend to exhibit more modular 
(i.e., more clustered, less integrated) and less efficient 
networks than non-impaired controls with the biggest 

difference occurring in the Beta and Gamma bands [106]. 
Modular networks are less “small-world” [134]; small-
world networks are optimized to integrate specialized 
processes in the whole network and are known as an 
important feature of healthy brain networks. Such a tran-
sition to a less small-world network was observed dur-
ing the acute stage of stroke (first hours after stroke) and 
documented to be bilaterally decreased in the Delta band 
and bilaterally increased in the high Alpha band (also 
known as Alpha2: 10.5–13 Hz) [108].

Global connectivity with the ipsilesional primary 
motor cortex (M1) is the most researched biomarker 
derived from connectivity and has been studied in lon-
gitudinal experiments as a plasticity indicator leading to 
future outcome improvement [38], motor and therapy 
gains [94], upper limb gains during the sub-acute stage 
[137], and as a feature that characterizes stroke survi-
vors’ cognitive deficits [104]. Pietro [38] used iCoh to test 
the weighted node degree (WND), a measure that quan-
tifies the importance of a ROI in the brain, for M1 and 
reported that Beta-band features are linearly related with 
motor improvement as measured by FM-UE and Nine-
Hole-Peg Test. Beta-band connectivity to ipsilesional 
M1, as measured by spectral coherence, can be used as 
a therapy outcome predictor, and more than that, results 
point heavily toward connectivity between M1 and ipsile-
sional frontal premotor area (PM) to be the most impor-
tant variable as a therapy gain predictor; predictions can 
be further improved by using lesion-related information 
such as CST or MRI to yield more accurate results [94]. 
Comparisons between groups of people with impairment 
and controls showed significant differences on Alpha 
connectivity involving ipsilesional M1, this value showed 
a relation with FMA 3 months for the group with impair-
ment due to stroke [104].

Table 5 Summary of metrics from EEG brain connectivity and main findings related to motor function

An extended version of this table that includes demographic information can be found in Table 12 in Appendix 2

*Record added manually

Metric Stage Correlation with clinical measures/findings [reference]

Delta and Alpha2 small-worldness Acute Significant differences between people with stroke and controls 
[108]*

Maximum coherence PLI alpha band Sub-Acute Predictor of FM-UE score [139]

Ipsilesional High beta M1-PM and network to M1 coherence Chronic Motor therapy gains, FMA predictor [94], negative correlation with 
FMA evolution over a month

Interhemispheric M1 Beta Chronic PDC with FMA-UE and hand recovery [109], dwPLI with ARAT and 
FM-UE [138]

Motor cortex Weighted node Degree (WND) from iCoh beta band Chronic FMA-UE, Nine Hole Peg Test [38]

Alpha connectivity with motor cortex Chronic 3-months FMA [104]*

Beta, Gamma Normalized inter hemispheric strength (nIHS) from 
PDC

Chronic Cortico Spinal Tract (CST) integrity, impairment [136]

Global and local Beta/Gamma bands network efficiency Chronic Survivors of stroke have less-efficient networks vs. unimpaired [106]*, 
FMA-UE [135]
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The relationship between interhemispheric ROI con-
nectivity and motor impairment has been studied. The 
normalized interhemispheric strength (nIHS) from PDC 
was used to quantify the coupling between structures 
in the brain, Beta- and lower Gamma-band features of 
this quantity in sensorimotor areas exhibited linear rela-
tionships with the degree of motor impairment meas-
ured by CST [136]. A similar measure, also derived from 
PDC used to measure ROI interhemispheric importance 
named EEG-PDC was used in [109]; here the results show 
that Mu-band (10–12  Hz) and Beta-band features could 
be used to explain results for hand motor function from 
FM-UE. In another study, Beta debiased weighted phase 
lag index (dwPLI), correlated with outcome measured by 
Action Research Arm Test (ARAT) and FM-UE [138].

Global and local network efficiency for Beta and 
Gamma bands seem to be significantly decreased in 
the population who suffered from a stroke compared to 
healthy controls as reported in [106]. Newer results, such 
as the ones pointed out by [135] found statistically sig-
nificant relationships between Beta network efficiency, 
network intradensity derived using a non-parametric 
method (named Generalized Measure of Association), 
and functional recovery results given by FM-UE. Global 
maximal coherence features in the Alpha band have been 
recently recognized as FM-UE predictors, where coher-
ence was computed using PLI and related to motor out-
come by means of linear regression [139].

Corticomuscular coherence
Corticomuscular coherence (CMC) is a measure of 
the amount of synchronous activity between signals in 
the brain (i.e., EEG or MEG) and associated muscula-
ture (i.e., EMG) of the body [92]. Typically measured 
during voluntary contractions [110], the presence of 
coherence demonstrates a direct relationship between 
cortical rhythms in the efferent motor commands and 
the discharge of neurons in the motor cortex [140]. 
CMC is computed as correlation between EEG and 
EMG signals at a given frequency. Early CMC research 
found synchronous (correlated) activity in Beta and low 

Gamma bands [40–42]. CMC is strongest in the con-
tralateral motor cortex [141]. This metric seems to be 
affected by stroke-related lesions, and thus provides 
an interesting tool to assess motor recovery [111, 142–
144]. The level of CMC is lower in the chronic stage of 
stroke than in healthy subjects [112, 145], with chronic 
stroke survivors showing lower peak CMC frequency 
[146], and topographical patterns that are more wide-
spread than in healthy people; highlighting a connec-
tion to muscle synergies [142, 147, 148]. CMC has been 
shown to increase with training [37, 112, 144].

Corticomuscular coherence has been proposed as a 
tool to: (a) identify the functional contribution of reor-
ganized cortical areas to motor recovery [37, 112, 141, 
144, 146]; (b) understand functional remapping [93, 
142, 145]; and (c) study the mechanisms underlying 
synergies [147, 148]. CMC has shown increased abnor-
mal correlation with deltoid EMG during elbow flexion 
for people who have motor impairment [147], and the 
best muscles to target with rehabilitative interventions 
[148]. Changes in CMC have been shown to correlate 
with motor improvement for different stages of stroke, 
although follow-up scores based on CMC have not 
shown statistically significant correlations when com-
pared to clinical metrics [37, 93]. Results summarizing 
CMC on stroke can be found in Table 6 and Table 13 in 
Appendix 3.

Reliability of measures
Each of the aforementioned measures have the poten-
tial to be integrated into robotic devices for upper-limb 
assessment. However, to improve the clinical acceptabil-
ity of robotic-assisted assessment, the measurements and 
derived metrics must meet reliability standards in a clini-
cal setting [55]. Reliability can be defined as the degree 
of consistency between measurements or the degree to 
which a measurement is free of error. A common method 
to represent the relative reliability of a measurement pro-
cess is the intraclass correlation coefficient (ICC) [150]. 
Koo and Li suggest a guideline on reporting ICC values 
for reliability that includes the ICC value, analysis model 

Table 6 Summary of metrics from EEG-EMG coherence and main findings related to motor function

An extended version of this table that includes demographic information can be found in Table 13 in Appendix 3

Metric Stage Correlation with clinical measures/findings [reference]

Beta, Gamma CMC Chronic Flexion synergy [93], FMA [37]

Beta CMC Sub-acute Function recovery, FMA-UE [141]

Gamma interhemispheric disparity Chronic Compensation of healthy limb [145]

CMC frequency peak Acute, chronic Characterization of CMC from stage to stage [146], non-significant 
differences among stages [112], Beta peaks related to co-contraction 
[149]

CMC topographical patterns Acute, sub-acute FMA, FMA-UE [144], level of impairment [142]
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(one-way random effects, two-way random effects, two-
way fixed effects, or two-way mixed effects), the model 
type per Shrout and Fleiss (individual trials or mean of k 
trials), model definition (absolute agreement or consist-
ency), and confidence interval [68]. Koo and Li also pro-
vide a flowchart in selecting the appropriate ICC based 
on the type of reliability and rater information. An ICC 
value below 0.5 indicates poor reliability, 0.5 to 0.75 mod-
erate reliability, 0.75 to 0.9 good reliability, and above 0.9 
excellent reliability. The reviewed papers will be evalu-
ated based on these guidelines. For reporting the ICC, 
the Shrout and Fleiss convention is used [68]. The chosen 
reliability studies are included in the tables if the chosen 
ICC model, type, definition, and confidence interval are 
identifiable, and the metrics have previously been used in 
electronic-based metrics. For studies that report multiple 
ICC scores due to assessment of test–retest reliability for 
multiple raters, the lowest ICC reported is included to 
avoid bias in the reported results.

In the assessment of reliability of data from robotic sen-
sors, common ways to assess reliability are to correlate 
multiple measurements in a single session (intra-session) 
and correlate multiple measurements between different 
sessions (inter-session) measurements (i.e., test–retest reli-
ability) [151]. Checking for test–retest reliability determines 
the repeatability of the robotic metric. The repeatability is 
the ability to reproduce the same measurements under the 
same conditions. Table 7 shows the test–retest reliability of 
several robotic metrics. For metrics checking for test–retest 
reliability, a two-way mixed-effects model with either sin-
gle or multiple measurements may be used [68]. Since the 
same set of sensors will be used to assess subjects, the two-
way mixed model is used. The test–retest reliability should 
be checking for absolute agreement. Checking for absolute 
agreement (y = x) rather than consistency (y = x + b) deter-
mines the reliability without a bias or systematic error. For 
example, in Fig. 5, for a two-way random effect with a sin-
gle measurement checking for agreement gives a score of 
0.18. When checking for consistency, the ICC score reaches 
to 1.00. In other words, the bias has no effect on the ICC 
score when checking for consistency. Therefore, when per-
forming test–retest reliability, it is important to check for 
absolute agreement to prevent bias in the test–retest result.

Not only should a robotic metric demonstrate repeat-
ability, it should also be reproducible when different 
operators are using the same device. Reproducibility eval-
uates the change in measurements when conditions have 
changed. Inter-rater reliability tests have been performed 
to determine the effect raters have when collecting meas-
urements when two or more raters perform the same 
experimental protocol [68]. To prevent a biased result, 
raters should have no knowledge of the evaluations given 
by other raters, ensuring that raters’ measurements are 

independent from one another. Table 8 shows the repro-
ducibility of several robotic biomechanical metrics. All 
the included studies have used two raters to check for 
reproducibility. The researchers performed a two-way 
random effects analysis with either a single measurement 
or multiple measurements to check for agreement.

Measurement reliability of robotic biomechanical 
assessment
Of the 24 papers reviewed for biomechanical metrics, 13 
papers reported on reliability. 6 papers reported repro-
ducibility and 9 papers reported on repeatability. Overall, 
the metrics seem to demonstrate good to moderate relia-
bility for both repeatability and reproducibility. However, 
caution should be exercised in determining which robotic 
metric is more effective in assessing movement quality 
based on reliability studies. The quality of measurements 
is highly dependent on the quality of the robotic device 
and sensors [85]. Having a completely transparent robot 
with a sensitive and accurate sensor will further improve 
assessment of reliability. Also, the researchers have used 
different versions of the ICC, as seen in Tables 7 and 8, 
which complicates direct comparisons of the metrics.

Reliability of electrophysiological signal features
Of the 33 papers reviewed for electrophysiological metrics, 
5 papers reported on reliability. 6 papers reported on repeat-
ability. Convenience of acquiring electrophysiological signals 
non-invasively is relatively new. Metrics for assessment of 
upper limb motor impairment in stroke, derived from these 
signals have shown to be valid in academic settings, but most 
of these valid metrics have yet to be tested for intra- and 
inter-session reliability to be used in clinical and rehabilita-
tion settings. Few studies found as a result of our systematic 
search have looked at test–retest reliability of these metrics. 
Therefore, we found and manually added records reporting 
on intra- and inter-session reliability on metrics based on 
electrophysiological features described in section “Meas-
ures and methods based on neural activity using EEG/EMG”, 
even if reliability was not assessed on people with stroke. Rel-
evant results are illustrated in Table 9.

Spectral power features of EEG signals have been 
tested during rest [153, 154] and task (cognitive and 
motor) conditions for different cohorts of subjects [102, 
103]. Some of the spectral features observed during 
these experiments are related to timed behavior of oscil-
latory activity due to cued experiments, such as event-
related desynchronization of the Beta band (ERD and 
Beta rebound) [102] and topographical patterns of Alpha 
activity R = 0.9302, p < 0.001 [103].

Test–retest reliability for rest EEG functional connec-
tivity has been explored for few of the estimators listed 
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Table 7 Repeatability for sensor-based metrics

Metric ICC(r,k) Score (p < 0.05) Rating Measurement device Session Ref.

Isokinetic motion with EMG ICC(2,1) (0.857–0.981) ***-**** 1-DOF Intra- [85]

Isokinetic motion with torque ICC(2,1) (0.873–0.987) ***-****

Manual motion with EMG ICC(2,1) (0.538–0.924) **-****

Joint ROM right shoulder ICC(3,1) 0.998 **** 2-DOF (unactuated) Intra- [89]

Joint ROM right elbow ICC(3,1) 0.994 ****

Joint ROM left shoulder ICC(3,1) 0.996 ****

Joint ROM left elbow ICC(3,1) 0.994 ****

Grip force right dynamometer ICC(3,1) 0.998 ****

Grip force left dynamometer ICC(3,1) 0.998 ****

Mean speed ICC(3,1) 0.95, 0.93 **** MEMOS & Braccio di Ferro Intra-, Inter- [151]

Mean absolute value of the distance ICC(3,1) 0.91, 0.97 ****

Normal path length ICC(3,1) 0.9, 0.96 ****

Ratio between peak tangential speed 
and mean speed

ICC(3,1) 0.99, 0.91 ****

Spectral arc length ICC(3,1) 0.92, 0.95 ****

Velocity peaks ICC(3,1) 0.85, 0.95 ***,****

Mean speed ICC(3,1) 0.93,0.94a **** Kinect Intra-, Inter- [81]

Normalized mean speed ICC(3,1) 0.81,0.6a ***,**

Normalized speed peaks ICC(3,1) 0.77,0.71a ***,**

Logarithm of dimensionless jerk ICC(3,1) 0.91,0.95a ****

Curvature ICC(3,1) 0.91,0.96a ****

Spectral arc length ICC(3,1) 0.52,0.12a **,*

Shoulder angle ICC(3,1) 0.99,0.96a ****

Elbow angle ICC(3,1) 0.94,0.92a ****

Duration ICC(2,k) 0.962 **** MOTORE Inter- [86]

Mean speed ICC(2,k) 0.914 ****

The total length of the path traveled ICC(2,k) 0.951 ****

Mean of path length ratios ICC(2,k) 0.972 ****

Line integral of force along patient path 
 (Worktot)

ICC(2,k) 0.908 ****

Total work directed towards the target 
 (Worktan)

ICC(2,k) 0.957 ****

Movement time ICC(2,k) 0.11–0.82 *-*** 7-camera Qualisys Motion Inter- [87]

Peak hand velocity ICC(2,k) 0.74–0.95 **-****

Time to peak hand velocity ICC(2,k) 0.11–0.83 *-***

Reach path ratio ICC(2,k) 0.33–0.95 *-****

Endpoint error ICC(2,k) 0.68–0.85 **-***

Reach extent ICC(2,k) 0.93–0.99 ****

Maximum shoulder flexion range of 
motion

ICC(2,k) 0.93–0.95 ****

Maximum shoulder abduction ROM ICC(2,k) 0.58–0.77 **-***

Min elbow extension ROM ICC(2,k) 0.86–0.91 ***-****

Interjoint coordination ICC(2,k) 0.66–0.92 **-****

Trajectory smoothness ICC(2,k) 0.43–0.84 *-***

aROM elbow flexion ICC(3,k) 0.56–0.90 **-**** Inertial sensors Rater A [152]

aROM elbow pronation ICC(3,k) 0.71–0.93 **-****

aROM elbow supination ICC(3,k) 0.84–0.97 ***-****

aROM wrist flexion ICC(3,k) 0.86–0.97 ***-****

aROM wrist extension ICC(3,k) 0.62–0.92 **-****

aROM radial deviation ICC(3,k) 0.63–0.92 **-****

aROM ulnar deviation ICC(3,k) 0.72–0.94 **-****
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in section “Measures and methods based on neural 
activity using EEG/EMG”: (1) for a cohort of people with 
Alzheimer by means of the amplitude envelope correla-
tion (AEC), phase lag index (PLI) and weighted phase 
lag index (wPLI) [155]; (2) in healthy subjects using iCoh 
and PLI [156]; and (3) in infants, by studying differences 
of inter-session PLI graph metrics such as path length, 
cluster coefficient, and network “small-worldness” [60]. 
Reliability for upper limb CMC has not yet been docu-
mented (at least to our knowledge). However, an experi-
ment involving testing reliability of CMC for gait reports 
low CMC reliability in groups with different ages [61].

Integrated metrics
EEG and EMG measurements could be combined with 
kinematic and kinetic measurements to provide addi-
tional information about the severity of impairment and 
decrease the number of false positives from individual 
measurements [21]. This could further be used to explain 
abnormal relationships between brain activation, muscle 
activation and movement kinematics, as well as provide 
insight about subject motor performance during therapy 
[15]. The availability of EEG and EMG measures can also 
enhance aspects of biofeedback given during tests or be 
used to complement other assessments to provide a more 
holistic picture of an individual’s neurological function.

It has been shown that combining EEG, EMG, and kin-
ematic data using a multi-domain approach can produce 
correlations to traditional clinical assessments, a summary 
of some of the reviewed studies is presented in Table 10. 
Belfatto et  al. have assessed people’s ROM for shoulder 
and elbow flexion, task time, and computed jerk to meas-
ure people’s smoothness, while the EMG was used to 
measure muscle synergies, and EEG detected ERD and a 
lateralization coefficient [21]. Comani et al. used task time, 
path length, normalized jerk, and speed to measure motor 
performance while observing ERD and ERS during motor 
training [22]. Pierella et al. gathered kinematic data from 
an upper-limb exoskeleton, which assessed the mean tan-
gential velocity, path-length ratio, the number of speed 
peaks, spectral arc length, the amount of assistance, task 
time, and percentage of workspace, while observing EEG 
and EMG activity [18]. Mazzoleni et  al. used the InMo-
tion2 robot system to capture the movement accuracy, 
movement efficiency, mean speed, and the number of 
velocity peaks, while measuring brain activity with EEG 
[16]. However, further research is necessary to deter-
mine the effectiveness of the chosen metrics and meth-
ods compared to other more promising methods to assess 
function. Furthermore, greater consensus in literature is 
needed to support the clinical use of more reliable metrics. 
For example, newer algorithms to estimate smoothness 

ICC(2,1) two-way random effects with a single measurement, ICC(2,k) two-way random effects with a mean of k measurements, ICC(3,1) two-way mixed effects with 
a single measurement, ICC(3,k) two-way mixed effects with a mean of k measurements. *Poor reliability (< 0.5). **Moderate reliability (0.5 ≤ ICC < 0.75). ***Good 
reliability (0.75 ≤ ICC < 0.9). ****Excellent reliability (≥ 0.9)
a p value not reported
*** ,****Refers to intra- and inter-session reliability rating
*** -**** is between good and excellent reliability based on the confidence interval

Table 7 (continued)

Metric ICC(r,k) Score (p < 0.05) Rating Measurement device Session Ref.

Discrimination threshold ICC(3,1) 0.52–0.90 **-**** KINARM [157]

Displacement variability ICC(3,1) 0.28–0.86 *-***

Absolute error-XY ICC(3,1) 0.74–0.95 **-****

Variability-XY ICC(3,1) − 0.09–0.63 *-**

Con/Exp ratio-XY ICC(3,1) 0.68–0.94 **-****

Spatial shift-XY ICC(3,1) 0.72–0.95 **-****

Visually guided reaching—dominate ICC(3,1) 0.3 * [158]

Visually guided reaching—non-
dominate

ICC(3,1) 0.33 *

Arm position matching—dominate ICC(3,1) 0.29 *

Arm position matching—non-
dominate

ICC(3,1) 0.36 *

Total movement time ICC(2,k) 0.91–0.99 **** ArmeoSpring Inter- [62]

Movement time ICC(2,k) 0.47–0.90 *-****

Peak velocity ICC(2,k) 0.83–0.97 ***-****

Hand path ratio ICC(2,k) 0.47–0.90 *-****

Velocity peaks ICC(2,k) 0.45–0.91 *-****

Score ICC(2,k) 0.97–0.99 ****
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such as spectral arc length have been shown to provide 
greater validity and reliability than  the commonly used 
normalized jerk metric. Despite this evidence, normal-
ized jerk remains a widely accepted measure of movement 
smoothness. 

Discussions and conclusions
In this paper we reviewed studies that used different 
sensor-acquired biomechanical and electrophysiological 
signals to derive metrics related to neuromuscular impair-
ment for stroke survivors; such metrics are of interest for 
robotic therapy and assessment applications. To assess 
the ability of a given measure to relate with impairment or 
motor outcome, we looked for metrics where results have 
been demonstrated to correlate or predict scores from 
established clinical assessment metrics for impairment and 
function (validity). Knowing that a metric has some rela-
tionship with impairment and function (i.e., that it is valid) 
is not enough for it to be used in clinical settings if those 
results are not repeatable (reliable). Thus, we also reviewed 
the reliability of metrics and related signal features looking 
for metrics which produce similar results for the same sub-
ject during different test sessions and for different raters. 
With this information, researchers can aim to use metrics 

that not only seem to be related with stroke, but also can 
be trusted, with less bias, and with a simpler interpreta-
tion. The main conclusions of this review paper are pre-
sented as answers to the following research questions.

Which biomechanical‑based metrics show promise 
for valid assessment of function and impairment?
Metrics derived from kinematic (e.g., position & veloc-
ity) and kinetic (e.g., force & torque) sensors affixed to 
robotic and passive mechanical devices have successfully 
been used to measure biomechanical aspects of upper-
extremity function and impairment in people after stroke. 
The five common metrics included in the reviewed stud-
ies measured the number of velocity peaks (~ 9 studies), 
path-length ratio (~ 8 studies), the maximum speed of 
the arm (~ 7 studies), active range of motion (~ 7 stud-
ies), and movement time (~ 7 studies). The metrics are 
often compared to an established clinical assessment to 
determine validity of the metric. According to the review 
study by Murphy and Häger, the Fugl-Meyer Assessment 
for Upper Extremity had significant correlation with 
movement time, movement smoothness, peak velocity, 
elbow extension, and shoulder flexion [66]. The move-
ment time and smoothness showed strong correlation 

Fig. 5 Checking agreement versus consistency among ratings. For y = x, the absolute ICC score is 1 and the consistency ICC score is 1.00. For 
y = x + 1, the agreement ICC score is 0.18 and the consistency ICC score is 1.00. For y = 3x, the absolute ICC score is 0.32 and the consistency ICC 
score is 0.60. For y = 3x + 1, the absolute ICC score is 0.13 and the consistency ICC score is 0.60
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with the Action Research Arm Test, whereas speed, path-
length ratio, and end-point error showed moderate cor-
relation. Tran et  al. reviewed specifically validation of 
robotic metrics with clinical assessments [57]. The review 
found mean speed, number of peak velocities, movement 
accuracy, and movement duration to be most promising 
metrics based on validation with clinical assessments. 
However, the review mentioned that some studies seem 
to conflict on the correlation between the robotic metric 
and clinical measures, which could be due to assessment 
task, subject characteristics, type of intervention, and 

robotic device. For further information about the valida-
tion of sensor-based metrics, please refer to the previ-
ously mentioned literature reviews [57, 66].

Which biomechanical‑based metrics show promise 
for repeatable assessment?
Repeatable measures, in which measurement taken by 
a single instrument and/or person produce low vari-
ation  within a single task, are a critical requirement for 
assessment of impairment and function. The biome-
chanical based metrics that show the most promise for 

Table 8 Reproducibility table

ICCu – Unable to determine

ICC(2,1)—Two-way random effects with a single measurement. ICC(2,k)—Two-way random effects with a mean of k measurements. ICC(3,1)—Two-way mixed effects 
with a single measurement. ICC(3,k)—Two-way mixed effects with a mean of k measurements. *Poor reliability (< 0.5). **Moderate reliability (0.5 ≤ ICC < 0.75). ***Good 
reliability (0.75 ≤ ICC < 0.9). ****Excellent reliability (≥ 0.9)

Metric ICC(r,k) Score (p < 0.05) Rating Measurement device Notes Refs.

Isometric joint torque ICC(3,1) 0.80–0.98 (p < 0.01) ***-**** ARMin [76]

Isokinetic motion with EMG ICC(2,1) 0.890 (0.685–0.961) **-**** 1-DOF [85]

Isokinetic motion with torque ICC(2,1) 0.931 (0.791–0.978) ***-****

Manual motion with EMG ICC(2,1) 0.788 (0.493–0.920) *-****

Initial direction error ICC(2,k) 0.81, 0.95 ***,**** KINARM No vision, vision [88]

Initial direction error variability ICC(2,k) 0.84, 0.94 ***,****

Path length ratio ICC(2,k) 0.68, 0.44 **,*

Path length ratio variability ICC(2,k) 0.95, 0.97 ****

Response latency ICC(2,k) 0.92, 0.94 ****

Response latency variability ICC(2,k) 0.91, 0.95 ****

Peak speed ratio ICC(2,k) 0.71, 0.96 **,****

Peak speed ratio variability ICC(2,k) 0.86, 0.66 ***,**

Peak velocity ICCu 0.9 **** Extension [84]

Final angle ICCu 0.86 ***

Creep ICCu 0.66 **

Peak velocity ICCu 0.95 **** Extension difference

Final angle ICCu 0.91 ****

Creep ICCu 0.74 **

Peak velocity ICCu 0.87 *** Flexion

Final angle ICCu 0.84 ***

Creep ICCu 0.86 ***

Peak velocity ICCu 0.88 *** Flexion difference

Final angle ICCu 0.88 ***

Creep ICCu 0.79 ***

Var_xy ICCu 0.81 *** [24]

Cont/exp_xy ICCu 0.86 ***

Shift_xy ICCu 0.7 **

aROM elbow flexion ICC(2,k) 0.89–0.97 ***-**** Inertial sensors First session [152]

aROM elbow pronation ICC(2,k) 0.89–0.94 ***-****

aROM elbow supination ICC(2,k) 0.91–0.98 ****

aROM wrist flexion ICC(2,k) 0.94–0.99 ****

aROM wrist extension ICC(2,k) 0.86–0.97 ***-****

aROM radial deviation ICC(2,k) 0.92–0.98 ****

aROM ulnar deviation ICC(2,k) 0.90–0.98 ****
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repeatability are range of motion, mean speed, mean dis-
tance, normal path length, spectral arc length, number 
of peaks, and task time. Two or more studies used these 
metrics and demonstrated good and excellent reliability, 

which implies the metric is robust against measure-
ment noise and/or disturbances. Since the metrics have 
been used on different measuring instruments, the sen-
sors’ resolution and signal-to-noise ratio appear to have 

Table 10 Summary of multi-domain assessment studies

Information about metrics from each domain and about how information is combined

NNMF non-negative matrix factorization algorithm

Biomechanical Neurological signal 
features

Clinical test Method combination Result Refs.

– Movement accuracy
– Time of execution
– Mean speed
– Mean abs value of distance 
between trajectory
– Number peaks speed
– Spectral arc-length

EEG:
–  SVD topography
–  Coefficient of time fre-
quency variation all bands
EMG:
–  Muscle group activation
–  Spatial synergies NNMF*

– FMA longitudinally
– Grip force test

– Correlation analysis
– CCA 
– PCA

–  All domains changed due 
to rehab
–  PCA metric combin-
ing information correlates 
significatively with FMA and 
grip force

[18]

– Range of motion (RoM)
– Movement duration
– Normalized Jerk

EEG
–  ERD latency, peak fre-
quency, topography
–  BSI
EMG:
–  Muscle activation
–  Spatial synergies NNMF*

Evolution of
– FMA
– WOLF
Through therapy

– Domain to clinical test
(did not combine informa-
tion)

–  All domains affected by 
rehab

[21]

–  Range of motion (RoM)
–  Mean absolute of the 
distance (deviation from a 
straight line)
–  End-point error (aim)
–  Ratio of mean and peak 
speed
–  Mean-absolute jerk nor-
malized by peak speed
–  Root mean square jerk 
normalized by duration of 
movement

EEG:
–  Rest power density
–  Relative and absolute 
Alpha power
–  Topography maps Alpha
EMG:
–  Muscle group activation

– FMA
– B&B
– AS
– Motricity index (MI)
– Modified Barthel index 
(mBI)

– Domain to clinical test, did 
not combine information

–  All domains affected by 
rehab

[122]

–  Movement duration
–  Peak velocity
–  Index of curvature
–  Average jerk
–  Average inter-quartile 
range

EEG:
–  Alpha and Beta ERS/ERD 
features

–  Relationship between 
kinematic data and neural 
data

– Correlation analysis Significant correlation:
–  Peak Velocity & Alpha ERD
–  Index of curvature & Beta 
ERS
–  Index of curvature & Beta 
ERD
–  Average jerk & Alpha ERS
–  Average jerk & Alpha ERD
–  Inter-quartile  rangex Beta 
ERS
–  Inter-quartile  rangez Beta 
ERS
–  Inter-quartile  rangex Beta 
ERS-ERD
–  Inter-quartile  rangez Beta 
ERS-ERD

[15]

– Movement duration
– Path length
– Normalized Jerk Speed

EEG topography
–  Alpha and Beta ERS/ERD
–  BSI

–  NHPT
– Motricity index (mi)
–  Barthel Index
–  FIM
–  Canadian stroke scale

– Separate analysis for each 
domain

–  All domains affected by 
rehab

[22]

– Movement accuracy
– Movement efficiency
– Mean speed
–  Number of velocity peaks

EEG:
– ERD %
– Motor potential amplitude

–  Motor status score
–  MAS
–  Range of motion

– Correlation analysis –  Movement efficiency and 
number of velocity peaks 
quantify movement execu-
tion for kinematic
–  The motor potential 
amplitude and ERD% are 
significant parameters

[16]
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a minimal impact on the reliability. However, more inves-
tigation is needed to confirm this robustness. In lieu of 
more evidence, it is recommended that investigators 
choose sensors similar or superior in quality to those 
used in the measuring devices presented in Tables 7 and 
8 to achieve the same level of reliability.

What aspects of biomechanical‑based metrics lack 
evidence or require more investigation?
Although many metrics (see previous section) demon-
strate good or excellent repeatability across multiple 
studies, the evidence for reproducibility is limited to 
single studies. When developing a novel device capable 
of robotic assistance and assessment, researchers have 
typically focused their efforts to create a device capable 
of repeatable and reliable measurements. However, since 
the person administering the test is using the device to 
measure the subject’s performance, the reproducibility of 
the metric must also be considered. The reproducibility 
of a metric is affected by the ease-of-use of the device; if 
the device is too complicated to setup and use, there is an 
increased probability that different operators will observe 
different measurements. Also, the operator’s instruc-
tions to the subject affects the reproducibility, especially 
in the initial sessions, which may lead to different learn-
ing effects, and different assessment results. More studies 
are needed across multiple sites and operators to deter-
mine the reproducibility of the biomechanical metrics 
reviewed in this paper.

Which neural activity‑based metrics (EEG & EMG) show 
the most promise for reliable assessment?
Electrical neurological signals such as EEG and EMG 
have successfully been used to understand changes in 
motor performance and outcome variability across all 
stages of post-stroke recovery including the first few 
hours after onset. Experimental results have shown 
that metrics derived from slow frequency power (delta 
power, relative delta power, and theta power), and power 
ratio between slow and fast EEG frequency bands like 
DAR and DTABR convey useful information both about 
current and future motor capabilities, as presented in 
Table 4 and Table 11 in Appendix 1. Multimodal studies 
using robotic tools for assessment of motor performance 
have expanded the study of power signal features in peo-
ple who suffered a stroke in the chronic recovery stage by 
studying not only rest EEG activity but also task-related 
activity [19, 21, 122]; ERD-ERS features like amplitude 
and latency along with biomechanical measures have 
been shown to correlate with clinical measures of motor 
performance and to predict a person’s response to move-
ment therapies. EEG power features in general have been 
found to have good to excellent reliability for test–retest 

conditions among different populations, across all fre-
quency bands of interest (see Table 9).

Functional connectivity (i.e., non-directed connec-
tivity) expands the investigative capacity of EEG meas-
urements, enabling analyzing the brain as a network 
system by investigating the interactions between regions 
of interest in the brain while resting or during move-
ment tasks. Inter-hemispheric interactions (interactions 
between the same ROI in both hemispheres) and global 
interactions (interactions between the entire brain and 
an ROI) reported as power or graph indices in Beta and 
Gamma bands have fruitfully been used to explain motor 
outcome scores. Although results seem promising, con-
nectivity reliability is still debated with results ranging 
mostly between moderate to good reliability only for a 
few connectivity estimators (PLI, wPLI and iCoh).

Which neural activity‑based metrics (EEG and EMG) lack 
evidence or require more investigation?
EEG and EMG provide useful non-invasive insight into 
the human neuromuscular system allowing researchers 
to make conjectures about its function and structure; 
however, interpretation of results based on these meas-
ures solely must be carefully analyzed within the frame 
of experimental conditions. Overall, the field needs more 
studies involving cohorts of stroke survivors to deter-
mine the reliability (test–retest) of metrics derived from 
EEG and EMG signal features that have already shown 
validity in academic studies.

Metrics calculated from power imbalance between 
interhemispheric activity like BSI, pwBSI and PRI [62, 
73, 124] are a great premise to measure how the brain 
relies on foreign regions to accomplish tasks related 
with affected areas. A battery of diverse estimators for 
connectivity, especially those of effective (directed) con-
nectivity, open the door to investigations into the rela-
tionship between abnormal communication of regions 
of interest and impairment (see Table 5 and Table 12 in 
Appendix 2). These metrics, although valid have yet to be 
tested in terms of reliability in clinical use. Reliability for 
connectivity metrics should specify which estimator was 
used to derive the metric.

CMC is another exciting neural-activity-based met-
ric lacking sufficient evidence to support its significance. 
CMC considers and bridges two of the most affected 
domains for motor execution in neuromuscular system, 
making it a good candidate for robotic-based therapy and 
assessment of survivors of stroke [147]. Although features 
in the Beta and Gamma bands seem to be related to motor 
impairment, there is still not agreement about which 
one is most closely related to motor outcomes. Studies 
reviewed in this paper considered cortical spatial pat-
terns of maximum coherence, peak frequency shift when 
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compared to healthy controls, latency for peak coherence, 
among others (see Table 6 and Table 13 in Appendix 3). 
However, when comparing to motor outcomes, results are 
not always significant, and test–retest reliability for this 
metric is yet (to our knowledge) to be documented for the 
upper extremity (see [61] for a lower-extremity study).

What standards should be adopted for reporting 
biomechanical and neural activity‑based metrics and their 
reliability?
For metrics to be accepted as reliable in the clinical field, 
researchers are asked to follow the guidelines presented 
in Koo and Li [68], which provide guidance on which 
ICC model to use depending on the type of reliability 
study and what should be reported (e.g., the software 
they used to compute the ICC and confidence interval). 
In the papers reviewed, some investigated the learning 
effects of the assessment task and checked for consist-
ency rather than agreement (see Table  7). However, the 
learning effects should be minimal in a clinical setting 
between each session, and potential effects should be 
taken into consideration during protocol design; com-
mon practices to minimize the implications of learning 
effects is to allow practice runs by the patients [99, 122] 
and to remove the first experimental runs [81, 85]. By 
removing this information, signal analysis focuses per-
formance of learned tasks with similar associated behav-
iors. Therefore, to demonstrate test–retest reliability 
(i.e., repeatability), the researcher should be checking for 
absolute agreement. Also, as can be seen in Tables 7 and 
8, there does not seem to be a standard on reporting ICC 
values. Some researchers report the confidence interval 
of the ICC value, while others do not. It was also difficult 
to determine the ICC model used in some of the studies. 
Therefore, a standard on reporting ICC values is needed 
to help readers understand the ICC used and prevent 
bias (see [68] for suggestive guideline on how to report 
ICC scores). Also, authors are asked to include the means 
of each individual session or rater would provide addi-
tional information on the variation of the means between 
the groups. The variation between groups can be shown 
with Bland–Altman plot, but readers are unable to per-
form other forms of analysis. To help with this, data from 
studies should be made publicly available to allow results 
to be verified and enable further analysis in the future.

When is it advantageous to combine biomechanical 
and neural activity‑based metrics for assessment?
Biomechanical and neural activity provide distinct but 
complementary information about the neuro-muscu-
loskeletal system, potentially offering a more complete 
picture of impairment and function after stroke. Metrics 

derived from kinematic/kinetic information assess motor 
performance based on motor execution; however, com-
pensatory strategies related to stroke may mask under-
lying neural deficits (i.e., muscle synergies line up to 
complete a given task) [18, 21, 69–72, 122]. Informa-
tion relevant to these compensatory strategies can be 
obtained when analyzing electrophysiological activity, as 
has been done using connectivity [59, 107], CMC [147, 
148] and brain cortical power [91].

Combining signals from multiple domains, although 
beneficial in the sense that it would allow a deeper under-
standing of a subject’s motor ability, is still a subject of 
exploration. Experimental paradigms play an impor-
tant role that influences the decision of feature selection; 
increasing the dimensionality of signals may provide more 
useful information for analysis, but comes at the expense 
of experimental costs (e.g., hardware) and time (e.g., sub-
ject setup). With all this in mind, merging information 
from different domains in the hierarchy of the neuro-
musculoskeletal system may provide a more compre-
hensive quantitative profile of a person’s impairment and 
performance. Examples of robotic multidomain methods 
such as the ones in [18, 21], highlight the importance of 
this type of assessment for monitoring and understanding 
the impact of rehabilitation in chronic stroke survivors. 
In both cases, these methodologies allowed pairing of 
observed behavioral changes in task execution (i.e., bio-
mechanical data) with corresponding functional recovery, 
instead of adopted compensation strategies.

What should be the focus of future investigations 
of biomechanical and/or neural activity‑based metrics?
Determining the reliability and validity of sensor-based 
metrics requires carefully designed experiments. In future 
investigations, experiments should be conducted that cal-
culate multiple metrics from multiple sensors and device 
combinations, allowing the effect of sensor type and qual-
ity on the measure’s reliability to be quantified. After the 
conclusion of such experiments, researchers are strongly 
encouraged to make their anonymized raw data pub-
lic to allow other researchers to compute different ICCs. 
Performing comparison studies on the reliability of met-
rics will produce reliability data to expand Tables 7, 8, 9 
and improve our ability to compare similar sensor-based 
metrics. Additional reliability studies should also be 
performed that include neural features of survivors of 
stroke, with increased focus on modeling the interactions 
between these domains (biomechanical and neural activ-
ity). It is also important to understand how to successfully 
combine data from multimodal experiments; many of the 
studies reviewed in this paper recorded multidimensional 
data, but performed analysis for each domain separately.
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ADL   Activities of daily living
AEC   Amplitude envelope correlation
ARAT    Action research arm test
aROM   Active range of motion
ASD   Autism spectrum disorder
B&B   Box and Blocks test
BSI   Brain Symmetry Index
CCA    Canonical correlation analysis
CMC   Corticomuscular coherence
CST   Cortico-spinal tract
DAR   Delta-alpha ratio
DCI   Delayed cerebral ischemia
dDTF   Direct directed transfer function
DOF   Degree of freedom
DTABR   (Delta + Theta)/(Alpha + Beta)
DTF   Directed transfer function
DTR   Delta-theta ratio
EEG   Electroencephalography
EMG   Electromyography
ERD   Event related desynchronization
ERS   Event related synchronization
ffDTF   Full frequency directed transfer function
FIM-FAM   Functional independence measure and functional 

assessment measure
FMA or FMA-UE  Fugl-Meyer assessment for upper extremity
GMA   Generalized Measure of Association
GPDC   Generalized partial directed coherence
ICC   Intra-class correlations
iCoh   Imaginary part of coherence
M1   Primary motor cortex
MA   Modified Ashworth
mBI   Modified Barthel Index
mCoh   Multiple coherence
MI   Motricity Index
MoCa   Montreal Cognitive Assessment
MRBD   Movement related beta desynchronization
MRI   Magnetic resonance imaging
mRS   Modified Ranking Scale
nIHS   Normalized interhemispheric strength
NIHSS   National Institutes of Health Stroke Scale
NNMF   Non-negative matrix factorization algorithm
PCA   Principal component analysis
pCoh   Partial coherence
PDC   Partial directed coherence
PLI, wPLI, dwPLI  Phase lag index, weight phase lag index, debiased 

weighted phase lag index
PM   Premotor area
PMBR   Post movement beta rebound
PRI   Power Ratio Index
pROM   Passive range of motion
qEEG   Quantitative EEG
rCBF   Regional cerebral blood flow
ROI   Region of interest
rPDC   Renormalized partial directed coherence
SVD   Singular value decomposition
WMFT   Wolf motor function
WND   Weighted Node Degree Index
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