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Abstract 

Electroencephalogram (EEG) signals have been utilized in a variety of medical as well as engineering applications. 
However, one of the challenges associated with recording EEG data is the difficulty of recording large amounts of 
data. Consequently, data augmentation is a potential solution to overcome this challenge in which the objective is to 
increase the amount of data. Inspired by the success of Generative Adversarial Networks (GANs) in image processing 
applications, generating artificial EEG data from the limited recorded data using GANs has seen recent success. This 
article provides an overview of various techniques and approaches of GANs for augmenting EEG signals. We focus 
on the utility of GANs in different applications including Brain-Computer Interface (BCI) paradigms such as motor 
imagery and P300-based systems, in addition to emotion recognition, epileptic seizures detection and prediction, 
and various other applications. We address in this article how GANs have been used in each study, the impact of 
using GANs on the model performance, the limitations of each algorithm, and future possibilities for developing new 
algorithms. We emphasize the utility of GANs in augmenting the limited EEG data typically available in the studied 
applications.
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Introduction
Electroencephalography (EEG) is widely accepted as one 
of the most popular methods of non-invasive techniques 
for recording brain activity that can be used in cognitive 
studies, different clinical applications, and brain-com-
puter interfaces (BCIs) [1]. In fact, EEG recording plays a 
crucial role in several domains where it directly measures 
the aggregated neural activity in addition to being an easy 
portable method for different clinical uses. Furthermore, 

advances in machine learning and other recent technolo-
gies such as wireless recording have led to more interest 
in EEG-based BCI approaches, which could enhance the 
quality of life of people with disabilities. EEG recording is 
considered inexpensive compared to other non-invasive 
brain signal recordings technologies such as functional 
magnetic resonance imaging (fMRI), magnetoencepha-
lography (MEG), and near-infrared Spectroscopy (NIRS) 
[1,2].

Unfortunately, there are different circumstances where 
EEG data could not be fully utilized due to data-related 
problems such as corruption, scarcity, noise, and muscle 
artifacts [2]. In addition, EEG analysis faces challenges 
and suffers from limitations due to its low signal-to-noise 
ratio (SNR) [3]. EEG is also considered a non-stationary 
signal as it varies from one subject to another, and even 
from one recording session to another for the same sub-
ject [4,5]. On the other hand, machine learning models, 
such as deep neural networks, which are being increas-
ingly used in analyzing EEG signals require large training 

*Correspondence:
Seif Eldawlatly
seldawlatly@eng.asu.edu.eg
1 Computer and Systems Engineering Department, Faculty 
of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, 
Egypt
2 Biomedical Engineering Department, Technical Research Center, Cairo, 
Egypt
3 Computer Science and Engineering Department, The American 
University in Cairo, Cairo, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-023-01169-w&domain=pdf


Page 2 of 24Habashi et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:40 

sets to achieve the accepted classification accuracy. Thus, 
a large amount of data needs to be available to effectively 
train a robust system that can recognize different brain 
patterns. However, it is time-consuming and uncomfort-
able to conduct long calibration sessions especially when 
the involved subjects are patients, children, or the elderly. 
Due to these limitations, machine learning classifiers 
trained on EEG datasets can hardly keep their perfor-
mance accepted, especially with limited amounts of data 
[6].

In such a sense, there is a great need to augment EEG 
signals with data that bear a resemblance to recorded 
data to increase the size of the data. Although Genera-
tive Adversarial Networks (GANs) were originally pro-
posed as deep learning models for image generation, 
these models could represent the potential solution for 
EEG data augmentation (DA). A GAN mainly comprises 
two opponent networks: the generator network and the 
discriminator one [7]. Figure  1 illustrates a simplified 
schematic of a GAN. The generator is used to capture 
the distribution of the training data and tries to gener-
ate additional samples that are not recognized as fake 
(i.e., not part of the original data) by the discriminator. 
On the other hand, the discriminator acts as a binary 
classification model that decides whether the input data 
originates from real data or not. Ultimately, this com-
petition between the generator and discriminator net-
works leads to the generation of artificial data of high 
quality that resembles the original input data. Although 
GANs have been investigated in many image processing 
and computer vision applications [8], their utility in aug-
menting EEG data is not fully explored. In fact, there is a 
lack of review in comparing these GAN algorithms when 
applied to EEG signal analysis. Therefore, we aim here to 

provide a comprehensive overview of the state-of-the-art 
GAN algorithms in application to EEG signal analysis.

The organization of this article is as follows: We first 
present an overview of GANs and their most common 
types in Sects. "Selection criteria" and "GANs overview". 
In Sect.  "GANs for EEG tasks", we review the utiliza-
tion of GANs in each of the following main EEG analy-
sis applications: Motor imagery, P300, RSPV, emotion 
recognition, and epilepsy, in addition to various other 
paradigms. The analysis and discussion of the reviewed 
papers are provided in Sect. "Discussion". Finally, a con-
clusion is provided in Sect. "Conclusion".

Selection criteria
The main purpose of this article is to survey different 
GAN methods that have been used in different EEG 
experiments emphasizing how these algorithms aided 
in solving problems of various EEG-based tasks. The lit-
erature review has been conducted as shown in Fig.  2 
across two main well-known databases: Web of Science 
and Scopus, on December 8, 2021. The key terms that 
were included in the search are [(Generative Adversarial 
Networks) AND (Electroencephalography)] OR [(GANs) 
AND (EEG)], and other similar entries. The primary 
search yielded a total of 171 articles published between 
2015 and 2021. These articles were first scanned based 
on their titles and abstracts to ensure that the search 
strategy accurately detected the targeted articles. Hence, 
articles irrelevant to the topic area, non-English articles, 
duplicated articles, and conference proceeding papers 
(except the most cited ones), were excluded. As a result 
of this selection criteria, a total of 43 (articles, most cited 
conference proceeding) papers have been surveyed to 
complete the current study.

Fig. 1 GAN architecture
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After identifying the papers of interest, data were 
extracted separately for each paper to cover title, authors, 
year of publication, the main purpose of the paper, the 
datasets used, the type of GAN used, GANs outcomes, 
evaluation method used, and where available, GANs 
effect compared to other examined algorithms.

GANs overview
Basic concepts
Generative Adversarial Networks (GANs) consist of 
two opposing networks, the generator (G) and the dis-
criminator (D) complete each other to generate data as 
close as possible to the real data [7]. The G network 
always tries to capture the signal’s distribution and 
produces real-like data from a random noise vector 
input (z). Meanwhile, the D, a binary classifier, evalu-
ates the generator output and distinguishes fake sam-
ples (G(z)) from real ones. Both networks are trained 
in parallel where the competition between the two 
networks ultimately results in the generation of arti-
ficial high-quality data. While the training process of 
the G network aims to maximize the probability that D 
classifies generated samples as “real” ones, the oppo-
nent training of the D network seeks to maximize the 
probability of detecting “real” data from “fake” data. In 
other words, the two models try to minimize an adver-
sarial loss function by playing the following minimax 
game [7]

where E is the expected value, Pr describes real data dis-
tribution, z represents the random noise vector from 
the latent space of the simple noise distribution P, G(z) 
represents the data generated by G, and D(x) is the prob-
ability that x is a real data. The optimization process in 
(1) is equivalent to minimizing the Jensen-Shannon (JS) 
divergence [7].

Main variant architectures of GANs
Several studies have investigated the problems that 
appeared with the first versions of GANs such as mode 
collapse, where G is only able to generate one or a few 
subsets of different outcomes, or modes [9]. Also, one of 
the most common causes of training instability when the 
vanishing gradient occurs during the training process of 
G is that the discriminator would be no longer deceived 
by the fake samples’ output [10]. This happens as D of the 
original GAN usually tends to rapidly reach optimality 
and the  JS divergence (between the distribution of real 
data and the generated ones) does not converge leading 
to learning failure [11].

The conditional GANs
Mirza and Osindero introduced conditional GANs 
(cGANs) [12 13]. The main concept of cGAN is that both 
networks have inputs of conditioning data. The genera-
tor is fed with random noise vectors (z) appended with 
additional information (y) that is typically the condition 
labels, also the labels are combined into the discrimi-
nators. The optimization formulation of cGAN can be 
defined as:

where y is the label of the corresponding x. In addition, 
cGAN training follows the same procedure as GAN 
training and with the same measure of generated sam-
ples’ JS divergence. Therefore, cGAN still faces the same 
problems of mode collapse and unstable training.

The deep convolutional GANs (DCGANs)
Deep convolutional GAN (DCGAN) was one of the 
early modifications of GANs that utilized deep convo-
lutional neural networks (CNN) for both the generator 
and the discriminator for better training [14]. DCGAN 
implementation is based on the loss function in Eq. 1. In 
DCGAN, instead of the pooling layer, the discriminator 
uses a stride convolution layer, and the generator uses the 

(1)

minG maxDV (D,G) = Ex∈Pr [logD(x)]

+ Ez∈P[log(1− D(G(z)))]

(2)

minG maxDV (D,G) = Ex∈Pr logD x, y

+ Ez∈P[log(1− D(G z, y , y))]

Fig. 2 Paper selection criteria
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transpose convolution (fractional-stride convolution). In 
addition, the fully connected classification layer, which 
is a subsequent layer to the convolutional layer in the 
original CNN, is removed. Instead, batch normalization 
is used with each convolutional layer which supports the 
gradient flow [15].

The Wasserstein GAN (WGAN)
The Wasserstein GAN (WGAN) was introduced in 
[16] in addition to the improved version proposed by 
Arjovsky et  al. where they replaced the discrimina-
tor network with a critic (C) [17]. This critic measures 
the distance between the real and model distributions 
depending on the Earth Mover’s distance (EM (p, 
q)), or Wasserstein-1, which is a metric of the mini-
mum cost for moving distribution elements (earth 
mass) to transform a distribution q to distribution p 
(cost = mass × transport distance). The original GAN 
algorithm tries to minimize the JS divergence between 
the real data distribution Pr and fake data distribution 
Pg . For WGAN, EM will not eventually act as a binary 
classifier only and decide if a sample is fake or not, but 
also it will be able to determine how real or fake the 
produced sample is as a continuous regressive output. 
Consequently, the critic will converge to a linear func-
tion with the right training. In addition, the gradients 
will be acceptable, the process will avoid saturation, and 
could solve the problem of mode collapse. The Wasser-
stein GAN loss function is obtained by the Kantorovich-
Rubinstein duality [17 18]

where F is the set of 1-Lipschitz functions, Pr the real 
distribution, Pg the model distribution defined by 
x̃ = G(z), z ∈ p(z) , and z is the random noise. If C is opti-
mal, minimizing the value function with respect to G 
minimizes EM ( Pr,Pg ). Although WGAN helps to solve 
the problems of training instability, enforcing the Lip-
schitz continuity by clipping the weights of the discrimi-
nator to an interval [− c, c] is sometimes fruitless [19 20].

The Wasserstein GAN‑Gradient Penalty (WGAN‑GP)
Because of WGAN weight clipping, convergence failure 
and poor generation of samples are the most common 
problems of WGAN [9]. Thus, penalizing the gradient 
norm of the discriminator regarding its input was pro-
posed as a potential solution. This method is called 
Wasserstein GAN-Gradient Penalty (WGAN-GP). The 
experimental findings demonstrated that WGAN-GP 
achieves, with limited hyperparameter tuning, stable 
training of different GAN architectures. The objective 
function of WGAN-GP is:

(3)minG maxC∈FEx∈Pr [D(x)]− E
˜x∈Pg [D(˜x)]

where λ is the gradient penalty coefficient and ̂x is sam-
pling along straight lines between the real data distribu-
tion Pr and the generated data distribution Pg

GANs for EEG tasks
In this paper, the surveyed papers have been classified 
into 5 main groups: motor imagery, RSVP and P300, 
emotion recognition, epilepsy studies, and other EEG 
applications.

Motor imagery
Motor Imagery (MI) is the activation of motor-related 
brain regions because of imagining a specific body 
part’s movement [21]. The decoding of the MI EEG sig-
nals is considered one of the main pillars of BCI stud-
ies. Through the years, MI has proven its crucial role in 
providing means of communication and control for peo-
ple with movement impairments paraplegia and stroke 
patients without relying on muscle activity [22]. MI-based 
BCIs do not require any other external stimuli. Identifying 
intended movement in MI-based BCIs is based on rec-
ognizing the decrease and increase of oscillatory activity 
in certain bands, which is induced by imagined motion, 
termed event-related desynchronization, and synchro-
nization (ERD and ERS), respectively [23]. Whilst move-
ment imagination generates ERD in the mu EEG band 
(8–12  Hz) and beta EEG band (18–26  Hz), relaxation 
causes ERS [24]. The right/left-hand movement could be 
decoded from the patterns of ERS, and ERD evoked in the 
C3, C4, and Cz EEG electrodes as defined by the standard 
positions of the International 10–20 system. The gener-
ated ERD/ERS from motor imagery has the same topog-
raphy and spectral performance as the real movements’ 
patterns [24]. However, MI could be considered a skill that 
requires learning and training. Unfortunately, long train-
ing sessions (20–30  min) are required to calibrate MI-
based BCI systems to achieve an accepted performance 
[25]. Thus, GANs could play a crucial role by augmenting 
the limited available data for training to compensate for 
the need for long calibration sessions. We review here the 
most recent research demonstrating the use of GANs in 
data augmentation (DA) to improve MI-based BCIs per-
formance. Table  1 summarizes all the reviewed articles 
with the type of GAN used in MI tasks.

(4)

minG maxDV (D,G) = Ex∈Pr [D(x)]− E
˜x∈Pg

[

D
(

˜x
)]

− �E
̂xǫP

̂x
[(||∇

̂xD
(

̂x
)

||2 − 1)2]

(5)
̂x = ε + (1− ε)˜x, ε ∈ uniform [0, 1], x ∈ Pr ,˜x ∈ Pg
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Table 1 Reviewed papers that used GANs in motor imagery tasks

Study Purpose Dataset GAN Type Evaluation metrics Results
(with GAN)

Abdelfattah et al., 
2018 [26]

Enhance the model 
classification perfor-
mance

PhysioNet RGAN Reconstruction
accuracy

Reconstruction:
• + 19.9% (w.r.t VAE)
• + 34.8% (w.r.t AE)

Classification 
accuracy

Classification (25% dataset):
• DNN + 36.1%
• SVM + 14.1%
• RFT + 13.1%
Classification (50% dataset):
• DNN + 39.1%
• SVM + 12.8%
• RFT + 12.6%

Hartmann et al., 
2018 [27]

Achieve stabilization 
of the training

Private dataset WGANs • Classification 
accuracy
• IS
• FID
• ED
• SWD

• 91.25%
• 1.363
• 9.523
• − 0.056
• 0.078

Corley and Huang 
2018 [28]

Produce high spatial 
resolution EEG data 
from low-resolution 
samples

Berlin BCI Competi-
tion III, Dataset V

WGANs • Classification 
accuracy

Scale 2: 3.87 < HR
Scale 4: 5.75 < HR

• MSE
• MAE

Scale 2:
• − 37,497,940
• − 3885.34

Scale 4:
• − 72,991,320
• − 6385.61

Fahimi, Zhang et al., 
2019 [29]

Enhance the model 
classification perfor-
mance

A public dataset 
collected by [40]

DCGANs Classification 
accuracy

NA

Fahimi, Dosen et al., 
2021 [30]

Enhance the model 
classification perfor-
mance

Private dataset + BCI 
competition III, 
Dataset IVa

DCGANs Classification 
accuracy

• Diverted attention: + 7.32% 
(p < 0.01)
• Focused attention: + 5.45% 
(p < 0.01)
• IVa: + 3.57% (p < 0.02)

Li and Yu 2020 [32] Enhance the model 
classification perfor-
mance

BCI competition IV, 
Dataset 2b

cWGAN-GP Classification 
accuracy

(w.r.t raw data)
• Shallow + 1.65%
• Deep4 + 2.89%

Debie et al., 2020 
[33]

Protect EEG brain 
signals against illegal 
disclosure

BCI competition IV, 
Dataset 2a

GAN with differential 
privacy

Classification 
accuracy

NP-GAN (max:150 trial)
• SVM + 5.74%
• RF + 3.43%
• LDA + 6.39%
• LR + 9.54%
PP-GAN (max: 50 trial)
• SVM − 1.05%
• RF + 0.36%
• LDA − 0.19%
• LR + 0.18%

Zhang et al., 2020 
[15]

Avoid overfitting 
and enhance the 
model classification 
performance

BCI competition IV 
(datasets 1
 + 2b)

CNN-DCGAN Classification 
accuracy

• D1: + 8.7% (1:3)
• D2b: + 12.6% (1:3)

kappa value • D1: + 0.1622%
• D2b: + 0.1981%

Luo et al., 2020 [35] Reconstruct EEG 
signal with high 
sampling rates and 
sensitivity

Private dataset + 
Lucid et al., 2014 + 
BCI competition IV, 
dataset 2a

WGAN
 + 
(TSF-MSE) loss 
function

Classification 
accuracy

• MI: + 2.03%
• AO: + 4.1%
• GAL: + 4.11%

Reconstruction
accuracy

• MI: + 3.2%
• AO: + 4.5%
• GAL: + 5.38%

Yang et al., 2021 [38] Address the chal-
lenge of insufficient 
MI data

Private dataset
 + 
BCI competition IV, 
Dataset 2a

cVAE- GAN Classification 
accuracy

86.14%
D1 mean ~  + 4%
D2 mean ~  + 1.5%

• IS
• FID
• SWD

w.r.t Real
• − 0.121
•  + 11.364
•  + 0.067



Page 6 of 24Habashi et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:40 

One of the earliest studies is the study by Abdelfat-
tah et  al. which introduced a recurrent GAN (RGAN) 
model for generating synthesized EEG data to increase 
the dataset size [26]. Recurrent neural networks (RNNs) 
were employed in the generator component, while the 
discriminator consisted of three hidden fully connected 
layers trained in a supervised manner to minimize the 
mean square error (MSE). The performance of the pro-
posed RGAN was evaluated for EEG motor movement/
imagery events (eye close (EC)—eye open (EO)—open 
left fist (OLF)—and open right fist (ORF)) by using three 
different classification models: deep feed-forward neural 
network (DNN), support vector machine (SVM) and ran-
dom forest tree (RFT). Moreover, the performance of the 
RGAN-generated data was evaluated against two other 
DA methods (autoencoders (AE) and variational autoen-
coders (VAE)). The results demonstrated that the RGAN 
model improved the accuracy by an average of 34.8% and 
19.9% relative to AE and VA, respectively. Furthermore, 
employing RGAN for augmentation using only 25% of 
the available dataset showed that the DNN performance 
was remarkably improved by 36% compared to its per-
formance without RGAN-generated data. In addition, 
DNN trained using RGAN-generated data from 25% of 
the training dataset was 13.8% and 7.1% higher than SVM 
and RFT, respectively. Finally, using 50% of the dataset 
and employing RGAN for augmentation, the perfor-
mance of the DNN significantly outperformed the SVM 
and RFT by an average of 21% and 14%, respectively.

The use of Wasserstein GANs was employed in MI 
data analysis by Hartmann et  al. for generating realistic 
samples of EEG data [27]. They adopted a modification 
of WGAN to achieve more training stability as GANs 
training usually suffered from vanishing gradients dur-
ing optimizing the JS Divergence [7]. Thus, the modified 
WGAN solved this issue by decreasing the Wasserstein 
distance and depending on the gradual smoothing of 
the gradient constraint. In addition, the one-sided gra-
dient penalty term was adopted for the discriminator or 

critic instead of the two-sided penalty one. The authors 
used multiple metrics to evaluate the proposed model 
such as Inception Score (IS)—Fréchet inception distance 
(FID)—Sliced Wasserstein distance (SWD)—Euclidean 
Distance (ED). However, IS did not provide meaning-
ful information about the quality of generated signals. 
Thus, they used (FID, SWD, and ED) together as they 
held sufficient information on the model properties. The 
best IS achieved was 1.363 using a structure of stride 
convolution for downsampling and linear interpolation. 
Also, nearest neighbor upsampling with average pool-
ing attained the best FID and ED. Eventually, the stride 
convolution downsampling with cubic interpolation 
achieved the lowest SWD of 0.078.

Corley et al. employed WGAN to generate EEG super-
resolution (SR) signals for MI [28]. They used WGANs 
for generating channel-based upsampled data to inter-
polate various missing channels. The authors noted that 
WGAN was more stable during training compared to 
the original GAN algorithm and the EEG SR task was 
extremely sensitive to the loss function components. 
Moreover, there was a remarkable improvement in simul-
taneously reconstructing missing EEG signals at high res-
olution by using the proposed WGAN method. Finally, 
the classification of SR data had an accuracy with mini-
mal loss compared to baseline signals, with a reduction of 
4% and 9% for scale factors of 2 and 4, respectively. Fur-
thermore, the WGAN architecture achieved an obvious 
improvement in terms of Mean Square Error (MSE) and 
Mean Absolute Error (MAE).

In [29], Fahimi et  al. proposed another framework 
to generate artificial EEG by using deep convolutional 
GANs (DCGAN). DCGANs were trained on raw MI 
data and then the trained generator produced synthetic 
EEG data from the random noise input. Investigating 
the similarity between the generated and the real EEG 
data in time and frequency domains showed that the 
generated EEG signals clearly had the temporal, spec-
tral, and spatial characteristics of real EEG. In another 

Table 1 (continued)

Study Purpose Dataset GAN Type Evaluation metrics Results
(with GAN)

Xie et al., 2021 [21] Address the chal-
lenge of insufficient 
MI data

BCI competition IV, 
datasets 2a + 2b

LGANs (augmenta-
tion)
 + 
MoCNN (classifica-
tion)
 + 
attention network

Classification 
accuracy

D1 (w.r.t raw data)
• LGAN + 8.23%
• Att-LAGN + 9.34%
D2 (w.r.t raw data)
• Att-LAGN: + 5.64% − 6.6%

Xu et al., 2021 [39] Enhance the model 
classification perfor-
mance

Private dataset CycleGAN Classification 
accuracy

 + 18.3%
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follow-up study by members of the same group [30], 
the use of DCGANs was explored to achieve a classi-
fier performance improvement. The proposed DCGANs 
framework is powered by a subject-specific condition-
ing vector and modified objective and loss functions. The 
comparison between the proposed DCGANs framework 
and two other DA methods; VAE and Segmentation and 
Recombination (S&R); was performed using MI data of 
focused attention and diverted attention conditions. The 
quality, diversity, and reality of the generated samples 
were evaluated using three tests (GAN test -KL diver-
gence- 2D visualization using t-SNE spectrogram [31] 
and temporal distribution). The end-to-end DCNN, VAE, 
and conditional DCGANs were implemented in Python 
3.6 with Keras 2.1.2 and Tensorflow 1.2.1. The results 
showed that using the proposed DCGANs-based frame-
work outperformed S&R/VAE, especially in the diverted 
condition. The average accuracy of the DCGANs was the 
highest with 85.54% for focused conditions and 80.36% 
for diverted ones. Meanwhile, DCGANs attained a total 
improvement of 5.45% for focused attention and 7.32% 
for diverted attention as validated by leaving one sub-
ject-out (LOSO) classification in comparison to the deep 
convolutional neural network (DCNN). In addition, the 
testing of the proposed framework on dataset IVa from 
BCI competition III increased the accuracy by 3.57%. It 
is worth mentioning that the DCGAN algorithm did not 
suffer from training instability as both networks gradu-
ally converged, especially under the diverted condition.

In [32], Li et  al. proposed a Conditional WGAN-GP 
(cWGAN-GP) to synthesize EEG data. They utilized two 
known available CNN architectures for a motor imagery 
task (the Deep4 and the Shallow from Braindecode2). 
The comparison between the classification task model 
trained with and without an augmented dataset was held. 
As a result, the classification accuracy showed an obvi-
ous improvement for the Deep4 model and the Shallow 
model. Using cWGAN, applied to Shallow improved 
the classification accuracy from 72.97% by 1.65%, while 
Deep4 improvement was 2.89%. Furthermore, it was 
clear that whenever the size of generated EEG data is less 
than the original dataset size, the classification improve-
ment accuracy was more obvious.

With a new vision for employing GAN algorithms, 
Debie et al. proposed a privacy-preserving GAN method 
to generate and effectively classify EEG data [33]. The 
proposed approach was evaluated using benchmark EEG 
data of the MI set [34]. The differential privacy concept 
was introduced by Cynthia Dwork to achieve personal 
privacy by eliminating sensitive data from a database. 
They preserve the data privacy by generating real-like 
EEG data instead of sensitive recorded data from sub-
jects that could reveal the identity of their participants 

during the model training. Two GANs were trained with 
the adoption of the differentially private stochastic gra-
dient descent (DP-SGD) approach during synthesizing 
EEG data; a non-private GAN (NP-GAN) and a private 
GAN (PP-GAN) trained under differential privacy. The 
proposed approach aimed to reduce the individual’s 
effect during training on the gradient computations. 
Consequently, a specific subject’s statistical distribu-
tion would not be learned by the NN model. SVM, RF, 
linear discriminant analysis (LDA), and logistic regres-
sion (LR) classifiers were trained to recognize left from 
right-hand movement. Consequently, the results for all 
subjects had a similar pattern where the generator loss 
gradually declines, whereas the discriminator loss rises to 
equilibrium (both losses are very close to each other). In 
addition to that, setting the noise multiplier, a controller 
for the added noise, to 1.4 or higher produced a remark-
able deterioration in classification performance for three 
classifiers (SVM, RF, and LDA). Interestingly, augment-
ing training data with up to 150 artificially generated data 
increased the classification accuracy for all three classi-
fiers, but 200 artificial samples had the worst results. It 
is therefore clear to say that the ratio of generated to raw 
data could be tuned to increase the classification perfor-
mance of different classifiers.

In [35], Luo et  al. adopted a high sampling sensitivity 
EEG reconstruction algorithm from low sampling sig-
nals based on WGAN and a temporal-spatial-frequency 
(TSF-MSE) loss function. In this method, the discrep-
ancy between different sampling rates, sensitivities, and 
a TSF loss function determines the difference between 
EEG signals in the feature domain. The WGAN archi-
tecture comprised three main parts: the deep genera-
tor, the TSF-MSE loss calculator, and the discriminator. 
TSF-MSE-based loss function generates signals by com-
puting the MSE from the following features: temporal 
MSE between time steps (as a typical MSE), spatial MSE 
between channels, and frequency MSE between signal 
batches. In other words, the proposed algorithm depends 
on extracting not only time-sampling features but also 
spatial and frequency features using both common spa-
tial patterns (CSP) and power spectral density (PSD) with 
WGAN. During this study, three different EEG datasets 
were used; Action Observation (AO) dataset [36], Grasp 
and Lift (GAL) dataset [37], and the MI dataset from BCI 
competition IV dataset 2a. Both GAN/WGAN frame-
works were implemented in Python 2.7 with the Tensor-
flow 1.8 library. The reconstruction results using WGAN 
of the same sensitivity showed its outperformance, how-
ever, the GAN algorithm was better than the WGAN for 
reconstructions of different sensitivity. In addition, the 
quantitative analysis asserted that the WGAN framework 
had a higher classification accuracy with more reliable 
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statistical properties due to more discriminant patterns. 
Besides, the TSF-MSE-based GAN/WGAN models pro-
duced fewer losses than the temporal MSE, frequency 
MSE, and spatial MSE-based GAN/WGAN models. 
Overall, WGAN achieved the best classification accu-
racy with 67.67%, 73.89%, and 64.01% for the AO dataset, 
GAL dataset, and MI dataset, respectively, with a total 
enhancement of 4.1%, 4.11%, 2.03% for the same datasets, 
respectively.

Also in 2020, Zhang et  al. conducted research on DA 
methods used for EEG signals based on the FID and 
classification of MI data [15]. In this study, the DCGAN 
framework was applied to the obtained spectrograms of 
MI data that are subsequently classified by a CNN model 
to verify the classification performance after augmenta-
tion. In addition, DCGAN was compared to other DA 
methods including Geometric Transformation (GT), 
Noise Addition (NA), AE, and VAE. FID was used to 
evaluate the quality of the generated data and the clas-
sification accuracy. Using both benchmark BCI Competi-
tion IV (2b and 1) datasets, CNN-DCGAN achieved an 
average classification accuracy enhancement of 12.6% 
and 8.7% higher than the baseline. In turn, the proposed 
CNN-DCGAN model outperformed the best classifica-
tion method in previously mentioned DA methods as it 
exceeded the average accuracy of both VAE and AE by 
5% for dataset 1. In addition, the accuracy of DCGAN 
was higher than that of VAE and AE by 5.6% and 10%, 
respectively, for the classification accuracy of dataset 2b.

Yang et  al. proposed a novel combination of a condi-
tional VAE network (cVAE) with GAN for feature sub-
space generation of MI-EEG brain signals. [38]. In this 
model, an encoder network learned the temporal and 
spectral features of real MI samples and mapped them 
to a latent representation z through a CNN. The study 
posits that this kind of combination led to more robust 
training with faster convergence as it took advantage of 
both statistic and pairwise features. IS, FID, and SWD 
were used as evaluation metrics. The implementation of 
this model was performed using Python and Keras API. 
Results demonstrated that the test accuracy of the clas-
sifier was 86.14% which was remarkably higher than the 
accuracy achieved without DA for almost all subjects. 
Furthermore, cVAE-GAN had the best performance in IS 
and SWD metrics. Although CNN outperformed CVAE-
GAN in FID, it had worse values in other metrics.

Xie et al. suggested another combination of long short-
term memory with GAN (LGANs) and multi-output 
CNN (MoCNN) for MI classification [21]. The genera-
tor of this model consisted of a fully connected layer with 
four convolutional layers. Meanwhile, the discrimina-
tor had three convolutional layers, one LSTM, and one 
fully connected layer. Then, the MoCNN, which uses the 

feature information that is extracted from each layer of 
the convolutional layer, was proposed to improve the 
classification performance. For enhancing model perfor-
mance, an attention network was used with the generator 
to enable the generator to focus on the key feature infor-
mation of MI data and the channels interconnection and 
sampling points. The results showed the outperformance 
of the proposed model compared to the other GAN mod-
els used in the same study (cGAN – WGAN – infoGAN 
– lsGAN – softmaxGAN – lGAN – AttGAN without 
LSTM – AttGAN). While the proposed model results 
for the BCI competition 2a dataset achieved an average 
accuracy of 83.99%, all other GANs models only attained 
lower accuracies from 59.79% by cGAN to 82.88% by 
the LGAN. Meanwhile, without data augmentation, 
the MoCNN classification model only had a classifica-
tion accuracy of 74.65%. Moreover, when the proposed 
method was applied to the BCI competition 2b dataset, 
a significant performance was observed with an aver-
age accuracy of 94.31% which was higher than WGAN, 
cGAN, and even LGAN.

In [39], CycleGAN was used to generate MI data for 
stroke patients where EEG data was converted to EEG-
topography images that had both spatial and spectral 
features of the EEG. The study adopted S-transform to 
effectively evaluate ERD/ERS of the EEG, in turn, they 
could classify different types of MI tasks. The EEG spec-
tral topographies of healthy subjects were then used for 
CycleGAN training. Finally, a seven-layer CNN network 
and SVM were alternatively employed for classification. 
The data from five subjects were used for testing the algo-
rithm where CNN outperformed SVM for all subjects 
in terms of classification accuracy. In addition, it was 
noticed that a significant improvement in classification 
accuracy, compared to the raw training data, occurred 
as the generated EEG data was added to the training set 
by 1-time of dataset samples, 4 times, and 5 times. The 
accuracy with one of the subjects by CycleGAN data aug-
mentation reached 78.3% compared to 60% for the origi-
nal data.

P300 and RSVP
P300 and Rapid Serial Visual Presentation (RSVP) repre-
sent two other main paradigms of BCI experiments [41]. 
P300 evoked potentials represent one dominant compo-
nent of Event-Related Potentials (ERP). Mainly, the P300 
signal appears as a positive wave in the EEG due to irreg-
ular auditory, visual, or somatosensory stimuli [42], that 
are evoked 300–400 ms after attendance to a rare target 
stimulus that occurs among several frequent stimuli [43]. 
P300 recognition has been utilized to develop signifi-
cant communication tools and devices for patients who 
have motor neuron diseases. P300-based BCIs are able to 
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provide such patients with affordable, mobile, and non-
invasive communication devices that would enhance 
their quality of life. Despite the progress P300-based BCIs 
have had, detecting P300 signals and their interpretation 
faces some challenges. For instance, such waves are more 
likely to be high-dimensional with poor signal-to-noise-
ratio [44]. In addition, P300 signals have been shown to 
be non-stationary with high inter-subject variability [42].

One of the most common experiments that utilize 
P300 signals is RSVP. The main concept of RSVP could 
be easily clarified with an example of an experiment for 
examining visual attention where stimuli are presented 
frequently to participants. Then, participants try to 
select a specific target from the presented ones and ERPs 
or P300 signals could be detected in the generated tar-
get EEG samples [45]. Therefore, this section will focus 
on the surveyed papers that employed GANs techniques 
with P300 signals and RSVP experiments. Table 2 shows 
the proposed trials to augment these waves by using sev-
eral methods of GANs to alleviate the mentioned issues.

To reduce variations of EEG signals from different ses-
sions or different subjects that lead to poor generaliza-
tion of the trained models, a subject adaptation network 
(SAN) based on GANs was proposed in [46]. Ming et al. 
designed SAN which sampled the real data as generator 
input instead of the noise source, which enables the gen-
erator to learn how to align multiple source distributions 
to a consistent one to fool the discriminator. In addi-
tion, instead of feeding the real samples as base data to 
the discriminator, it sampled the generated distribution. 
To evaluate the SAN algorithm, the MNIST dataset, as a 
multimodal distribution, was firstly utilized. Afterward, 
a recorded EEG dataset of visual evoked potential (VEP) 
oddball task experiment that was based on the P300 was 
performed. Also, a private driving EEG dataset, where 

EEG signals were recorded during a driving task, was 
exploited to prove the network’s ability to sample selec-
tion, particularly from the intra-subject variance perspec-
tive. A comparison between SAN results with both the 
SVM method and EEGNet [47], compact CNN for EEG-
based BCIs, that led to equivalent results was included. 
Results demonstrated that the SAN model is slightly bet-
ter than other models with an average classification accu-
racy of 81.5%. Overall, the proposed model demonstrated 
its practicability and effectiveness with various datasets.

In [48], a conditional WGAN-GP was proposed for 
generating EEG data of different cognitive events with 
minimum high-frequency artifacts. Single-channel EEG 
training data was used from the RSVP experiment. The 
proposed architecture was based on bicubic interpola-
tion upsampling of the input dimension and a deconvolu-
tion layer with bilinear weight initialization. The two-step 
upsampling method was used to avoid frequency artifacts 
and made GAN training more stable. For mode collapse 
avoidance, they utilized class labels in both the genera-
tor and discriminator. Then for evaluating the generated 
samples, the authors determined the log-likelihood of 
Gaussian mixture models of the real samples. Although 
the trained classifier got only 75% AUC, visual inspec-
tion, and Log-Likelihood distance from Gaussian Mixture 
Models (GMMs) showed that the generated samples had 
an acceptable quality and could capture the main charac-
teristic of the real samples. Moreover, it was noticed that 
the CNN classifier trained on raw data provided the best 
performance with 2 convolution blocks after 100 epochs 
of training. Meanwhile, the classifier trained with gener-
ated samples had its best performance with 3 convolu-
tion blocks and 300 training epochs. In addition to that, 
same subject evaluation and cross-subject evaluation 
demonstrated the improvements attained by the classifier 

Table 2 Reviewed papers that used GANs in P300 and RSPV tasks

Study Purpose Dataset GAN type Evaluation metrics Results
(with GAN)

Ming et al., 2019 [46] Overcome challenges for 
Bio-signals as intra- and 
cross-subject variance

MNIST
 + 
private dataset (driving)

SAN Classification accuracy  + 1%

Panwar et al., 2019 [48] Address training instability 
and frequency artifacts

BCIT X2 cWGAN-GP Classifier AUC • Same subject evalua-
tion + 3.28%
• Cross-subject evalua-
tion + 5.18%

Panwar et al., 2020 [45] Generate EEG data to 
improve the classification 
performance of cognitive 
events

BCIT X2 WGAN-GP
 + 
CC-WGAN-GP

Classifier AUC CC-WGAN-GP: + 5.83%

Kunanbayev et al., 2021 [42] Overcome the scarcity 
problem of training for 
robust classifier model

P. Arico et al. DCGAN
 + 
WGAN-GP

Classification accuracy  + 2%: + 4%
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of augmented data in real test data samples with 3.28% 
and 5.18% AUC enhancement, respectively.

Another study by members of the same group contin-
ued using GANs to synthesize EEG data from the RSVP 
experiment [45]. They used WGAN-GP, and instead of 
cWGAN, the network was extended to a class-condi-
tioned variant that performed event classification along 
with sample generation (Cc-WGAN-GP). The imple-
mentation of the proposed model was performed by 
employing different toolboxes Python 3.6.4, Tensorflow 
1.12, and Keras 2.2.4. In addition, they proposed a log-
likelihood score based on Gaussian mixture models as 
a quality evaluation of generated samples. They showed 
that the interpolation method for upsampling decreased 
the signal amplitude, meanwhile, it was more acceptable 
than deconvolution in sustaining the signal frequency. 
Thus, employing a two-step upsampling method, with 
bicubic interpolation followed by deconvolution with 
bilinear weight initialization, successfully enhanced GAN 
training. Nevertheless, it is important to mention that 
lop-sided amplitude appeared in the generated samples 
which are asymmetrical amplitude on edges. This issue 
was firstly handled in the upsampling layer by generat-
ing higher-dimensional EEG samples, then cropping it 
in subsequent layers to restore the generated samples 
with the same real sample dimension. Although the Cc-
WGAN-GP classifier was deeper and more complicated 
than EEGNet, it had better performance mainly because 
of the GAN-based data augmentation. The CC-WGAN-
GP average AUC was better than EEGNet for each sub-
ject, where the performance enhancement was between 
0.28 and 16.4% with an average AUC of 82.98%, while 
EEGNet got only 77.16%.

Based on two prevalent GAN methods, namely 
DCGAN and WGAN-GP, Kunanbayev et  al. proposed 
using data augmentation to generate artificial training 
data that were used in the classification of P300-EEG sig-
nals [42]. They used Arico et al. dataset [49] from a P300-
based BCI Speller system with overt attention mode. For 
assessment of the generated data quality, the GAN-test / 
t-SNE visualization was performed. In fact, the real and 
generated samples from the same class were in the same 
group, and the different classes were totally separated. By 
implementing subject-specific augmentation, WGAN-
GP resulted in a slightly higher performance compared 
to DCGAN and the classification improvement perfor-
mance reached 11% for some subjects with an average 
enhancement between 2 and 4%. Ultimately, subject-
independent augmentation, which followed the LOSO 
principle, achieved better classification performance 
with respect to the baseline classifiers (LDA and CNN) 
without augmentation for a relatively small size of the 
real training data (n = 50). On the contrary, for the bigger 

sample size (n = 288), baseline accuracy was better. Fur-
thermore, WGAN-GP again had a better performance 
than DCGAN.

Emotion recognition
Emotion recognition, an essential branch of emotion 
computing, plays a remarkable part in discovering peo-
ple’s thoughts and understanding their behavior. Mainly, 
artificial emotional intelligence aims to develop tools, 
devices, and systems that enable the recognition of 
human emotions. This field of study gained noticeable 
attention as it builds this kind of bond between humans 
and machines. Emotion recognition based on EEG has 
proven its reliability and substantial accuracy compared 
to other approaches of emotion recognition that are 
based on facial expressions and gestures [50]. Recently, 
multiple studies have demonstrated the relationship 
between emotions and some mental diseases such as 
depression and autism [51, 52]. Consequently, these stud-
ies have considerable potential for treating psychiatric 
diseases. Emotion recognition techniques aim to identify 
two main parameters that define the underlying emo-
tion: valence, which represents varying from unpleasant 
feelings to pleasant, and arousal, which is feeling varia-
tion from calm to excited/activated [53]. For benchmark 
EEG emotional databases, there are a few numbers of 
datasets for emotional EEG such as The Database for 
Emotion Analysis using Physiological Signals (DEAP) 
[54], The SJTU Emotion EEG Dataset (SEED) [55], and 
MAHNOB-HCI [53]. In DEAP, participants evaluated 
music videos in terms of the levels of arousal, valence, 
like/dislike, dominance, and familiarity. In SEED, sub-
jects were asked to complete a questionnaire about their 
emotional reactions to film clips. For MAHNOB, par-
ticipants’ responses to movies, images, and videos with 
correct or incorrect tags associated with human actions 
were recorded. With this intention, some studies consid-
ered using GANs to overcome the data scarcity problem 
in EEG emotion recognition. The shortage of data could 
lead to difficulty in building an accurate model with 
accepted accuracy using machine learning algorithms or 
deep neural networks. Table 3 summarizes different stud-
ies that used GANs to achieve an improvement in the 
emotion recognition field.

Luo et  al. proposed using the Conditional WGAN 
(cWGAN) framework for EEG-based emotion recog-
nition DA [56]. A gradient-penalty version of WGAN 
is implemented to generate artificial EEG differential 
entropy (DE) features from noise distribution. They used 
three evaluation metrics to assess the quality of the gen-
erated data (Discriminator loss—Maximum Mean Dis-
crepancy (MMD) – 2-D mapping). The results showed 
the rapid convergence of the discriminator loss to a small 
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value (close to 0) for each subject. Moreover, the emo-
tion recognition frameworks that were trained using 
the cWGAN generated and raw data, in comparison to 
using the raw data only, achieved improvements of 2.97% 
on the SEED dataset, and an improvement of 9.15% and 
20.13% on the DEAP dataset for both arousal and valence 
classifications, respectively.

Another study by the same group proposed a modified 
framework of a WGAN domain adaptation (WGANDA) 
[57]. Their framework intended to recognize the new sub-
ject’s emotions with unlabeled data and reduce the gap 
between the probability distribution of different subjects 
caused by inter-subject differences that limit the gener-
alization of trained models [58]. This framework mainly 
consisted of GAN-like components and a two-step train-
ing procedure with pre-training and adversarial training. 
The pre-training was used to map the source domain 
(labeled data) and the target domain (unlabeled data) 

to a common feature space, and the adversarial training 
was used to reduce the gap between the mappings of the 
source and target domains on the common feature space. 
For achieving more stability and rapid convergence of the 
framework, a WGAN-GP loss was adopted for adver-
sarial training. Different accuracy comparisons were con-
ducted to evaluate the proposed framework. First, the 
accuracy comparison between using adversarial-train-
ing (WGANDA-Adv.) and without adversarial-training 
(WGANDA-Bas.) was performed on the SEED dataset. 
Another comparison using three domain adaptation 
methods namely kernel principal component analysis 
(KPCA), transfer component analysis (TCA), and trans-
ductive parameter transfer (TPT) was conducted. Finally, 
the source and target data from SEED at different train-
ing stages were visualized in a 2D representation by the 
visualization tool t-SNE. The results demonstrated that 
the discriminator loss converges to a small value during 

Table 3 Reviewed papers that used GANs in emotion recognition tasks

Study Purpose Dataset GAN type Evaluation metrics Results
(with GAN)

Y. Luo et al., 2018 [56] Enhance EEG-based 
emotion recognition

SEED + DEAP cWGAN Classification accuracy SEED: + 2.97%
DEAP-Arousal: + 9.15%
DEAP-Valence: + 20.13%

Y. Luo et al., 2018 [57] Enhance EEG-based 
emotion recognition for 
semi-supervised models

SEED + DEAP WGANDA Classification accuracy (W.R.T: SVM)
SEED: + 30.43%
DEAP-Arousal: + 17.63%
DEAP-Valence: + 17.63%

Y. Luo et al., 2020 [59] Enhance EEG-based 
emotion recognition

SEED + DEAP cWGAN
 + 
sWGAN

Classification accuracy SEED
cWGAN + DNN: + 8.3%
sWGAN + DNN: + 10.2%
DEAP
cWGAN + SVM: + 3.5%
sWGAN + SVM: + 5.4%

Dong and Ren, 2020 
[60]

Enhance EEG-based 
emotion recognition

DEAP MCLFS-GAN Classification accuracy (w.r.t CNN + LSTM)
SAP
MCLFS-GAN: + 14.95%
LOSO
MCLFS-GAN: + 19.52%

Fu et al., 2021 [62] Achieve a fine mapping 
of EEG data directly to 
facial images

SEED Ac-GAN • Classification accuracy
• Reliability
• Entropy

• Generated images from 
EEG 82.14%
• 92.02%
• 7.41

Liang et al. 2021 [63] Fuse the spatial and 
temporal dynamic
brain information into 
a better feature repre-
sentation

SEED + DEAP + MAH-
NOB-HCI

CNN + RNN + GAN • Classification accuracy
• F1 score

• Up to + 7.69%
• Up to + 5.07

Pan and Zheng 2021 
[64]

Enhance EEG-based 
emotion recognition 
with sample scarcity 
and category imbalance 
issues

DEAP + MAHNOB-HCI PSD-GAN Recognition accuracy • 2-classification task:
5.25%: 6.71%
• 4-classification task:
10.92%: 14.47%

Chang and Jun 2019 
[65]

Recognize the emo-
tional responses of 
users towards given 
architectural design

Chang, Dong, and Jun 
Dataset [66]

GAN Classification accuracy  + 0.5%
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training and WGANDA outperformed the state-of-the-
art domain adaptation methods in terms of stability in 
the convergence process. Finally, the study illustrated the 
ability of the framework to recognize the emotions of a 
new subject with unlabeled data more precisely. Further-
more, they attained an improvement of (with respect 
to SVM) 30.43%, 17.63%, and 17.63% on SEED, DEAP 
arousal, and valence, respectively.

A more recent study by Luo et al. proposed and com-
pared three EEG DA methods for emotion recognition: 
conditional WGAN (cWGAN), selective VAE (sVAE), 
and selective WGAN (sWGAN) [59]. The generation 
of realistic-like EEG training data had two forms: PSD 
and DE. The augmentation of the original training data-
sets was performed with different portions of generated 
EEG data, either full or partial usages of the generated 
data. A comparison was conducted with cVAE, Gauss-
ian noise (Gau), and rotational DA (RDA) methods. 
Whilst the cVAE has a similar generated strategy as 
cWGAN, Gau depends on adding Gaussian noise to the 
original data for data augmentation. The RDA gener-
ates data from a geometric rotation of the original data. 
The results asserted the outperformance of generative 
models with respect to the aforementioned DA strate-
gies. sWGAN achieved its best mean accuracy of 90.8% 
for SEED with DE features when 10,000 samples were 
added, while cWGAN achieved its highest mean accu-
racy of 87.4% when 15,000 samples were added. How-
ever, the cWGAN convergence speed was the quickest. 
For the DEEP dataset with DE features, cWGAN had 
its highest mean accuracy of 48.9% when 5000 samples 
were appended, whereas sWGAN achieved a higher 
mean accuracy of 50.8% with 15,000 appended samples.

Along with that, Dong et  al. introduced a new design 
for emotion recognition named multi-reservoirs feature 
coding continuous label fusion semi-supervised GAN 
(MCLFS-GAN) [60]. They used a method to preserve 
the dependence of time sequence per every time window 
where the sample size is divided into windows of fixed 
length. Then, a sliding window technique was applied 
where the sliding of time windows was performed 
according to a certain sliding step set in the experiment. 
The sliding step is supposed to traverse the whole-time 
window size. The features were partitioned based on the 
spatial distribution and frequency band of EEG channels 
and then they were used to train by the multi-reservoir 
encoder. The multi-reservoir structure was used, based 
on a type of RNN named Echo-state networks [61], to 
decrease the interference of irrelevant feature data and 
the loss of critical feature information on the basis of 
keeping time characteristics in the window. Also, the 
spatial, temporal, and frequency characteristics of EEG 
signals were combined by the semi-supervised learning 

framework. In addition, the transfer learning concept 
was adopted to learn the mutual feature space represen-
tation of different subjects. Thus, the spatial representa-
tion, between the source domain and the target domain, 
was domain invariant. Meanwhile, continuous label 
fusion was done with respect to the degree of intensity 
of emotional category tags in the inner class. Therefore, 
reliable sample information was learned and increased 
the stability. The DEAP dataset was used in this research 
under two schemes. The first scheme involved sample 
shuffling, followed by tenfold cross-validation (tenfold 
CV) and LOSO as the second scheme. The results of 
the proposed method were compared to other methods 
such as LSTM + CNN, CNN + LSTM, L1-norm + SVM, 
SAE + LSTM, graph-regulated extreme learning machine 
(GELM), DANN, and ACGAN. Also, the classification 
accuracy of the proposed MCLFS-GAN is 81.32% and 
54.87% with an overall enhancement reached of 14.95% 
and 19.52% (w.r.t CNN + LSTM) by using SAP and LOSO 
in the DEAP database, respectively.

Another cGAN method was proposed by Fu et  al. 
[62]. They interpreted the EEG emotional data into a 
fine-grained facial expression image. In the proposed 
method (Ac-GAN), instead of quantitative evaluation, 
fine-grained facial expressions were assessed qualitatively 
from EEG signals. Mainly, the study followed a coarse-to-
fine training strategy for Ac-GAN. In other words, they 
assigned five facial expression images (from the lowest 
level of emotion to the highest level) as the target images 
with the same coarse label, then Ac-GAN was trained 
on the EEG data and learned its distribution character-
istics. By ranking coarse EEG data samples from strong 
to weak associated with the measured beta and gamma 
intensities, it learned fine-grained information and gen-
erated the fine-grained facial expression image. Results 
demonstrated the reliability of the generated positive 
and negative facial expression images with a classifica-
tion accuracy of 93.77% and 90.26%, respectively, and the 
classification accuracy on four classification tasks (low/ 
high positive and low/ high negative) was significant with 
82.14%.

Liang et  al. revealed the effectiveness of GAN-based 
methods as an unsupervised fusion model with a reli-
able across-subject emotion recognition performance 
[63]. They proposed a novel unsupervised EEG feature 
extraction method (EEGFuseNet). EEGFuseNet archi-
tecture consists of a hybrid network of CNN, RNN, 
and GAN. CNN extracts features from raw EEG sig-
nals, and RNN detects the feature relationships at every 
time point which improved the feature representation 
by combining both temporal and spatial information. 
Then, GAN was used to enhance the training process 
of the CNN-RNN network with dynamic updates in 
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an unsupervised manner, for generating high-quality 
features. The generator was a CNN-based encoder-
decoder network and the CNN-based discriminator 
was used to distinguish between generated and real 
samples. They also adopted a LOSO cross-validation 
subject-independent protocol. Concerning the role of 
GANs, the comparison between the CNN model only, 
the CNN + GAN model, and the CNN + RNN model 
only elucidated the impact of GAN on improving the 
accuracy performance and F1 score. Using CNN-GAN 
on the DEAP database increased the accuracy between 
0.4 and 2.96% for dominance and the F1 score by 3.47 
to a maximum improvement of 4.26 for dominance. In 
addition, EEGFuseNet outperformed the CNN-RNN 
network (without GAN) by 1.1% to 1.93% for accuracy 
and 1.77 to 2.05 for the F1 score. Finally, the results 
of the SEED and MAHNOB-HCI datasets supported 
the DEAP dataset results as the accuracy increased by 
7.69% for Arousal of MAHNOB-HCI and the F1 score 
gained an increase of 5.07 for the SEED dataset.

In [61], Pan and Zheng proposed PSD-GAN using a 
generator that comprises three linear layers using two 
ReLU functions and one Tanh function and the dis-
criminator with two linear layers with a LeakeReLU 
function and a sigmoid function. PSD here indicates 
that GAN generates samples with PSD features. Using 
the DEAP dataset for evaluation, the accuracy for a sin-
gle subject was improved by 5.25% and 6.38% on aver-
age in two-classification tasks (high–low) and by 6.5% 
and 6.71% on average across subjects in valence and 
arousal recognition, respectively. Similarly, in the four-
classification task (High/ Low Valence and High/ Low 
Arousal), the accuracy improvement was 10.92% for a 
single subject and 14.47% across subjects. In addition, 
the study investigated the emotion recognition perfor-
mance by exploiting MAHNOB-HCI dataset with two 
feature extraction models frequency band correlation 
(FBCCNN) and frequency band separation (FBSCNN) 
with and without synthetic data generation. It was 
noted that the FBSCNN accuracy was enhanced from 
56.78% by PSD-GAN to 66.50%. Furthermore, with 
FBCCNN the accuracy increased from 62.06 to 70.34%. 
Overall, the proposed model improved learning fea-
tures from several categories and subsequently reduced 
overfitting, increased generalization capability, and 
attained a better recognition rate. Finally, the frame-
work was implemented by PyTorch and on the Nvidia 
Titan RTX GPU in a fully supervised manner.

For the assessment of user feedback toward visual 
designs, architects applied GAN techniques with EEG 
signals to explore the user’s feedback toward their designs 
in [65]. The proposed frameworks consisted of two main 
algorithms including GAN for EEG data augmentation, 

and a deep neural network model to classify the emo-
tional states of the EEG signals as "positive" or "negative" 
toward the design. The study used the dataset from [66] 
of 18 subjects for evaluating the proposed framework. 
The implementation of the GANs model was carried out 
by TensorFlow platform utilization. The results revealed 
that fusing such a technique was promising as the final 
accuracy increased by 0.5% to reach 98.4% by using 
the generated artificial data with raw data. The study 
opened up a new avenue of using EEG signals to help the 
designer in the architectural design step and to detect the 
emotional responses of clients towards suggested design 
alternatives.

Epilepsy studies
Epilepsy is a chronic neurological disorder in which 
patients suffer from several seizures [67]. Due to epilep-
tic seizures, patients experience several symptoms such 
as uncontrolled jerky movements, body convulsions, loss 
of awareness, and sensory auras [68]. As a result, epi-
lepsy impedes the quality of a patient’s life and increases 
the mortality rate of patients with frequent seizures [69]. 
In addition, medications are not always the effective 
solution for a lot of epilepsy patients [70]. Hence, sei-
zure detection and monitoring have a prominent role in 
patient diagnosis, improving the standard of living, and 
understanding of seizures. On the other hand, if those 
patients could be alerted before the occurrence of such 
seizures, it will give them the chance to take the appro-
priate precautions or control seizures with medications. 
In turn, epileptic seizure prediction is more likely to miti-
gate the seizures implication on patients and improve 
their quality of life.

Epileptic seizures could be classified into four main 
states. The normal state of brain activity is the interictal 
state, while the preictal state begins 60 to 90 min before 
the occurrence of seizures. Then, the ictal state starts 
with the onset and ends with the seizure, and finally, the 
postictal state starts after the seizure ends [71]. On that 
understanding, automatic seizure detection can be rep-
resented as a binary classification task that discriminates 
between EEG patterns of the ictal and non-ictal states, 
whereas epileptic seizure prediction can be represented 
as a binary classification task that discriminates between 
EEG patterns of the preictal and the interictal states.

Although machine-learning-based algorithms have 
offered a promising solution for both automatic seizure 
detection and prediction techniques, these algorithms 
often require a large number of training data points. 
Unfortunately, obtaining EEG signals during epileptic 
seizures is a process that could be considered very costly 
and time-consuming for both medical specialists and 
patients. Thus, creating synthetic seizure-like EEG signals 
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is a suggested solution that could be used to train sei-
zure detection and prediction algorithms. Among differ-
ent generative data methods, GAN was introduced as a 
superior method for generating artificial data on epilepsy 
seizures to train seizure algorithms. Table 4 summarizes 
here the studies that used GAN-based algorithms for epi-
leptic seizure detection and prediction.

In [67], automatic epileptic EEG detection using 
WGANs was introduced. The authors proposed a 
method based on CNN that automatically extracts fea-
tures of raw data after learning the representation. 
They used the merger of the increasing and decreasing 
sequences (MIDS), a time-domain merging method for 
signal processing that highlights waveform features with 
respect to human vision measurement [72], to process 

the EEG signals for the training of CNN in comparison 
with the baseline CNN model. WGAN is then used to 
add sample diversity and generate more EEG data which 
could overcome the class imbalance problem, especially 
in case of increasing negative sample data. To evaluate 
the approach, the LOSO approach was adopted. Using 
the CNN with MIDS improved the accuracy, sensitivity, 
and specificity in comparison to the use of CNN applied 
to raw EEG by 1.78%, 3.4%, and 0.16%, respectively. On 
the other hand, using the CNN with DA attained the best 
accuracy of 84% with a sensitivity of 72.11% and a speci-
ficity of 95.89% which was higher than what was achieved 
using CNN with raw EEG by 2.51%, 1.43%, and 3.59%, 
respectively.

Table 4 Reviewed papers that used GANs in epilepsy studies

Study Purpose Dataset GAN type Evaluation metrics Results
(with GAN)

Wei et al., 2019 [67] Proposes an automatic 
epileptic EEG detection 
method

CHB-MIT Scalp WGANs • Classification accu-
racy
• Sensitivity
• Specificity

•  + 2.51%
•  + 1.43%
•  + 3.59%

You et al., 2020 [68] Solve the class 
imbalance problem 
of epileptic seizures 
detection

Private dataset DCGAN
an anomaly detector

• AUROC
• Sensitivity
• False detection rate

• 93.93 1% (With Gram 
Matrix)
• 96.3%
• 0.14 per hour

Pascual et al., 2021 [70] Overcome scarcity of 
epileptic seizures EEG 
signals and address the 
privacy concerns

EPILEPSIAE project [73] Epilepsy GAN • Classification accu-
racy
• Synthetic data Recall 
values
• Geometric mean 
of sensitivity and 
specificity

•  + 1.3%
• median: + 3.2%
•  + 1.3%

Truong et al., 2019 [74] Predict seizures with 
an unsupervised 
algorithm

CHB-MIT
 + 
Freiburg Hospital
 + 
EPILEPSIAE

DCGAN
feature extractor

• Classification accu-
racy

CHB-MIT: 61.53%
Freiburg Hospital: 53.84%
EPILEPSIAE 13.33% (with 
AUC above 80%)

Usman et al. 2021 [71] Solve the class 
imbalance problem 
of epileptic seizures 
predictor

CHBMIT GAN • Sensitivity
• Specificity
• Anticipation time

• 93%
• 92.5%
• Average 32 min

Usman et al., 2021 [75] Overcome the chal-
lenge of accurate 
prediction of epileptic 
seizures

CHBMIT
 + 
American epilepsy 
society-Kaggle
seizure prediction

GAN Classification accuracy • CHB-MIT: + 1.74%
• IEEG: achieved 95.53%

Sensitivity • CHB-MIT: + 1.56%
• IEEG: 94.27%

Specificity • CHB-MIT: + 1.93%
• IEEG: 95.81%

Average
Anticipation
Time

• CHB-MIT: 1.34 m

Salazar et al., 2021 [76] Improve seizure predic-
tion performance with 
extreme data scarcity

Private dataset “Barce-
lona test”

GAN + vector Markov 
Random Field (vMRF)

Classification accuracy NA

Rasheed et al. 2021 [77] Improve seizure predic-
tion performance

Epilepsyecosys-
tem + CHB-MIT

DCGAN • Sensitivity
• AUC 

•  + 15%
•  + 6:10%
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For unsupervised learning, another approach for auto-
matic seizure detection was introduced by You et al. [68] 
that uses the DCGAN technique. DCGAN training was 
performed using unsupervised learning and the evalua-
tion followed the behind-the-ear EEG recording method. 
They recorded behind-the-ear EEG by two pairs of elec-
trodes from 12 patients with various types of epilepsy. 
The recorded EEG signals were utilized to create a PSD 
image for the two channels of two electrode pairs (chan-
nel 1 (left–right temporal), channel 2 (left–right cen-
tral)), and the third additional virtual channel (channel 
3) of the two channels’ means. Then, the recorded data-
set was examined to distinguish the onsets and ends of 
seizures. The study first used GAN unsupervised learn-
ing of the normal records to know the representation 
of normal states. Subsequently, to solve the imbalance 
problems, they adopted automatic seizure detection with 
the trained DCGAN as an anomaly detector to identify 
the ictal events in epilepsy patients. Finally, they used 
the combination of the Gram matrix with other anomaly 
losses to improve detection performance. By conducting 
unpaired t-tests for the anomaly’s comparison between 
normal and ictal samples in the dataset, both channels 1 
and 3 illustrated significant differences for all EEG bands. 
Meanwhile, the delta, theta, and alpha bands of chan-
nel 2 showed significant differences. The area under the 
receiver operating curve reached 0.939 with a sensitiv-
ity of 96.3% and a false alarm rate of 0.14 per hour in the 
test dataset. The whole algorithm was implemented using 
Python 3.5 with TensorFlow.

Pascual et al. proposed a GAN model to generate syn-
thetic ictal data for seizure detection [70]. They aimed 
to tackle privacy issues related to patient medical data 
in epileptic seizures. They adopted a strategy known 
as “Train on Synthetic, Test on Real ’’ to assess syn-
thetic ictal samples. Further, the evaluation employed 
an advanced classifier with an RF algorithm by using 
the EPILEPSIAE project database [73]. The generator 
was a U-net convolutional autoencoder network with 
weighted skip connections. In general, the autoencoder 
has two symmetric parts, the encoder where the input 
samples are processed and a latent code is produced, 
and the decoder which decodes the latent code and 
gets the original sample. In this study, the decoder is 
employed to interpret the latent code into an ictal sam-
ple. Of equal importance, the synthetic samples train-
ing achieved an accuracy higher by 1.3% compared to 
RF training with real samples only. Using the synthetic 
ictal signals achieved a mean accuracy of 95.4%. For 
privacy concerns, when synthetic ictal signals were 
different across patients, identifying the patient from 
synthetic ictal signals was more difficult than from 
real ones, without affecting the seizure detection task. 

Particularly, synthetic data was around 7.2 times less 
vulnerable to re-identification compared to real data.

For seizure prediction, Truong et  al. proposed an 
approach for predicting seizures using unlabeled EEG 
signals [74]. This study utilized the short-time Fourier 
transform on 28  s EEG windows as a pre-processing 
step. GAN was used in a different way as the DCGAN’s 
discriminator is used to extract features from unla-
beled EEG signals. The extracted features are then clas-
sified by a neural network classifier consisting of two 
fully connected layers for the labeled EEG signals and 
this classifier could be replaced by any other classifier. 
Moreover, Seizure Occurrence Period (SOP) and Sei-
zure Prediction Horizon (SPH) were used. SOP is the 
time interval when the seizure is more likely to happen, 
and the interval between the time point at which a sei-
zure is predicted and the SOP is called SPH. These two 
measures were adopted as follows: SOP of 30 min and 
SPH of 5 min for evaluation. In addition, a comparison 
of GAN methods in three different scenarios with CNN 
was held: trained GAN with data of all patients (GAN-
NN), trained GAN in a patient-specific (GAN-PS-NN), 
and with upsampling (GAN-PS-USPL-NN). Mean-
while, it is worth mentioning that although the feature 
extraction of seizure prediction was employed in an 
unsupervised way, the overall area under the operat-
ing characteristic curve (AUC) decreased by ∼ 6–12% 
across the three datasets with respect to fully super-
vised CNN. Nevertheless, it was noted that the average 
AUC increased to 75.66% and 74.33% for the CHB-MIT 
dataset and the Freiburg Hospital dataset, respectively, 
by utilizing 10 times the size of dataset upsampling, 
which are 1–2% lower than those of supervised GAN-
NN. Therefore, training GAN with the upsampled 
inputs alleviated this difference between fully- and 
semi-supervised paradigms for several patients and 
increased the performance. The model training is per-
formed on an NVIDIA P100 graphic card using Tensor-
flow 1.4.0 framework. Finally, the researchers showed 
that both supervised and semi-supervised learning 
methods (CNN, and GAN-PS-USPL-NN) were better 
than the random predictor for almost all patients as the 
prediction performance for the two methods reached 
(92.30%, 84.61%), (100%, 84.61%), and (86.67%, 86.67%) 
for the three datasets. For the semi-supervised patient-
specific method, it had an AUC of 77.68%, 75.47%, 
and 65.05% for the CHB-MIT scalp EEG dataset, the 
Freiburg Hospital intracranial EEG dataset, and the 
EPILEPSIAE dataset, respectively.

Recently, Usman et  al. suggested two GAN-based 
methods for seizure prediction [71, 75]. First, they 
designed a GAN to generate preictal samples with 
empirical model decomposition and three CNN layers of 
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automated feature extraction [71]. In this study, an LSTM 
classifier was utilized for the classification of interictal 
and preictal states and they used the CHBMIT dataset 
of scalp EEG signals for evaluation. The results of this 
method yielded 93% sensitivity and 92.5% specificity with 
an average time of 32 min to predict the seizure’s onset. 
Furthermore, the proposed GAN was successfully able to 
resolve the class imbalance problem with data having a 
similar distribution to the original one.

In [75], the authors proposed another method for 
extracting both handcrafted and automated features 
by a modified three-layer CNN that follows signal pre-
processing. Feature selection is performed to get a 
comprehensive feature vector. Furthermore, the Model 
Agnostic Meta-Learning (MAML) classifier was pro-
posed to reduce the number of training examples for the 
classifier by receiving output from three different classi-
fiers SVM, CNN, and LSTM which resulted in increasing 
classification accuracy without overfitting. Two datasets 
of scalp EEG and intracranial EEG were used (CHBMIT, 
American epilepsy society, and Kaggle Seizure Predic-
tion Challenge intracranial EEG dataset) for evaluation 
of this method. The results were remarkable as the aver-
age sensitivity reached 96.28% and the specificity reached 
95.65% with an average anticipation time of 33 min on all 
subjects of CHBMIT. Moreover, the proposed method 
improved the accuracy from 74% with handcrafted fea-
tures and SVM to 96.05% using EMD, bandpass filter, 
GAN, handcrafted and CNN-based features, feature 
selection using PCC and PSO, and an ensemble classifier. 
Along with that, the American epilepsy society-Kaggle 
seizure prediction dataset resulted in an average sensitiv-
ity of 94.2% and specificity of 95.8% with a mean accu-
racy of 95.53%.

Combining two basic concepts: GAN and vector 
Markov Random Field (vMRF), Salazar et  al. proposed 
another method (GANSO) for oversampling the classi-
fier training set [76]. The main concept of vMRF, which 
is just an MRF extension, depends on linking samples of 
the data that were presumed to be correlated. It acts as a 
type of regularization to enhance the synthetic samples 
generated from the original ones. Meanwhile, vMRF was 
used by GAN to generate samples with the Graph Fourier 
Transform (surrogating approach). Thus, to oversample 
the classes’ instance space, different classes shared the 
same vMRF. Then, the discriminator block was a linear 
classifier to obtain features similarities between the gen-
erated and the original samples. Different evaluation cri-
teria were adopted for the introduced method such as 
the classification of the neuropsychological activity test 
(Barcelona test) using EEG data from epileptic patients, 
in addition to other physiological data. The GANSO find-
ings were remarkable as they decreased the probability of 

error for most random detectors with a very little training 
set size (only 3 or 5 original instances). In addition, the 
learning curves of error probability decline were rapid 
with the added number of generated signals equal to two 
or three times the available number of original signals. 
On the other hand, Synthetic Minority Oversampling 
Technique (SMOTE) was not able to have an acceptable 
result with such a small size training set.

Using a different approach, Rasheed et  al. proposed a 
DCGAN model for generating both artificial scalp EEG 
data and intracranial EEG (iEEG) data for epilepsy sei-
zure prediction [77]. They used the CHB-MIT dataset 
and the Epilepsyecosystem dataset to train the DCGAN 
and evaluated the algorithm accuracy for SPH of 10 min 
and SOP of 30  min. Then, SVM and designed convolu-
tional epileptic seizure predictor (CESP) classifiers were 
utilized to evaluate the proposed model. They trained a 
one-class SVM on real data, then used it for testing the 
generated samples and picked those real-like synthesized 
samples. Furthermore, by training the CESP model on 
the augmented dataset (5 and 3 times the dataset size), 
the comparison with unaugmented data depicted that DA 
by DCGAN increased the sensitivity almost by 15% and 
AUC by 10% and 6% for Epilepsyecosystem and CHB-
MIT datasets, respectively. In addition, the DCGAN with 
CESP classifier model was compared to other epilepsy 
prediction models that used traditional augmentation 
techniques like SMOTE, moving windows, and data sam-
pling. The proposed model had the best sensitivity of 96% 
and 92.87% for both datasets and it was implemented by 
utilizing Keras toolboxes.

Other EEG applications
The previous sections have not covered all studies that 
have tried adopting GAN methods for EEG signals. Thus, 
this section includes a wider scope of using GAN with 
EEG data. Researchers have proposed GAN in studies 
including Steady State Visual Evoked Potential (SSVEP) 
tasks, protecting EEG data from illegal access, augmen-
tation of various types of Biosignals, classification of 
sleep states, and classification of fatigue during driving. 
Besides, short, and long-time series predictions of EEG 
signals have been addressed in addition to imputing 
missing signal sequences. Table  5 summarizes all these 
studies.

In 2019, Khadijah et  al. used DCGAN and WGAN to 
generate augmented EEG signal vectors for training an 
SSVEP classifier with a variety of unsupervised models 
[18]. SSVEP is an evoked potential produced when a sub-
ject focuses on regularly flickering objects that flicker at 
specific frequencies [18]. It was found that the flickering 
frequency can be extracted from the subjects’ recorded 
EEG signals during flashing via various signal processing 
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Table 5 Reviewed papers that used GAN in other EEG applications

Study Purpose Dataset GAN type Evaluation 
metrics

Results
(with GAN)

Khadijah et al. 
2019 [18]

Improve the accu-
racy, convergence 
rate, and generali-
zation capabilities 
of the model

Private dataset
 + 
Nao dataset

DCGAN
 + 
WGAN

Classification 
accuracy

G + R data 
train
DCGAN: + 3%
WGAN: + 2%

G data train
DCGAN: + 1%
WGAN: + 3%

G data train 
generalization
DCGAN: + 12%
WGAN: + 11%

Yao et al., 
2020 [80]

Specify several 
standards for 
operating on EEG 
data to protect 
users’ privacy

From UCI, Neuro-
dynamics Laboratory at 
the State University of 
New York

ResNet genera-
tor + patchGAN
feature filter

Privacy indica-
tor

Filter out over 90% of alcoholism information on 
average from EEG signals, with an average of only 
4.2% useful feature accuracy lost

Hazra and 
Byun, 2020 
[82]

Eliminate 
confidentiality 
concerns of medi-
cal data

Siena Scalp
 + 
private dataset

SynSigGAN • Pearson Coef-
ficient
• MAE
• RMSE
• PRD
• FD

• 0.997
• 0.0475
• 0.0314
• 5.985
• 0.982

Fan et al., 
2020 [83]

Address the 
challenges of 
automatic sleep 
staging models 
such as the inher-
ent class imbal-
ance problem

Montreal Archive of Sleep 
Studies (MASS)
 + 
Sleep-EDF-SC

DCGAN • Classification 
accuracy
• F1 score
• Cohen Kappa

MASS
• 3.79%
• 3.48%
• 5.43%

Sleep-EDF
• 4.51%
• 3.14%
• 5.8%

Zeng et al., 
2021 [86]

Address the issue 
of the different 
distribution of EEG 
across subjects

Private dataset GDANN • Classification 
accuracy
• Precision
• F1Score
• Recall

•  + 11.9%
•  + 9.34%
•  + 9.64%
•  + 10%

Hazra et al., 
2021 [87]

Develop a cost-
effective system 
for cognitive state 
classification 
using ambulatory 
EEG signals

Private dataset DCGAN
Classifier

Classification 
accuracy

Compared to CNN
• GTCC – MFCC: + 0.6%
• GTCC – MFCC – CNN: + 0.3%
• GTCC: – 1.33%

Yin et al., 2021 
[78]

Use multivariate 
time series data 
in the process of 
prediction

NASDAQ100 + SML2010  
+ Energy + EEG + Air 
Quality

MAGAN • MAE
• SMAPE

ɛ = 50 w.r.t MARNN
• − 0.0455
• − 0.0244

Yin et al.., 
2021 [79]

Improve the 
accuracy of the 
long-term predic-
tion

NASDAQ + SML + Energy  
+ EEG + KDDCUP

VAEcGAN • MAE
• RMSE

ɛ = 120 w.r.t LSTM
• − 0.1529
• − 0.1334

Tazrin et al. 
2021 [88]

Solve
computational 
and energy 
resource issues of 
IoT devices with 
EEG headbands/
headsets

Confused student dataset DCGAN Classification 
accuracy

CNN & DNN >  + 20%

Cheon et al. 
2021 [90]

Overcome issues 
of gathering a 
large dataset of 
EEG

Confused student dataset CTGAN + TGAN • Basic statistics
• Correlation 
column cor-
relations
• Mean correla-
tion
• 1 – MAPE
• Similarity 
score

CTGAN
• 0.9963
• 0.9476
• 0.9393
• 0.7250
• 0.9021

TGAN
• 0.9876
• 0.0881
• 0.9351
• 0.8552
• 0.7165

Lee et al. 2021 
[91]

Improve clas-
sification of sleep 
stages

Publicly
Sleep-EDF database (PSG) 
test

Sig-GAN • Classification 
accuracy
• IS
• FID

• 65.67% with only first 30-s signals
(Real data 82.85%)
• − 0.51 (w.r.t real data)
 • + 39.53
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techniques. The proposed method generated EEG data 
directly in signal space via end-to-end training without 
transforming the signals into different domains. They 
employed two empirical SSVEP dry-EEG datasets for 
evaluation. It is worth mentioning that DCGAN, WGAN, 
and VAE models successfully captured the characteristic 
of SSVEP peaks at the target frequency with its harmon-
ics. In the meantime, the generated signals from VAE had 
relatively smaller amplitude. In addition, using the gen-
erated and real data for training the classifier, DCGAN 
and WGAN achieved 3% and 2% classification accuracy 
improvement with respect to the baseline CNN model 
without synthetic data, respectively. In addition, the 
classification accuracy was improved, compared to the 
baseline model trained with raw data, by 1% and 3% for 
DCGAN and WGAN, respectively. Finally, all generative 
models were implemented by (PyTorch).

Yin et  al. have considerable contributions in [78] and 
[79]. First, a multi-attention generative adversarial net-
work (MAGAN) was proposed for multivariate time 
series prediction. This model had three main parts: the 
encoder, the generator or decoder, and the discrimina-
tor networks. The encoder network had an input-atten-
tion network for correlation extraction between target 
data and self-attention. Then, the long-term temporal 
relevance of hidden data was selected by temporal-con-
volution-attention through the decoder stage. Finally, 
convolution layers, based on the weight clipping algo-
rithm, extracted data features and classified the gener-
ated data that had the true data. In addition, they used 
the encoder network and the decoder network as another 
method called multi-Attention based RNN (MARNN). 
Furthermore, experimental evaluations were performed 
on five real datasets including one EEG dataset. The 
recorded EEG dataset was data from subjects performing 
an SSVEP experiment. The proposed MAGAN was com-
pared with different methods including LSTM, Seq2Seq, 
Temporal-att-RNN, DARNN, TCN, and MARNN. The 
comparison used the following measures: MSE, RMSE, 
MAE, mean absolute percentage error (MAPE), sym-
metric mean absolute percentage error (SMAPE) and R2 
score. The results of the proposed methods with the EEG 
dataset on the short-term prediction (predicted time 
steps = 1) showed the efficiency of the MARNN, espe-
cially with MSE, RMSE, and R-squared value Meanwhile, 
MAGAN showed its superiority in MAE with 0.2069 and 
0.6635 of SMAPE. In addition to that, both the LSTM 
and seq2seq models kept temporal dependence, and the 
seq2seq model could successfully output indefinite length 
values. Overall, MARNN and MAGAN models had bet-
ter performance for all datasets compared with the other 
aforementioned methods in short-term and long-term 
prediction, respectively.

Another study for long-term prediction was presented 
by Yin et  al. in [79]. This study proposed VAEcGAN 
which consisted of the same three stages of the previous 
study: the encoder, the generator, and the discrimina-
tor. However, in this model, the encoder was a VAE one. 
Consequently, the latent space was not a random noise, 
instead, it had a part of the data of the driving series from 
the VAE encoded data. The generation stage exploited 
both LSTM and attention to generate prediction data 
with the equivalent time trend as the data from previous 
time steps. The discrimination stage had the same con-
cept as convolution layers as it extracted data features 
and distinguished between the generated and true data. 
They followed the same evaluation methods used in [78], 
but this study differs only in terms of evaluation indexes, 
which were just MAE and RMSE, and the compared 
methods were: LSTM, Seq2Seq, DARNN, TCN, Dual-
Stage Two-Phase based RNN (DSTPRNN), and VAE. It 
was shown that the DSTPRNN model performance was 
better than the VAE model without the cGAN module. 
However, the prediction results of the VAEcGAN model 
were clearly improved. For EEG dataset results, the VAE-
cGAN algorithm was more stable and accurate compared 
to other models in long-term prediction (prediction 
steps = 120) with the significantly least values of MAE 
and RMSE.

With an aim to protect EEG data from illegal hacking, 
another study was introduced to address feature fusion 
problems that occur with EEG signals using GANs [80]. 
It depends on mapping EEG signals with undesirable fea-
tures directly toward EEG signals without those features 
which attain users’ privacy. Yao et  al. proposed an end-
to-end algorithm in which an image-wise autoencoder, 
based on Fast Fourier Transform (FFT) and CNN, was 
employed. Instead of extracting features from raw EEG 
data, three EEG frequency bands were selected to create 
an RGB-color image and then the autoencoder extracted 
features from those images with both classification loss 
and reconstruction loss. In addition, a GAN-based tech-
nique with a structure including a combination of ResNet 
generator and PatchGAN discriminator from Pix2Pix 
[81] was employed to generate new EEG signals without 
the undesired features. For the evaluation of the frame-
work, the alcoholism dataset was used from UCI. It was 
found that the model can conceal over 90% of alcoholism 
data from EEG signals, with an average of only 4.2% use-
ful feature accuracy lost.

A similar approach for protecting patient data and 
information was proposed by Hazra and Byun named 
SynSigGAN to generate various artificial biomedical 
signals from a modest dataset of real signals [82]. The 
model depended on refining the signals by employing 
a combination of discrete wavelet transform (DWT), 
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thresholding, and Inverse discrete wavelet transform 
(IDWT) through preprocessing phase. Then, a GAN 
architecture, which consisted of a bidirectional grid of 
long short-term memory (BiGridLSTM) as a genera-
tor network and a CNN for the discriminator network, 
was used to augment the biosignals. The study involved 
four kinds of biomedical signals (ECG, EEG, electromyo-
graphy (EMG), and photoplethysmography (PPG)). The 
Pearson correlation coefficient was utilized to evaluate 
the quality of generated data in addition to the follow-
ing metrics for statistical analysis: the Root Mean Square 
Error (RMSE), Percent Root Mean Square Difference 
(PRD), MAE, and Frechet Distance (FD). The results for 
the EEG dataset demonstrated that the BiGridLSTM 
combined with CNN in the GAN architecture had the 
best results with 0.997, 0.0314, 5.985, 0.0475, and 0.982 
for the aforementioned metrics, respectively.

Another study by Fan et  al. compared five different 
DA techniques for sleep EEG signals [83]. Mainly, sleep 
consists of three main stages, including wake (W), rapid 
eye movement (REM), and non-rapid eye movement 
(NREM) stage that includes N1, N2, and N3 [84]. The 
classification of sleep stages could have a great effect on 
people’s lives to enhance and monitor their sleep. Actu-
ally, it reflects the mental and physical health of people 
[85]. While automatic sleep staging models require a 
large amount of data, this paper compared DA tech-
niques as a potential solution including repeating minor-
ity classes (DAR), morphological change (DAMC), signal 
segmentation and recombination (DASR), dataset-to-
dataset transfer (DAT), and DCGAN. In addition, they 
adopted a typical CNN architecture classification model 
to assess the performance of the aforementioned DA 
approaches with a sleep staging model on two datasets 
(the Montreal archived of sleep studies (MASS) / Sleep-
EDF). Compared to the trained CNN classifier without 
DA, using GANs in particular successfully enhanced 
the overall classification performance as measured by 
using the accuracy, F1 score, and Cohen Kappa coeffi-
cient range (K) as evaluation metrics. Visual inspection 
and distance indicators also showed that the generated 
signals were real-like. Also, DCGAN performance out-
performed other techniques, in most cases, as it achieved 
0.767, 0.692, and 0.656 on the MASS dataset and 0.748, 
0.685, and 0.660 on the Sleep-EDF dataset for ACC, F1 
score, and K, respectively. However, the study posited 
that DCGAN methods suffered from the complexity 
and cost of resources for training compared to other DA 
methods. The models were implemented using Pytorch.

Zeng et  al. introduced a new transfer learning model 
of Generative Domain Adversarial Neural Network 
(GDANN) for detecting fatigue during driving [86]. This 
model utilized GAN to improve the EEG analysis with 

various subjects’ distributions. The architecture of this 
model consists of a combination of the DANN, including 
its three networks (Feature Extractor—Label Predictor—
Domain Classifier), and GAN. First, they modified the 
optimizer and the loss function of DANN in the hidden 
layer to map data from various distributions of different 
sources to the target domain. Then, GAN used random 
noise to generate fake data similar to the data distribution 
in the target domain resulting in the enhancement of the 
model training by balancing the dataset in the source and 
target domains. The feeding with different source domain 
data enables GDANN to choose the samples that had the 
best similarities for target data distribution. A compari-
son between the proposed model and other models such 
as DANN, SVM, and Easy Transfer Learning (EasyTL) 
was held. Cross-subject cross-validation process revealed 
that GDANN had the best average accuracy of 91.63% 
in fatigue detection across subjects. In addition, the 
GDANN effect was obvious with respect to the original 
model DANN as it attained significantly higher classifica-
tion accuracy by 11.9%. Nonetheless, the proposed model 
was noted as more time-consuming compared to other 
methods where it was implemented by Python 3.6.8 tools 
under a Linux environment with Ubuntu 5.4 operating 
system.

Hazra et al. proposed three different feature extraction 
methods for EEG cognitive state classification, Gam-
matone Cepstrum Coefficients (GTCC), a combination 
of GTCC and Mel Frequency Cepstrum Coefficients 
(MFCC), and 1D CNN model to extract features after the 
ensemble (GTCC + MFCC) feature space [87]. Moreover, 
a 1D DCGAN model was employed as a classifier based 
on the proposed methods GTCC, GTCC + MFCC, and 
GTCC + MFCC + CNN. With a novel proposal of EEG 
data collection protocol, external vision stimuli from 
multiple sources were used for evaluating the aforemen-
tioned methods such as EOS (Emotion Oriented State), 
MOS (Memory Oriented State), ROS (Relaxing Oriented 
State), TOS (Thinking Oriented State), SROS (Simple 
Regular Oriented State) and IOS (Illness Oriented State). 
The study included a comparison with other feature 
extraction methods such as Discrete Wavelet Transform 
(DWT), MFCC using Fisher Discriminant Ratio (FDR), 
and Logistic Regression (LR) statistical metrics. Further-
more, multiple classification models were used to obtain 
the performance accuracy on extracted features like 
Probabilistic neural network (P-NN), LDA, Multi-Class 
SVM (MCSVM), Decision Tree (DT), and RF. The results 
of this study demonstrated that the 1D DCGAN model 
classifier had a better performance than the basic CNN 
model. The proposed GTCC + MFCC achieved with the 
DCGAN model an accuracy of 96.42%, similar to the 
GTCC + MFCC + CNN performance with an accuracy 
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of 96.14%. Meanwhile, both models were better than the 
GTCC alone with 87.79% accuracy. Furthermore, the 
accuracy of all proposed models with the base-CNN clas-
sifier was lower than using the DCGAN classifier.

Also, Tazrin et al. adopted DCGAN for increasing their 
dataset size with their proposed model called Logic-in-
Headbands-based Edge Analytics (LiHEA) [88]. The 
DCGAN of this model was implemented by three 1D 
convolutional layers followed by three LeakyReLU layers 
for the generator and the discriminator where various IoT 
devices like Raspberry Pi 3, and Raspberry Pi 4. NVIDIA 
Jetson Nano has been utilized. In addition, the dataset 
of confused student EEG signals from a public reposi-
tory [89] was employed to train the three algorithms: 
RF, DNN, and CNN. The dataset includes the student’s 
recorded EEG signal while watching educational videos 
as a mental health assessment and indicator for concen-
tration levels. Although augmented data by DCGAN 
had a negative effect on the RF model, the performance 
of both DNN and CNN was considerably improved by 
about 20% using the artificially synthetic data of EEG 
samples. In fact, the generated data with DNN led to clas-
sification accuracy enhancement from 54.9 to nearly 80% 
when the training data increased by 4 times. Meanwhile, 
it was noted that the proposed DCGAN model increases 
the training complexity of the LiHEA model.

Cheon et al. presented their study of conditional tabu-
lar GAN (CTGAN) and tabular GAN (TGAN) for cre-
ating synthetic data [90]. TGAN is constructed of an 
LSTM as a generator and a feed forward NN discrimi-
nator. Meanwhile, conditional vector and generator loss 
were applied for solving imbalance problems in CTGAN. 
Again, the confused student EEG dataset [89] was used 
for the assessment of both methods. By adopting dif-
ferent visualization methods for evaluation such as the 
column-specific sum, distribution of real and synthetic 
data, and column-specific differences, the similarity 
between real and artificial data, the generated data was 
validated. Moreover, the similarity score, which is the 
average of correction column correction—mirror column 
correction—1-MAPE estimator—1-MAPE PCA, con-
firmed that CTGAN generated more real-like data than 
TGAN. Finally, the authors fed the generated data to RF, 
XGBoost, LightGBM, and Catboost algorithms. In turn, 
the RF classifier using the TGAN data attained the high-
est accuracy compared to all other algorithms. However, 
using both TGAN and CTGAN failed to achieve better 
accuracy compared to the algorithms without generated 
data.

Lee et  al. proposed SIG-GAN for imputing miss-
ing signal sequences in EEG data [91]. The architecture 
of the Sig-GAN included the encoder of a generator 
which employed two sequences of convolutional layers 

in parallel and its input signals pass through two dif-
ferent 1-dimensional CNN. Furthermore, two layers of 
transpose CNNs for the decoder were designed with the 
discriminator and auxiliary network which were stacks 
of convolutional layers and consisted of a fully con-
nected layer. They used the publicly available Sleep-EDF 
database [92] to evaluate their technique. By using the 
DeepSleepNet classifier [93], SIGGAN yielded 65.67% 
classification accuracy of sleep stage scores with only 
the first 30-s signals compared to the real data accuracy 
of 82.85% without imputation. In addition, the technical 
evaluation was conducted by comparison with two other 
methods of imputing missing data (with random sam-
pling and another WGAN of [27] methods) by varying 
the ratio of missing data in the signal sequences (miss-
ing from 0 to 50%). Eventually, the results confirmed 
that SIGGAN remarkably outperformed the other meth-
ods with almost all ratios of missing data. On the other 
hand, the classification accuracy of the other imputation 
algorithms dramatically falls with removing data by 48%; 
SIGGAN achieved 75.75% and about 78% with Deep-
SleepNet and SleepEEGNet [94] classifiers, respectively. 
Meanwhile, the model got only 45.05% accuracy without 
an adversarial loss (GAN loss) which demonstrates the 
necessity for the GAN part of the model. Finally, all deep 
neural networks using have been implemented by Ten-
sorFlow 2 on Python 3.7.

Discussion
This overview of the state-of-the-art GAN models for 
EEG elucidates the enviable contributions of GANs to 
solve the issues of scarcity and limitation of small-scale 
datasets in various EEG tasks. GANs have demonstrated 
success in augmenting EEG data for motor imagery, 
P300-based applications, emotion recognition, and epi-
leptic seizure detection and prediction. It is noteworthy 
here that a few studies on EEG-based image generation 
have been excluded from this article such as [95–98], 
and [99, 100]. The main justification for this elimination 
is that these studies mainly use GAN methods for image 
generation and EEG signals were being used as an auxil-
iary input without applying GAN to the EEG data itself. 
Throughout this overview, it is noticeable that different 
versions of WGAN have demonstrated their superiority 
to generate EEG data and improve the performance of 
the aforementioned tasks.

Despite the efficacy of GANs, few considerations have 
been noted for using GANs with EEG signals and need 
to get more attention and investigations in future stud-
ies. First, the existence of high-frequency artifacts in the 
generated samples has not been sufficiently explored. 
These artifacts have an obvious implication for the mod-
el’s performance [101]. However, few studies through 
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our reviews paid attention to these artifacts in generated 
signals and aimed to alleviate their impact. Apart from 
that, the quality metric for the generated EEG data is 
still a heated-up issue. To date, there is no direct metric 
that could be considered a real assessment of the gener-
ated EEG signals’ quality and directly relate it to the per-
formance of the model [21, 27]. IS and FID were used as 
metrics for clarity and variety of the generated signals. In 
addition, WD and ED were also used as similarity indi-
cators. Nonetheless, IS is sensitive to noise, and both IS, 
nor FID are not able to deal with overfitting [101]. Fur-
thermore, WD increases complexity, and ED with several 
attributes could be imprecise [101]. Second, the number 
of artificially augmented data samples has a remarkable 
effect on the performance of the classifier after data aug-
mentation [39]. It was noted that after a specific number 
of generated data samples, there is a drastic variation in 
the model performance either positively or negatively. 
Moreover, the number of available training set data 
points is believed to represent an issue for GAN per-
formance in the case of extremely small datasets [102]. 
Third, the use of GAN for preserving patient privacy by 
data augmentation showed that identifying the patient 
from synthetic signals was more difficult than from real 
ones. However, there is always a trade-off between data 
quality and data privacy as concealing more features 
results in worse quality of data. Fourth, another chal-
lenge that is worth exploring is employing GANs in 
unsupervised approaches. Although GAN was success-
fully adopted in an unsupervised manner and attained 
accepted results in each task [18, 57, 63, 68, 74], further 
investigations of GAN for unsupervised algorithms are 
still required to enhance the performance and achieve 
these results that compete with the supervised processes. 
Finally, the training process of GAN is not considered an 
easy task and generally takes a lot of time, which might 
require recording longer initial datasets to start with 
[86, 103]. Moreover, GANs could be more complex than 
other data augmentation techniques because of their 
adversarial nature.

Ultimately, future studies could provide a better insight 
into why augmentation with GANs improves the classifica-
tion accuracy in various applications. This aligns with the 
goals of developing explainable artificial intelligence tech-
niques in the domain of EEG analysis [104]. Another direc-
tion to explore is using GANs to augment limited training 
data, which could result in reducing the amount of cali-
bration data needed for practical EEG-based applications. 
This idea could be extended to additionally reduce the test-
ing data, especially in applications that require recording 
multiple trials for the same task. Moreover, GANs could 
be utilized in developing across-subject models which have 
potential applications in transfer learning and in online BCI 

designs. Finally, optimal channel selection and the selection 
of the best set of hyperparameters for GANs require more 
investigations in order to avoid the high computational 
load and the generation of redundant data.

Conclusion
Undeniably, the small size of EEG datasets represents a 
challenge when being analyzed using machine and deep 
learning techniques. There are various reasons for the scar-
city of EEG data including the availability of subjects, ses-
sion time, and procedure complexity. GAN, as a current 
rising deep learning technique, showed outstanding results 
in augmenting data in different fields including images, 
and video. Furthermore, it has proven to be a promising 
approach to improving the performance of DNNs. Thus, 
in this article, we provided a comprehensive overview 
of state-of-the-art GAN methods applied to EEG data. 
To our knowledge, this is the first article that focuses on 
using GANs in different applications involving EEG sig-
nals. Based on this overview, we could conclude that GANs 
are able to successfully improve performance in different 
EEG-based applications. Further investigations should be 
conducted to address various issues associated with using 
GANs in this field.
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