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Abstract 

Background  Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskel-
etons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full 
autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncer-
tain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either 
are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even 
fail to maintain balance.

Methods  We present a novel, deep neural network, reinforcement learning-based robust controller for a LLRE based 
on a decoupled offline human-exoskeleton simulation training with three independent networks, which aims to 
provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskel-
eton controller is driven by a neural network control policy that acts on a stream of the LLRE’s proprioceptive signals, 
including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. 
To handle uncertain human interaction forces, the control policy is trained intentionally with an integrated human 
musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected 
with the control policy network to predict the interaction forces and muscle coordination. To further increase the 
robustness of the control policy to different human conditions, we employ domain randomization during training 
that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of 
human muscle strength to simulate the variability of the patient’s disability. Through this decoupled deep reinforce-
ment learning framework, the trained controller of LLREs is able to provide reliable walking assistance to patients with 
different degrees of neuromuscular disorders without any control parameter tuning.

Results and conclusion  A universal, RL-based walking controller is trained and virtually tested on a LLRE system to 
verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriple-
gic), muscle weakness, or hemiplegic conditions without any control parameter tuning. Analysis of the RMSE for joint 
tracking, CoP-based stability, and gait symmetry shows the effectiveness of the controller. An ablation study also dem-
onstrates the strong robustness of the control policy under large exoskeleton dynamic property ranges and various 
human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy 
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network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory 
state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the 
need for patient-specific control parameter tuning.

Keywords  Robust walking control, Human-exoskeleton interactions, Muscular disorders, Deep reinforcement 
learning

Introduction
Wearable robots like lower-limb exoskeletons have great 
potential for mobility restoration and human augmenta-
tion [1]. Scientific and technological work on exoskele-
tons began in the early 1960s but have only been recently 
applied for gait assistance rehabilitation and functional 
substitution in patients suffering from motor disorders. 
There are two main types of exoskeletons for gait assis-
tance: the ones for partial assistance and the others for 
full mobilization. Partial assistance exoskeletons are gen-
erally lighter, targeting less severe handicaps. They can 
also assist healthy people for performance or endurance 
augmentation purposes [2]. Full mobilization exoskel-
etons are designed to move the legs of people suffering 
from severe loss of motor control or motor disorders, 
typically in people with spinal cord injury (SCI) and 
neuromuscular disorders [3, 4], to perform activities of 
daily living (ADL) [2, 5–8]. Lower limb rehabilitation 
exoskeletons (LLREs) with multi-joint actuation for full 
mobilization have been used more often nowadays in 
rehabilitation clinics and have shown great benefits to 
improve mobility for people with a variety of neuromus-
cular disorders such as muscle weakness or paralysis) [3, 
4, 9, 10]. Further investigation on LLREs to assist people 
with neuromuscular disorders is an important part of 
rehabilitation exoskeleton (RE) research frontiers [9, 10].

Robustness and stability of the LLRE for walking assis-
tance is of great significance to ensure the safety of the 
patient. One of the most common ways to ensure that is 
to use crutches or other balance assistance devices for 
additional support to avoid falling down during walk-
ing. Some commercially available exoskeletons include 
ReWalk (ReWalk Robotics), Ekso (Ekso bionics), Indego 
(Parker Hannifin), TWIICE [6], VariLeg [11] and LFMAS 
[12]. ReWalk measures the tilt angle of the upper body 
to initiate walking, and Ekso uses accelerometers on 
crutches and pressure sensors on shoes to detect the 
walking intention of the wearer. However, holding the 
crutches with the arms and hands limits the patient’s 
interactions with the environment [13] and hinders the 
patient’s timely response to emergencies. In addition, 
it adds additional burden to the patient’s upper body. A 
limited number of LLREs are able to assist human walk-
ing without the need of crutches or helpers, such as 
Rex (Rex Bionics) [14] and Atalante (Wandercraft) [15]. 

These LLREs free the user’s hands, but come at the cost 
of very low walking speeds and increased overall weights 
(38  kg for the Rex and 60  kg for the Atalante). In addi-
tion, these heavy autonomous LLREs are very expensive 
[6]. In this paper, we target the robust control of a light-
weight LLRE currently being developed in our group [16, 
17] that includes a sufficient number of degrees of free-
dom (DoF) and has very strong actuation. The goal is to 
enable autonomous, independent walking with this LLRE 
without external help, which could give the patient a con-
fidence boost to use the LLRE in the clinical or home 
setting. In order for it to cooperate with human with 
minimal risks of fall or physical harm, advanced control-
lers to robustly perform walking assistance under various 
human-exoskeleton interaction conditions need to be 
developed.

There are many challenges in developing such 
advanced controllers due to inherent requirements of 
safe interaction with the patient and the environment [2, 
18, 19]. Because of varied conditions of patients’ disabili-
ties, the human-exoskeleton interaction forces are unpre-
dictable and could vary substantially from one patient to 
another, a very important factor to consider for control-
ler development. Existing controllers for LLREs often 
focus on trajectory tracking, conventional Proportional-
Integral-Derivative (PID) control [20], fuzzy control [8], 
model-based predictive control [21], impedance control 
[22, 23], and momentum-based control [24]. The trajec-
tory tracking approaches are primarily used for early-
stage rehabilitation when patients have very weak muscle 
strength, its robustness against unexpected large per-
turbations or uncertain interaction forces is not great. 
Model-based method could be ineffective or even unsta-
ble due to inaccurate dynamics modeling, and it typically 
requires a laborious task-specific control parameter tun-
ing. To overcome the model uncertainties, data-driven, 
RL-based controllers are attracting attention in the LLRE 
control recently [12, 25–27]. In [26], a human-exoskele-
ton interaction control of a gait rehabilitation LLRE was 
proposed and the proposed adaptive law of the admit-
tance parameters was designed with the RL algorithm. 
This kind of tethered rehabilitation robot is less portable 
and can be used only in laboratory and clinical applica-
tions. In our previous work [17], a reinforcement learn-
ing-based controller for a LLRE squatting motion control 



Page 3 of 19Luo et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:34 	

was developed through training with a tightly coupled 
human-exoskeleton simulation, for which the input to 
the neural network-based controller includes the human 
full body state, the exoskeleton proprioceptive informa-
tion, and the foot Center of Pressure (CoP) positions. 
The requirement on all these sensory inputs (especially 
the human state) makes it difficult to transfer the trained 
controller to the LLRE hardware.

This paper is the first investigation of a deep neural 
network-based reinforcement learning (RL) controller 
for LLREs to realize robust walking control without any 
control parameter tuning. The method proposed in this 
work offers several distinct advantages: (1) This control-
ler is trained from the decoupled offline human-exo-
skeleton simulation; this decoupled simulation structure 
enables the trained control policy to use only propriocep-
tive information (encoder data) of the LLRE regardless of 
the uncertain human-exoskeleton interaction forces from 
different levels of muscle weakness, which consequently 
facilitates easy deployment of the controller to the physi-
cal exoskeleton. (2) We employ domain randomization 
during training that includes not only randomization of 
exoskeleton mechanical properties but, more impor-
tantly, randomization of human muscle strength to sim-
ulate the variability of the patient’s disability, in order 
to produce a universal controller without any control 
parameter tuning. Learning with muscle strength rand-
omization allows the RL controller of the exoskeleton to 
produce a universal, self-adaptive walking control policy 
to handle varying human-exoskeleton interactions from 
subjects with different degrees of neuromuscular disabil-
ity without any manual tuning of control parameters. The 
proposed decoupled RL-based walking control strategy is 
virtually tested on a LLRE system to verify its effective-
ness in assisting users with different disabilities such as 
passive muscles (quadriplegic), muscle weakness, or even 
hemiplegic conditions. The RMSE for joint tracking accu-
racy, CoP-based stability, and symmetry analysis show 
the effectiveness of the controller. An ablation study also 
demonstrates the strong robustness of the control policy 
under large exoskeleton dynamic property ranges and 
various human-exoskeleton interaction forces.

Exoskeleton and interaction modeling
Modeling of a LLRE
A LLRE hardware shown in Fig. 1a has been developed 
in an early effort [16] to assist patients with gait reha-
bilitation. The details about the LLRE design have been 
presented in our prior work [17]. This LLRE system has 
8 actuated DoFs, each side of the body includes 1 DoF 
for the hip flexion/extension, 1 DoF for the knee flex-
ion/extension, and 2 DoFs for the ankle. The LLRE uses 
smart servo motors (Dynamixel Pro H54–200-S500-R) 

for hip, knee, and ankle joints. Both hip and knee joints 
are driven by bevel gears with a 3:1 gear ratio for com-
pact design and are able to provide a continuous torque 
(under a continuous 9.3 A current) and speed of 132 
Nm and 55◦/s , respectively. The motor’s max current 
is close to 14A at which it can generate over 220 Nm 
torque with the 3:1 supplemental gear. The range of 
motion of the hip is from −80◦ (extension) to 80◦ (flex-
ion) and the knee joint has a range from 0◦ (straight 
knee) to 160◦ (flexion). In contrast to most commercial 
LLREs with passive or fixed ankles, the ankle of our 
system consists of a powered 2-DoF joint to assist with 
dorsiflexion/plantarflexion and inversion/eversion with 
torque over 160 Nm [28]. These 2 DoFs have their rota-
tion axes located at different positions and are physi-
cally driven by the closed-loop of two ankle motors 
together with linkage of universal joints and screw 
joints. Besides these 8 actuated DoFs, the root joint in 
the model of the LLRE system has 6 unactuated DoFs 
(3 global transnational and 3 global rotational DoFs) to 
allow its free movement in space. The total mass of the 
exoskeleton is 20.4 kg and the frame of the exoskeleton 
has been manufactured with Onyx (Markforged’s nylon 
with chopped fiber) reinforced by continuous carbon 
fiber between layers, using Markforged’s Mark Two 
printer (Markforged, INC., MA). A 24V high capacity 
rechargeable Lithium Ion battery (Bixpower CP330-
BX2499) is used to power the LLRE.

Fig. 1  The integrated human and exoskeleton model. a The 
physical prototype of the LLRE. b The integrated musculoskeletal 
and exoskeleton model. The yellow coordination frames show the 
bushing frames coincidentally fixed on the LLRE and the human
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Modeling of human exoskeleton interactions
Musculoskeletal modeling
To simulate realistic human-exoskeleton interaction, a 
full-body human musculoskeletal model used in [29] is 
integrated with the LLRE to create realistic human-exo-
skeleton interaction forces and constraints. The musculo-
skeletal model, illustrated in Fig. 1, is around 170 cm tall, 
weighs 72 kg and consists of 50 DoFs and 284 musculo-
tendon units. Each musculotendon unit is represented as 
a polyline that starts at the origin of the muscle, passes 
through a sequence of waypoints, and ends at the inser-
tion. It generates an active muscle force through contrac-
tion and applies the force to the two bones of its origin 
and insertion. The contraction muscle dynamics is simu-
lated with a simplified Hill-type model [30, 31] as follows,

where a ∈ [0, 1] is the muscle activation, Fmax is the 
maximum isometric muscle force, and l is the normal-
ized muscle length. FL and FV  are force-length and force-
velocity functions, respectively. When the muscle is fully 
passive without active contraction ( a = 0 ), it develops 
only a passive force FP × Fmax because of its background 
elasticity. The Euler–Lagrangian equations for the human 
musculoskeletal dynamics using generalized coordinates 
can be described by:

where q is the vector of joint angles, f ext is the vec-
tor of external forces, and f m is the vector of mus-
cle forces which is a function of muscle activations 
a = (a1, a2, · · · , an) for all muscles. M(q) denotes the 
generalized mass matrix, and c(q, q̇) is Coriolis and gravi-
tational forces. Jm and J ext are Jacobian matrices that 
map the muscle and external forces to the joint space, 
respectively. Following [29], due to the linearity of muscle 
force over the activation, we can write the muscle force 
vector

Consequently, Eq. 2 can be rewritten as

with

As a result, the joint coordinate acceleration q̈ can be 
computed from

(1)F = [a · FL(l) · FV (l̇)+ FP(l)] × Fmax

(2)M(q)q̈ + c(q, q̇) = JTmf m(a)+ JText f ext

(3)f m(a) =
∂f m
∂a

a + f m(0).

(4)M(q)q̈ + c(q, q̇) = Aa + e + JText f ext

(5)A = JTm
∂f m
∂a

, e = JTmf m(0).

with

Modeling of human‑exoskeleton interactions
The LLRE has straps around the hip, femur, and tibia 
to constrain human motion, as shown in Fig. 1a. In this 
study, the pelvis of the human musculoskeletal model 
is attached to the exoskeleton hip through a prismatic 
joint that allows relative movement only along the ver-
tical (up and down) direction. Meanwhile, we use linear 
bushing elements [32] to simulate the interaction forces 
and moments between the human and exoskeleton at all 
strap locations. A linear bushing element represents a 
bushing connecting a frame fixed on the exoskeleton to 
a frame fixed on the human with linear translational and 
torsional springs and dampers. The yellow coordination 
frames in Fig. 1b show the bushing frames coincidentally 
fixed on the LLRE and the human during initial align-
ment. The governing equations for the bushing element 
are as follows:

where fx , fy and fz , are the translational forces; τx , τy , 
and τz are the rotational or torsional moments along 
the bushing frames; x, y, z are the translation distances 
between the origins of the two frames; θx , θy , and θz 
are the x − y− z body fixed Euler angles between the 
frames; ki , ci , αi , and βi ( i = x, y, z ) denote directional 
linear constants. These directional constants allow us 
to model different resistance strengths of straps along 
different directions. During motion, bushing forces 
and moments are generated due to deviation of the 
two frames and they are applied to both human and 
exoskeleton. For the interaction between the human 
pelvis and the LLRE waist structure, the bushing ele-
ment only generates a force along the vertical direc-
tion and we specify its translation stiffness ky = 8000 , 
translation damping cy = 10 . At the other four leg 
strap locations, the following bushings parameters are 
used: translation stiffness kx = kz = 1500, ky = 500 , 
translation damping cx = cz = 10, cy = 1 , rota-
tion stiffness αx = αz = 10,αy = 3 , rotation damp-
ing βx = βz = 1,βy = 0.1 to simulate the connections 
between the human femur and the strap on the LLRE 
femur. We use smaller constants along the limb length 
(axis) direction to allow the straps to slide up and down 
and rotate along the axis direction easier. Besides using 

(6)q̈ = Ka + b

(7)K = M−1A, b = M−1(e + JText fext − c).

(8)
fx = kxx + cxẋ
fy = kyy+ cyẏ
fz = kzz + czż

, and
τx = αxθx + βxθ̇x
τy = αyθy + βyθ̇y
τz = αzθz + βz θ̇z
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these bushing elements for elastic strap modeling, we 
assume there is no relative motion between the human 
foot and the exoskeleton foot due to tight coupling and 
model that as a fixed constraint.

Deep RL‑based walking control
In this section, we present a novel walking control-
ler based on deep RL with decoupled neural networks 
for the LLRE to perform walking assistance with strong 
robustness against various human-exoskeleton interac-
tions. Figure  2 shows the overall learning framework 
of this deep RL-based walking control workflow, it 
includes (A) a muscle-actuated human control loop and 
(B) a LLRE control loop. The goal of the LLRE control 
loop is to learn a control policy πθ (as|sexo) of the LLRE 
that imitates a target walking motion while achieving 
strong robustness and balance under the influence of the 
human-exoskeleton interaction. The motion imitation 
network (pink block) in this loop is a stochastic control 
policy πθ (as|sexo) of the LLRE. The human muscle-actu-
ated control loop is required to generate realistic human-
exoskeleton interactions. In the muscle-actuated control 
loop, a combination of an RL-based interaction network 
and a supervised learning-based muscle coordination 
network (pink blocks) is devised to learn human muscle 

activation during assisted walking. The first RL-based 
interaction network aims to produce small interaction 
forces between the human and the LLRE by consider-
ing the patient’s desire to follow the exoskeleton move-
ment and reduce pressure on the body. This interaction 
network takes the human skeleton state shuman (the kin-
ematic states of the human) as the input and its policy 
πφ(ah|shuman) produces target human joint angle output 
( ah ) during human-exoskeleton interaction, where φ is 
network parameters to be optimized using RL. PD con-
trol from these target angles generates desired human 
joint accelerations qd , which are passed to the second 
muscle coordination network. The muscle coordination 
network am = πϕ(qd , smuscle) is a deterministic policy 
that outputs the muscle activations am from the current 
muscle state smuscle to minimize the differences between 
the muscle generated acceleration and the desired joint 
acceleration, where ϕ is network parameters determined 
by regression. Collectively, these three networks are 
jointly learned through simulations to achieve maximum 
rewards in deep RL. Through this proposed decoupled 
learning control process, the controller for the LLRE 
will be shown to be able to handle varying human-exo-
skeleton interactions caused by different degrees of 
human disability just using proprioception information 

Fig. 2  Overview of the modular, decoupled RL-based walking control framework of the LLRE with human-in-the-loop. The framework is separated 
into two parts: A muscle-actuated human policy training. B LLRE control policy training, which integrates three deep neural networks (marked with 
pink blocks): an RL-based interaction network for human control to manage human-exoskeleton interface forces; a supervised muscle coordination 
network for whole body muscle control; a RL-based motion imitation network for the control of the LLRE. The muscle-actuated human control loop 
A is designed to learn human muscle coordination giving the health status of the human and predicted exoskeleton assistance. The LLRE control 
loop B is designed to imitate a target walking motion while maintaining strong robustness and balance under the human-exoskeleton interaction. 
These three networks can be jointly trained in the simulation while they interact with each other to achieve maximum rewards during RL
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of the LLRE (joint sensory state). In the following sub-
sections, the details of these three control networks are 
introduced.

RL‑based LLRE control policy training
Figure  3 shows a detailed schematic of the RL-based 
LLRE control loop (B in Fig.  2). The controller (or con-
trol policy) is learned through a continuous RL process. 
We design the control policy through a neural network 
with parameters θ , denoting the weights and bias in the 
neural network. The control policy can be expressed as 
πθ (as|sexo) and the parameters θ of the neural network 
are updated according to the policy gradient method to 
achieve the maximum reward. In the learning process 
(Fig. 3), the input of the control policy network is defined 
by sexo = {pt−2:t , vt−2:t , at−2:t , p̂t+1:t+6} , in which p and v 
are joint angles and angular velocities of the LLRE, and 
at−2:t represents the action history of three sequential 
steps. To learn a particular skill, we utilize the corre-
sponding target joint poses from the task motion at six 
future time-steps p̂t+1:t+6 as the motion prior for feasible 
control strategies. The use of task motion data, despite 
being task-specific, alleviates the need to design task-
specific reward functions and thereby facilitates a general 
framework to learn a diverse array of behaviors.

In Fig. 3, the control policy network is implemented as 
a Multi-Layer Perception (MLP) network that consists of 
three fully connected layers and ReLU as the activation 
function. The sizes of three layers are set to 256, 256 and 
128, respectively. At every time step t, the neural network 
model observes the state of the exoskeleton sexo,t from 
the environment, and selects an action as,t according to 

its control policy πθ (as|sexo) . πθ (as|sexo) is in the form of 
the probability distribution of actions in a given state. 
The LLRE in the environment then applies the action as,t , 
which results in a new state sexo,t+1 and a scalar reward 
rt immediately. The objective is to learn a control policy 
that maximizes the discounted sum of reward:

where γ ∈ (0, 1) is the discount factor, τ is the trajectory 
{(s0, a0, r0), (s1, a1, r1), · · · } and p(τ |π) denotes the likeli-
hood of a trajectory τ under a given control policy π . T is 
the horizon of an episode. We design the reward function 
rt = wprp + were + wroot rroot + wcoprcop + wτ rτ + wasras + wfcrfc 
as the weighted summation of multiple sub-rewards to 
encourage the control policy to imitate a target walking 
motion while maintaining balance with robustness. w 
denotes the corresponding weight for each sub-reward. 
The list of sub-rewards is itemized as follows:

•	 Imitation Reward  (rp and re ): These two terms 
encourage the exoskeleton to minimize the difference 
between the current and reference motions in terms 
of the joint positions ( pt ) and end-effector positions 
( xt ). 

 where j is the index of joints, ( p̂t , x̂t ) are the refer-
ence joint and end-effector positions.

•	 Root Reward  (rroot ): This reward aims to track the 
task root motion including the root’s position x̂roott  
and rotation q̂roott  . 

•	 CoP (Center of Pressure) Reward  (rCoP ) [17]: This 
reward is to encourage the controller to predict an 
action that will improve the balance and robustness 
of the exoskeleton’s motion. The movement of sys-
tem CoP is an important indicator of system stability 
and balance, and this reward is to motivate the cur-
rent CoP position ccopt  to stay inside a stable region S 
around the center of the foot support. By consider-
ing the geometry of the foot in the LLRE design (the 
width and length of the foot are 12 cm and 30 cm), 
the stable region for foot CoP is defined as a smaller 

(9)π∗ = arg max
π

Eτ∼p(τ |π)

[

T−1
∑

t=0

γ t rt

]

(10)

rp = exp



−σp
�

j

||p̂
j
t − p

j
t ||

2





re = exp

�

−σe
�

i

||x̂it − xit ||
2

�

(11)
rt
root = exp[−σr1||x̂

root
t − xt

root ||
2
− σr2||q̂

root
t − qt

root ||
2
]

Fig. 3  RL-based motion imitation control of the LLRE (the LLRE 
control loop in Fig. 2). The inputs of the motion imitation network 
consist of the joint state history, the action history and the future 
target motions. This learning network outputs joint target positions, 
which are processed by a low-pass filter and then translated into 
torque-level commands by PD control
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rectangle area S around the foot geometric center 
whose width and length are set to 7  cm and 11  cm 
respectively (narrower in the lateral direction than 
forward direction). And the CoP reward function is 
expressed as 

where D(·, ·) is the Euclidean distance between CoP 
and the center of S.

•	 Action Smoothness Reward  (ras ): This reward 
encourages smooth action prediction by penalizing 
the second-order finite difference derivatives of the 
actions. 

•	 Foot clearance Reward  (rfc ): This reward penalizes 
the roll and pitch angles of the swing foot to encour-
age the foot to stay parallel with the ground and cre-
ate more foot clearance to avoid tripping. 

•	 Torque Reward (rτ ): This reward is to reduce energy 
consumption and to improve efficiency and prevent 
overburdening joint actuators. 

 where i is the index of actuated joints.
The output of the neural network predicts the joint target 
positions. To obtain smooth motions, the output from 
the control policy network is first processed by a second 
low-pass filter before being applied to the LLRE. Moreo-
ver, we apply preprocessed actions (output) that are lin-
early interpolated from two consecutive filtered actions 
during each time step. We consider the actuator torque 
limit in the simulation, the preprocessed actions as,t are 
specified as PD targets and the final PD-based torques 
applied to each joint are calculated as

where pt denotes the joint angle of the LLRE. kp and kv 
are the proportional gain and differential gain, respec-
tively. The function clip(·) returns the upper bound τ̂ or 
the lower bound −τ̂ if the torque τ exceeds the real actua-
tor torque limit.

(12)

rt
cop =

{

exp[−σcop||D(ct
cop, S)||

2
], if ct

cop ∈ S

0, if ct
cop /∈ S

(13)
ras = exp[−σas||(as)t − 2(as)t−1 + (as)t−2||

2]

(14)rfc = exp[−σfc||sin(θroll,pitch)||
2]

(15)rτ = exp

[

−στ
∑

i

||τi||
2

]

(16)τ = clip
(

kp(as,t − pt)− kvṗt ,−τ̂ , τ̂
)

Learning with proximal policy optimization (PPO)
An effective solution to many RL problems is the family 
of policy gradient algorithms, in which the gradient of 
the expected return with respect to the policy parameters 
is computed and used to update the policy parameters 
θ through gradient ascent during training. To train the 
RL networks proposed here, we use the state-of-the-art 
RL algorithm known as Proximal Policy Optimization 
(PPO), a model-free policy gradient algorithm that sam-
ples data through interaction with the environment and 
optimizes a “surrogate” objective function [33]. It uti-
lizes a trust region constraint to force the control policy 
update and ensure that the new policy is not too far away 
from the old policy. The probability ratio rt(θ) is defined 
by:

This probability ratio is a measure of how different the 
current policy is from the old policy πθold (the policy 
before the last update). A large value of this ratio means 
a large change in the updated policy compared to the old 
one. PPO also introduces a modified objective function 
that adopts clipped probability ratio which forms a pes-
simistic estimate of the policy’s performance and avoids 
a reduction in performance during the training process. 
The following “surrogate” objective function by consider-
ing the clipped objective is applied to update the policy 
parameters.

where ε is a small positive constant which constrains the 
probability ratio rt(θ) . Ât denotes the advantage value at 
time step t. The advantage value Ât is a measure of how 
much a certain action is a good or bad decision given a 
certain state. It is defined as the discounted rewards R 
minus the predicted value P. The discounted reward R is 
the weighted sum of all the rewards during each time step 
of the current episode. The predicted value P is the esti-
mated final return in this episode starting from the cur-
rent state. If Ât is positive, it means the action taken by 
the controller is good and a positive reward is obtained 
by taking the action. So the algorithm improves the prob-
ability of this action. On the other hand, if Ât is negative, 
then the algorithm needs to decrease the action prob-
ability. For more details, please refer to [33]. clip(·) is the 
clipping function. Clipping the probability ratio discour-
ages the policy from changing too much and taking the 

(17)rt(θ) =
πθ (at |st)

πθold (at |st)
.

(18)
L(θ) = Et

[

min
(

rt(θ)Ât , clip(rt(θ), 1− ε, 1+ ε)Ât

)]
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minimum results in using the lower, pessimistic bound of 
the unclipped objective. Thus, any change in the proba-
bility ratio is included when it makes the objective worse, 
and otherwise it is ignored. This can prevent the policy 
from changing too quickly and leads to more stable 
learning. The control policy can be updated by maximiz-
ing the clipped discounted total reward in Eq. 18 with a 
gradient ascent.

Human muscle coordination via RL and supervised 
learning
Predictive human muscle-actuated simulations based 
on deep RL have achieved some remarkable results [29, 
34]. For example, the simulation presented in [29] con-
sists of a high-fidelity human musculoskeletal model 
that represents the detailed joints and muscles around 
the upper and lower extremities and a deep neural 
network RL-based muscle-actuated controller. It can 
simulate many aspects of human motions using deep 
RL, such as steady walking, running, even jumping in 
a predictive manner. Inspired by their work [29] and to 
further incorporate realistic human-exoskeleton inter-
actions for the purpose of controlling a LLRE, this paper 
designs a decoupled network structure that combines 
the LLRE control policy network with an RL-based 
interaction network and a supervised learning-based 
muscle coordination network for muscle-actuated con-
trol (A in Fig. 2) in the human-exoskeleton interaction 
environment.

Human‑exoskeleton interaction network
The human-exoskeleton interaction network within the 
RL framework aims to produce a stochastic control policy 
πφ(ah|shuman) that  predicts the target human joint poses 
ah given human skeletal states shuman , where φ denotes 
network parameters to be optimized using PPO. The net-
work structure is the same as the motion imitation net-
work in the LLRE control loop in Fig  2. We design the 
reward of this network to encourage the control policy to 
minimize interaction forces between the human and the 
LLRE, considering the patient’s desire to follow the exo-
skeleton movement and reduce strap pressure on the body, 
as follows.

where fi is the ith bushing interaction force between the 
human and exoskeleton.

(19)rint = exp

[

−σint
∑

i

||fi||
2

]

Muscle coordination network
The interaction network predicts desired human joint 
angles during human-exoskeleton interaction, which 
are fed to the PD control to compute the desired human 
joint accelerations q̈d . The muscle coordination network 
is constructed to coordinate the activations of all mus-
cles to produce accelerations as close as possible to the 
desired human joint accelerations qd . From Eq.  6, we 
have a linear mapping between q̈ and a . We encourage 
the human joint acceleration to track the desired human 
joint acceleration q̈d from the interaction network. Fol-
lowing [29], we formulate this problem into the super-
vised learning-based regression framework to learn 
collaboratively with the interaction network and motion 
imitation network. Let a = πϕ(qd , smuscle) be a network 
policy that maps desired human joint torque to muscle 
activations a . The muscle state smuscle = (vec(A), e) is 
defined to encode the information that converts muscle 
activations into muscle actuated joint accelerations. The 
loss function to minimize the discrepancy between the 
desired and actuated joint acceleration is designed as 
follows:

where wa is a weight. The muscle coordination network is 
implemented as a MLP network that consists of four fully 
connected layers. We use both the tanh and ReLU non-
linear function at the output layer to enforce the mus-
cle activations in the normalized range [0,  1]. To solve 
this regression network to minimize the loss function 
in Eq. 20, it needs to sample a large collection of tuples 
(K , b,A, e) . Because the motion imitation network gener-
ates numerous episodes during training, we can sample 
the muscle tuples for regression from the episodes.

To elucidate the offline learning process of the pro-
posed method, the pseudocode is provided in Algo-
rithm 1. During learning, this proposed control scheme 
alternates between the motion imitation network, 
interaction network, and muscle coordination network 
to collect tuples and jointly update the policy param-
eters. One of the unique advantages of this decoupled 
structure is that it allows each network to operate sepa-
rately with distinct focuses. For example, the LLRE con-
trol policy network focuses on hardware control with 
only proprioceptive information input. As a result, the 
trained policy can be readily deployed on the physical 
exoskeleton without the need of human sensing.

(20)loss = E||q̈d − Ka(ϕ)− b||2 + wa||a||
2
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Dynamics randomization for the exoskeleton and muscle 
strength
To reduce the discrepancies between the motor con-
trol in the simulation and the real hardware, we uti-
lized the dynamic randomization method to consider 
the mechatronic characterization of the real actuator in 
the simulation. The dynamic randomization method is 
a popular technique in machine learning-based control 
for sim-to-real transfer (transferring trained control poli-
cies from simulation to the real world) [35–37]. Instead 
of training a policy in a single environment with fixed 
robot dynamics, dynamic randomization varies the robot 
dynamics in the high-level or low-level motor control 
during training, thereby encouraging the control policy 
to learn robust strategies that are functional across dif-
ferent exoskeleton dynamics. The domain randomization 
employed in this study enables the controller to handle 
the sim-2-real differences for the transfer or deployment 
to the real hardware.

To account for motor control inaccuracy (e.g. the 
low-level motor control may not be able to faithfully 
execute the commanded torque from Eq. 16) and con-
trol delay on the hardware, we chose to randomize the 
torque command tracking accuracy and control delay 
in the dynamic randomization (shown in Table 2). The 
motor torque command tracking accuracy is rand-
omized with a range [0.8,1,2] as listed in Table 2. Given 

a computed torque command τ , the torque applied 
to the joints will be randomly sampled in a range 
[0.8,1.2]*τ in the simulation. For the control delay, we 
choose a randomization range [0,0.04]s, with an upper 
bound at 0.04 s that simulates possible low bandwidth 
and slow step response of the motors in the physical 
exoskeleton system. During our testing, the controller 
is robust against the command tracking accuracy within 
the range of [0.7, 1.3] and against control delay within 
the range of [0,0.06  s] (both listed in Table  2) Moreo-
ver, to account for the delay in sensor data transmission 
and reading, we add the dynamic randomization of the 
observation latency within a range [0, 0.04]s during the 
training. This randomization simulates the sensor noise 
and time delay during information transfer, which can 
make the trained controller more robust against real 
noise and delay from the physical exoskeleton. The 
Dynamixel Pro motor has sufficiently fast mechanical 
and electrical response times and an onboard encoder 
that has a latency well below 0.04  s, so the range [0, 
0,04]s can sufficiently cover possible variance. Consid-
ering the observation latency, motor command tracking 
accuracy, and control delay improves the reality of the 
simulations and further increases the difficulty of the 
control policy training.

Another key challenge in developing a  robust walking 
controller for a LLRE is to deal with patients with differ-
ent degrees of disability, which are often manifested by 
muscle weakness or paralysis. To generate a universal 
walking control policy that has strong robustness against 
different magnitudes of human interactions forces with-
out the need of tuning of control parameters, we must 
consider various muscle conditions of the patient and 
incorporate these conditions into the virtual environ-
ment. Here we propose to incorporate a novel mus-
cle strength randomization process into the training 
workflow. Although muscle weakness or paralysis can 
be caused by a variety of neuromuscular disorders that 
affect different physiological properties of the muscle, 
we choose to randomize the maximum muscle isomet-
ric forces Fmax in Eq. 1 to achieve the end result of limit-
ing the muscle’s capability to generate force. Scaling the 
maximum isometric forces from 1 to 0 decrease the force 
generation capacity of the muscle from full capacity to 
full paralysis. By simply scaling the maximum isometric 
forces of all muscles or selected muscles (e.g. on one side 
of the body) within prescribed ranges, we can simulate 
different conditions of disability such as muscle weak-
ness, hemiparesis, and full paralysis. From our numerical 
experiments, we find that training with randomized mus-
cle strength is critical to learn robust walking behavior 
that can handle varying human-exoskeleton interaction 
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forces and consequently produce a LLRE controller that 
uses only proprioceptive information from the exoskel-
eton itself.

Online deployment process of the controller
The Dynamixel Pro smart actuators used for all exoskele-
ton joints contain their own microprocessor (ARM COR-
TEX-M4 (32Bit)) and angular encoders. The motors are 
connected to a mini-PC (fitPC CompuLab IPC2) through 
a USB2Dynamixel connection. The motor encoders out-
put the joint angle and angular velocities of the hip, knee 
and ankle joints, and data are transmitted to the mini-
PC with RS485 protocol. The load cell force sensors are 
linked to a small DAQ card and connected to the mini-
PC through a USB cable, with data transmitted via a 
serial port. Matlab programs and mex functions in C++ 
are used for the overall control by reading motor encoder 
and force sensor data and sending out control commands 
through USB connections.

For the high-level neural network-based controller, 
after acquiring a parameter set of a trained policy from 
our RL training, we can use Algorithm  2 to deploy the 
learned neural network controller to the physical lower 
limb rehabilitation exoskeleton system. The three-layers 
neural network (MLP) structure (same as the simulation) 
is built on Matlab, and the trained parameter set (weight 
and bias) of this neural network obtained from the sim-
ulation will be ported to the neural network in Matlab. 
The low-level torque control architecture is composed of 
an inner-loop and an outer-loop control. The inner loop 
implements motor current control in the local motor 
controller. The outer loop implements the torque control 
in Matlab using feedback signals from motors, loadcells, 
and encoder-based readings.

Numerical experiments
In this section, we first present a learned controller for 
the LLRE to perform the walking motion without a 
human and then conduct several numerical experiments 
involving human subjects with different neuromuscular 
disorders (healthy, flaccid quadriplegia, muscle weakness, 

and hemiparesis) to demonstrate the ability of the LLRE 
to perform robust walking motion under varying human-
exoskeleton interactions.

Model simulation settings
Our control system involves three deep neural networks 
as described above and the training of these networks 
relies on the integrated simulation environment that con-
siders the human-exoskeleton interaction, exoskeleton 
control, and active muscle contraction. During train-
ing, the time integration frequency for the environment 
is 600Hz, and  the control frequency (for both exoskele-
ton and human) is set to 30Hz. The open-source library 
DART [38] is utilized to simulate the exoskeleton and 
human skeleton dynamics. The GRFs are computed by 
a Dantzig LCP (linear complementary problem) solver 
[39]. The training and testing are performed with a desk-
top computer with an Intel®Xeon(R) CPU E5-1660 v3 @ 
3.00GHz × 16.

RL‑based controller settings
In this paper, the reference walking motion was manually 
created based on a human walking motion. The refer-
ence motion can provide guidance for motion imitation 
for the LLRE but needs not to be generated precisely. 
PyTorch [40] is used to implement the neural networks 
and the PPO method for the learning process. The net-
works are initialized by the Xavier uniform method [41]. 
In  total about 20 million samples are collected during 
training. The policy and value networks of the motion 
imitation network and interaction network are updated 
at a learning rate of 10−4 , which is linearly decreased to 0 
when 20 million samples are collected. The max iteration 
is set to 120,000. The learning rate of the muscle coor-
dination network is also set to 10−4 . Hyperparameters 
settings for training using PPO are shown in Table 1. To 
verify the robustness of the trained controller, we test the 
control policies in out-of-distribution simulated environ-
ments, where the dynamic parameters of the exoskel-
eton are sampled randomly from a larger range of values 
than those during training. Table 2 shows the dynamics 
randomization parameters of the LLRE and their ranges 
during training and testing. According to the PD control 
Eq.  16, the proportional gain kp and differential gain kv 
are set to 900 and 40, respectively. We conducted a grid 

Table 1  Hyper-parameters settings for training

Parameters Value Parameters Value

Discount factor 0.99 Epochs 10

Policy Adam learning rate 10
−4 Clip threshold 0.2

Batch size 128 Memory buffer 2048
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search of weights in a proper range. The weights of the 
rewards can be considered as the hyperparameters of 
neural networks. Grid search is a tuning method that 
attempts to compute the optimum values of hyperpa-
rameters. It is an exhaustive search that is performed 
on a specific setting of hyperparameters of a model. For 
example, wp is chosen from [0.25, 0.5, 0.75, 1], wee and 
wroot are chosen from [0.1, 0.2, 0.3,…,0.9,1]. We measured 
the overall reward according to Eqs.  10-  15 with differ-
ent sets of weights and chose the following set of weights 
with the best overall performance during the testing: 
wp

= 0.75,wee
= 0.4,wroot

= 0.4,was
= 0.3,wfc

= 0.2,wτ
= 0.1 , 

wa = 0.1 , wcop = 0.06 , wint = 0.05 . We carried out five 
numerical experiments to demonstrate that the decou-
pled RL-based framework is able to generate a univer-
sal controller for the LLRE to robustly perform natural 
walking motion and assist human with various neuro-
muscular disorders without the need for tuning control 
parameters.

Numerical experiments and results
Walking without human‑exoskeleton interactions
In the first case, we first validate the robust walking 
motion learned from the controller of the LLRE with-
out human-exoskeleton interactions. We only train 
the motion imitation network (the LLRE control loop 
in Fig.  2) for the LLRE to imitate the reference walking 
motion without the human involved. A series of snap-
shots of the walking motion resulting from the learned 
control policies can be observed in Fig.  4a. The learned 
controller of the LLRE is able to perform balanced walk-
ing motion autonomously. Figure 5a represents the joint 
behavior statistics of the hip flexion/extension, knee flex-
ion/extension and ankle dorsiflexion/plantarflexion joint 
angles during 40 walking cycles. The corresponding joint 
torques are depicted in Fig. 5a. The joint angles and tor-
ques are relatively smooth. To further validate the learned 
controller’s ability to cope with uncertain dynamics of 

the LLRE, we test the learned controller in 200 out-of-
distribution simulated environments, where the dynam-
ics parameters are sampled from a larger range of values 
than those used during training (shown in Table 2). The 
third figure in Fig.  5a visualizes the performance of the 
learned controller in 200 simulated environments with 
randomized dynamics. It depicts the reward statistics 
(mean and standard deviation) with respect to time 
under 200 simulated environments with different dynam-
ics. The joint position tracking (Eq.  10) and foot CoP 
(Eq.  12) also achieve a high reward under more diverse 
dynamics of the LLRE. The end-effector reward indi-
cating the foot tracking performance maintains a high 
value, revealing the LLRE can perform a stable walking 
motion without falling in 200 simulated environments 
with unfamiliar dynamics. These results demonstrate that 
the learned controller is able to effortlessly generalize to 
environments that differ from those encountered during 
training and achieve good control performance under 
very diverse dynamics.

Walking with a passive/quadriplegic human
In this case, we investigate the performance of the 
learned controller under the human-exoskeleton inter-
actions from a passive human (e.g. a quadriplegic 
patient). Linear bushing forces are utilized to simulate 
the interaction between the human and LLRE. In this 
particular case, we do not consider the active muscle 
contraction of the human operator or actuation tor-
ques produced from human joints, assuming the opera-
tor could be a patient suffering from SCI or severe 
stroke, with very limited or no control of his or her 
own body. Thus, only the passive muscle forces in Eq. 1 
during movement are incorporated. The walking assis-
tance learned by the LLRE and the performance of the 
motion controller are shown in Fig. 5b.

Table 2  Dynamics randomization details of LLRE during training and testing

Dynamic parameters Training range Testing range

Friction coefficient [0.9,1.6]*default value [0.7,2.0]*default value

Mass [0.8,1.2]*default value [0.7,1.5]*default value

Motor command tracking accuracy [0.8,1.2]*default value [0.7,1.3]*default value

Observation latency [0,0.04]s [0,0.06]s

Control delay [0,0.04]s [0,0.06]s

Inertial [0.5,1.5]*default value [0.4,1.6]*default value

Center of mass [0.9,1.2]*default value [0.8,1.3]*default value
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Figure 5b displays the statistical results of the hip, knee, 
ankle joint angles and torques generated by the learned 
controller during 40 walking cycles. We can clearly 
observe that the torques calculated from the PD control 
are still smooth under human-exoskeleton interactions.

Reward statistics of the controlled LLRE in 200 sim-
ulated environments are shown in the third figure of 
Fig. 5b. The high joint tracking reward and end-effec-
tor tracking reward indicate that the learned control-
ler has strong stability and robustness to the varying 
human interaction forces from a passive human. This 
case demonstrates the capability of the LLRE to carry a 
passive human to perform the walking assistance with 
robustness.

Walking with a healthy human
To test the controller’s robustness under active muscle-
actuated human interaction forces, we design a numeri-
cal experiment where the human is fully muscle-actuated 
and has no disability. For simplicity, we only activate the 
162 lower leg musculotendon units while ignoring the 
active contraction of the upper body muscles. A series 
of snapshots of the walking assistance resulting from the 
learned control policy can be observed in Fig. 4b. Statisti-
cal results of joint and torque trajectories with human-
exoskeleton interaction from an active human are shown 
in Fig. 5c. Reward statistics of the controlled LLRE during 
40 walking cycles are shown in the third figure in Fig. 5c. 

Fig. 4  Snapshots of the walking control of the LLRE. The learned controller trained from the decoupled RL-based control framework enables the 
LLRE to perform walking assistance under varying human-exoskeleton interactions from human subjects with various neuromuscular disorders. 
a Autonomous walking control without human involved. b robust walking control with a fully healthy, muscle-actuated human. c robust walking 
assistance with a human with muscle weakness. d robust walking assistance with a human with left hemiparesis. The color of the muscle indicates 
its activation, with purple being the highest and blue being the lowest
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Fig. 5  Statistical analysis results during 40 walking cycles without human or with human subjects under different neuromuscular conditions (curve: 
mean; shade: STD). From left to right are exoskeleton joint angles, joint torques, and rewards, including the joint position tracking and end-effector 
reward in Eq. 10 and the CoP reward in Eq. 12. a without a human; b with a passive human; c with a healthy human; d with a human with muscle 
weakness; e with a human under the left hemiparesis condition
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The statistical results of the muscle activations of major 
lower-limb muscles on the right side body are illustrated 
in Fig.  6. Muscle activations predicted from the muscle 
coordination network show smooth patterns. The ham-
string and gastrocnemius muscles are the main muscles 
responsible for knee flexion and ankle dorsiflexion and 
plantarflexion. The activation pattern of the gastrocne-
mius is also consistent with the result using electromyo-
gram measurements [42], in which the gastrocnemius 
developed a high activation during the stance phase.

Walking with a human with muscle weakness
Muscle weakness has been considered to be a minor 
modifiable risk factor for health outcomes, and it plays a 
significant role in the etiology of disability [43]. It could 
be caused by age-related loss of muscle mass such as 
dynapenia or loss of muscle strength due to neuromus-
cular disorders. In this case, muscle weakness is incor-
porated into our human model by reducing all muscles’ 
force generation capability by half. A series of snapshots 
of the walking assistance resulting from the learned con-
trol policy can be observed in Fig.  4c. Figure  5d shows 
the Joint behavior statistics with muscle weakness dur-
ing multiple cycles. Statistical results of the muscle acti-
vations of major lower-limb muscles on the right side 
of the body are shown in Fig. 7. Muscle activations pre-
dicted for this case have bigger variances than those in 
the fully healthy human case. This case successfully vali-
dates that the learned controller can generate robust 

walking motion assisting a patient with muscle weakness 
condition.

Walking with a hemiplegic patient
Hemiparesis due to stroke impairs a patient’s ability to 
walk. The disabilities caused by the hemiparesis, together 
with the ensuing safety concern, prevent many patients 
from practicing walking by themselves and may contrib-
ute to a further decline in their walking ability or physical 
condition. It has been reported that following a stroke, 
patients often suffer from impaired balance control 
[44]. In this case, we will demonstrate that the learned 
controller is capable of providing the assistance to help 
a hemiplegic patient (on the left side) perform robust 
walking assistance. A series of snapshots of the walking 
assistance resulting from the learned control policy can 
be observed in Fig.  4d. Statistical results of joint angles 
and torques with the hemiplegic patient are shown in 
Fig.  5e. Statistical results of the muscle activations of 
major lower-limb muscles on the right side are illus-
trated in Fig. 8. The muscle activation results show even 
greater variances than those in the previous two human 
cases. Simulation videos of the LLRE assisting users with 
different disabilities such as passive muscles (quadriple-
gic), muscle weakness, and  hemiplegic  conditions are 
included in Additional file 1.

Robustness and gait symmetry
We aim to control the exoskeleton to walk similar to 
a provided normative trajectory (i.e. track a reference 
joint motion) with strong robustness and sound gait 

Fig. 6  Major muscle activations on the right leg when performing 
the skill with a fully healthy human

Fig. 7  Major muscle activations on the right leg when performing 
the skill with a patient with muscle weakness



Page 15 of 19Luo et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:34 	

symmetry. To quantify the controller’s performance on 
tracking and walking stability, we examine several differ-
ent aspects of the results, including tracking accuracies 
of joint trajectories and foot CoP. In the third column of 
Fig. 5a–e, we present the reward statistics of the control-
ler including the joint motion tracking reward and CoP 
balance reward under 200 simulated environments with 
different dynamics. The high joint tracking reward and 
CoP balance reward verify the effectiveness and robust-
ness of the resultant walking controller in assisting users 
with different disabilities.

Moreover, we present the root mean square error 
(RMSE) of joint tracking accuracy and CoP-based sta-
bility analysis to further demonstrate the strong perfor-
mance of the controller as shown in Table 3 and Fig. 9. 
From Table 3, the relatively low RMSE of the hip, knee, 
and ankle angle tracking in all cases demonstrates good 
joint tracking accuracy of the controller. Figure 9 shows 

the CoP-based stability analysis. It shows the CoP loca-
tions under different human conditions during 100 walk-
ing gait cycles. We can clearly see that all CoP positions 
stay inside in the stable region during the walking motion. 
Note in Fig. 5, we observe that the predicted joint torques 
are mostly well below 100 Nm, smaller than the continu-
ous actuation torque (132  Nm) operating at around 9.3 
A (continuous current). This shows we can achieve the 
desired robustness with relatively low current consump-
tion. However, if we increase the weight for the imitation 
reward or decrease the weight for the torque reward, it 
will likely result in a controller with better tracking accu-
racy but higher current consumption.

To quantify human gait symmetry when walking with 
the exoskeleton, we use the ratio index R = XR/XL [45] to 
qualify the gait symmetry between the right and left legs. 
XR and XL denote the mean joint angle of the right leg 
and the left leg, respectively. If the value of the ratio index 
is close to 1, the human shows a good symmetry gait pat-
tern. Table 4 shows the gait symmetry analysis of the hip, 
knee, ankle joints for the four simulation cases involving 
human subjects with different neuromuscular conditions 

Fig. 8  Major muscle activations on the right leg when performing 
the skill with a hemiplegic patient

Table 3  Root mean square error (RMSE) for joint tracking 
accuracy

Case Hip (deg) Knee (deg) Ankle Dorsi/
plantar 
(deg)

Ankle 
Inver/ever 
(deg)

Passive 2.048 3.437 4.297 2.406

Healthy 3.076 5.294 4.583 2.807

Muscle weakness 4.870 5.157 4.437 3.258

Left hemiparesis 4.492 4.309 5.082 4.462

Fig. 9  CoP-based stability analysis. It shows the CoP locations under 
different human conditions during 100 walking gait cycles. a Fully 
passive; b healthy; c muscle weakness; and d hemiparesis. We can 
clearly see that all CoP positions stay inside in the stable region 
during the walking motion

Table 4  Gait symmetry analysis

Case Hip Knee Ankle dorsi/
plantar

Ankle 
inver/
ever

Passive 0.86 1.08 0.95 0.78

Healthy 0.92 1.12 1.04 0.86

Muscle weakness 0.82 1.06 0.94 0.56

Left hemiparesis 1.49 1.03 1.08 1.46
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(fully passive, healthy, or quadriplegic, muscle weakness, 
and hemiparesis). As it can be observed from the table, 
the case for the human with left hemiparesis condition 
has the highest asymmetry index for most joints except 
the knee, whereas the healthy subject exhibits better 
symmetry for most joints except the knee. For the left 
hemiparesis case, the hip, knee, and ankle angles of the 
right leg are all greater than those of the left (paraple-
gic) leg. The walking assistance from the LLRE certainly 
improves the gait symmetry of the hemiplegia human 
compared to that without exoskeleton, but the asymme-
try is still evident due to vastly different neuromuscular 
conditions on the  two sides. Nonetheless, if the neuro-
muscular condition improves with more rehabilitation 
training, we expect the gait symmetry to continuously 
improve as well.

Since a good indication of balance and robustness 
for walking is to avoid falling, we conducted an abla-
tion study to show the success rate (SR) of control poli-
cies trained differently. Figure  10 summarizes the SR of 
trained policies with/without muscle strength randomi-
zation, for which each case is evaluated over 100 walk-
ing trials (40 cycles each). If we train the neural network 
under the passive human case, the trained control policy 
has poor robustness to handle the other three conditions, 
with less than 40% SR for the muscle weakness case and 
zero SR for both the left hemiplegia and healthy cases. 
In contrast, if the policy is trained with muscle strength 
randomization, it has high SR for all cases. The success 
rates under the human with left hemiplegia condition 
are significantly lower when trained without the muscle 
strength randomization, as shown in Fig.  10. Note that 
the SR is evaluated with test cases that are randomized 

from larger ranges for physical parameters of the LLRE 
(Table 2) and therefore some failures are expected.

To study the range of human-exoskeleton interaction 
forces, we provide in Fig. 11 the strap forces under differ-
ent cases during 40 walking cycles. The human-exoskele-
ton strap forces on hip, femur and tibia locations from a 
passive human are greater than those from muscle weak-
ness, left hemiparesis and healthy human. The hip forces 
for the passive and left hemiparesis human are signifi-
cantly higher than the other two cases, which is under-
standable since either one or two legs can not provide 
any support to the body weight. Among the four cases, 
the strap forces are the smallest for the healthy case and 
the values are all below 100 N. Since the interaction net-
work aims to minimize the interaction forces (Eq. 19), it 
encourages the healthy human to follow the motion of 
the exoskeleton to the best of capability and thus pro-
duces a low level of interaction forces.

Discussion
Designing a robust walking controller for a LLRE is 
particularly important for rehabilitation and repre-
sents a crucial challenge due to the safety concerns for 
the patients. The risk of testing on real humans is even 
greater, and the cost of testing is often high. The decou-
pled RL-based neural network architecture proposed 
in this work incorporates the muscle-actuated human 
control into the training process and considers realistic 
effects of a LLRE on the human’s musculoskeletal system 
in the simulation environment, resulting in an extend-
able framework to investigate the control of LLREs with 
the varying human-exoskeleton interactions. From our 
numerical experiments, the learned controller of the 
LLRE is capable of providing robust walking assistance to 
humans with a variety of neuromuscular conditions, such 

Fig. 10  Ablation study. It shows the comparison results of success 
rates for different human conditions with/without muscle strength 
randomization training. The success rate is evaluated over 100 
trials for each condition. The success rates in all human conditions 
are significantly higher than that trained without muscle strength 
randomization

Fig. 11  Human-exoskeleton interaction (strap) forces under different 
cases during 40 walking cycles
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as healthy, passive, or quadriplegic, muscle weakness, 
and hemiplegic conditions.

The decoupled control structure integrates three deep 
neural networks, including the motion imitation net-
work for the LLRE, the human-exoskeleton interaction 
network, and the muscle coordination network for the 
human muscle control. These three networks are jointly 
trained in the simulation while they interact with each 
other to achieve maximum rewards during reinforcement 
learning. There are several distinct advantages with this 
decoupled learning structure. First, three separate net-
works allow independent control of the LLRE, human 
joint, and muscles. As demonstrated by the cases with 
and without a human, the same framework can be flexibly 
utilized for training in all cases by enabling or disabling 
individual networks. This decoupled network structure 
also has a unique advantage for sim-to-real transfer, for 
which only the trained controller of the LLRE need to be 
deployed on the physical rehabilitation exoskeleton. Sec-
ond, the control structure can easily incorporate a human 
or patient with different disability conditions, as demon-
strated by all the human cases above.

In this work, only muscle weakness and paralysis 
resulting from a variety of neuromuscular disorders have 
been considered to test the robustness of the LLRE con-
troller. Nonetheless, we believe we are able to extend the 
current work for further investigations on patients with 
other pathologic conditions such as muscle contracture, 
muscle spasticity, cerebral palsy, and femoral anteversion. 
Such an extension will require further adjustment or ran-
domization of muscle parameters such as optimal fiber 
lengths for contracture [46] or muscle contraction inten-
sity for spasticity [47].

The reference walking motion used in this study was 
manually created based on a human walking motion, but 
with  the knee angle bent more than the natural human 
motion. By doing so, we are able to make the walking 
motion more stable (e.g. with a disabled human or with-
out a human subject), similar to motions generated for 
some bipedal robots to increase stability. In this case, 
the reference angle of the knee joint is close to negative 
40o–60o (flexion, with 0° at straight knee). The controller 
is able to handle all challenging conditions and walk at 
a speed close to 1 m/s for all cases. For comparison, the 
much heavier, self-balancing Atalante exoskeleton can 
only walk with a subject at a very low speed of  around 
0.4 m/s [48]. In our current setting, different speeds can 
be obtained by crafting another reference motion or 
simply scaling the current motion as the new reference 
without modifying the controller structure or designing 
the speed-specific reward functions. Note the reference 
motion does not need to be perfect or even physically 
feasible, the RL algorithm with a dynamic simulation 

environment can auto-correct or modify the motion 
to be physically feasible while tracking the motion and 
maximizing all reward functions. The tracking accuracy 
is able to vary depending on the relative weight of the 
tracking reward to other rewards.

By incorporating motion imitation into the learning 
process, the proposed control framework has the capabil-
ity to potentially learn a diverse array of human behav-
iors without the need to design skill-specific reward 
functions. Common rehabilitation motions such as sit-
to-stand, walking on inclined ground can be learned by 
feeding proper target motions. For example, in [17], the 
authors presented a motion imitation, RL based con-
trol of a LLRE for squatting assistance. In this work, we 
expand its learning framework to include both active 
muscle contraction and human-exoskeleton interaction 
force optimization. The current framework is much more 
general and can handle a variety of motions and humans 
with different health conditions. Due to the nature of 
imitation learning, we foresee minimal changes to the 
current learning framework for different activities, except 
for crafting different target motions for imitation. The 
learning process will automatically create specific con-
trollers that can produce physically feasible and stable 
target motions.

In our current hardware implementation, the control 
frequency of the lower limb rehabilitation exoskeleton 
can be set to 100 Hz or lower. We tested the trained con-
trol policy in the simulation with different control fre-
quencies between 30 to 100 Hz and were able to obtain 
robust controllers for all. In this work, we present the 
control frequency at 30  Hz in the simulation to show 
the control can be applied at a  relatively low frequency, 
which indicates that the controller is very robust and 
relies less on the update or control frequency of the hard-
ware (i.e. capable of being applied to motors with low 
bandwidth or slow step response). From our tests, the 
use of different control frequencies (30–100 Hz) does not 
require a different history length, although it is possible 
to use a different history length for a different frequency 
(e.g. using the same time window length will cover more 
history samples at a higher frequency). We found that 
three time steps of history information (joint positions 
and velocities of the exoskeleton) are enough to train a 
desirable controller. A larger number of steps might 
result in similar or slightly better control performance 
but will certainly result in a larger neural network model 
and unnecessary computational load, which is a burden 
when deployed to the hardware with limited computa-
tional power. Therefore, we set the number of time steps 
to 3 mainly for efficiency. Another benefit of using the 
same number of history steps is that the trained networks 
at different control frequencies have the same input and 
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output dimensions and can be used interchangeably for 
testing in simulations or deployed to the hardware with 
minimal to no changes.

Conclusion
This paper proposes a decoupled RL-based control 
framework for robust walking control of a LLRE system. 
The framework is flexible enough to train the walking 
controller with or without human-in-the-loop. It sepa-
rates the control of the exoskeleton and human voluntary 
muscle control while integrating the human-exoskeleton 
interaction in the physics-based simulation environment 
and trains multiple control networks simultaneously. 
More importantly, to avoid tuning control parameters to 
various magnitudes of human-exoskeleton interaction 
forces or create different LLRE controllers for patients 
with different conditions of disability, muscle strength 
randomization is critical in the training process to han-
dle these conditions. Experimental results show that 
this proposed framework is able to generate a universal, 
robust walking controller for the LLRE to handle vari-
ous levels of human-exoskeleton interactions without 
the need of tuning parameters. The walking controller is 
shown to be able to provide assistance to healthy humans 
or patients with different disability conditions including 
flaccid  quadriplegia, muscle weakness, and hemiplegic 
conditions. The decoupled network structure also allows 
us to isolate the LLRE control policy network for testing 
and facilitate straightforward sim-2-real transfer since it 
uses only proprioception information of the LLRE as the 
input. In the future, we plan to deploy the trained walk-
ing control policy to the physical LLRE with sim-to-real 
transfer and validate its performance on the real physical 
system with patients involved.
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