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Abstract 

Background An incomplete spinal cord injury (SCI) refers to remaining sensorimotor function below the injury with 
the possibility for the patient to regain walking abilities. However, these patients often suffer from diverse gait deficits, 
which are not objectively assessed in the current clinical routine. Wearable inertial sensors are a promising tool to 
capture gait patterns objectively and started to gain ground for other neurological disorders such as stroke, multiple 
sclerosis, and Parkinson’s disease. In this work, we present a data-driven approach to assess walking for SCI patients 
based on sensor-derived outcome measures. We aimed to (i) characterize their walking pattern in more depth by 
identifying groups with similar walking characteristics and (ii) use sensor-derived gait parameters as predictors for 
future walking capacity.

Methods The dataset analyzed consisted of 66 SCI patients and 20 healthy controls performing a standardized gait 
test, namely the 6-min walking test (6MWT), while wearing a sparse sensor setup of one sensor attached to each 
ankle. A data-driven approach has been followed using statistical methods and machine learning models to identify 
relevant and non-redundant gait parameters.

Results Clustering resulted in 4 groups of patients that were compared to each other and to the healthy controls. 
The clusters did differ in terms of their average walking speed but also in terms of more qualitative gait parameters 
such as variability or parameters indicating compensatory movements. Further, using longitudinal data from a subset 
of patients that performed the 6MWT several times during their rehabilitation, a prediction model has been trained 
to estimate whether the patient’s walking speed will improve significantly in the future. Including sensor-derived gait 
parameters as inputs for the prediction model resulted in an accuracy of 80%, which is a considerable improvement 
of 10% compared to using only the days since injury, the present 6MWT distance, and the days until the next 6MWT 
as predictors.

Conclusions In summary, the work presented proves that sensor-derived gait parameters provide additional infor-
mation on walking characteristics and thus are beneficial to complement clinical walking assessments of SCI patients. 
This work is a step towards a more deficit-oriented therapy and paves the way for better rehabilitation outcome 
predictions.
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Background
Depending on the severity and location of the lesion, spi-
nal cord injury (SCI) causes heterogeneous deficits [1]. 
The most consistently appearing consequence is a change 
in the sensorimotor function [2], leading to impair-
ments in the function of the legs, arms, or whole body. 
Because of recent advances in the acute management 
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and prevention of secondary injuries, an increasing num-
ber of SCIs are being classified as incomplete [3, 4]. An 
incomplete injury refers to remaining sensor or motor 
function below the level of injury. This incomplete injury 
allows for a significant change in neuroplasticity, with a 
partial or full locomotor recovery [5]. Indeed, approxi-
mately 70% of the incomplete SCI patients will regain 
some ambulatory walking function [6]. However, most 
of the patients who regain mobility walk with deficits. 
An SCI gait is typically described with a reduced speed, 
changes in gait phase durations, and impairments in gait 
quality and balance [1].

Measurement tools with good clinimetric properties 
are essential to assess gait deficits comprehensively and 
to track the impact of interventions during rehabilitation 
on locomotion recovery [1, 7]. In the current clinical rou-
tine, walking capacity is mainly assessed using standard-
ized gait tests. Examples for functional gait tests are the 
ten-meter walking test, the timed-up-and-go test, and 
the six-min walking test (6MWT) [8]. In the 6MWT the 
distance that the patient is able to walk within 6 min is 
measured, thus, the patients’ sustained walking speed is 
assessed. And indeed, walking speed has been described 
as the most responsive to improvement in walking capac-
ity [9]. However, this quantitative test does not give any 
insights into the patient’s underlying impairments [10] 
and compensatory mechanisms [11]. To assess these, gait 
laboratories using marker-based motion capture are cur-
rently considered as the gold standard. They provide a 
detailed gait analysis with both spatiotemporal and kin-
ematic parameters. However, their main drawback is that 
the assessments are restricted to the necessary laboratory 
environment, and the related expenses, time, and exper-
tise required.

Wearable sensors such as inertial measurement units 
(IMUs) could become a compromise between clinical 
walking tests and gait laboratories. With advances in sen-
sor technology and accessibility of these devices, they are 
becoming increasingly popular and have the potential to 
revolutionize clinical research as well as established clini-
cal assessments [12]. The sensor units are affordable, easy 
to use, and do not add any burden to the patient [13]. 
For SCI patients, data derived from IMUs could provide 
additional information during a quantitative walking test 
by describing the gait pattern and thus capturing the gait 
deficits objectively. Given the relatively long duration of 
the 6MWT, typical spatiotemporal parameters as well as 
metrics related to fatiguability and quality of the gait can 
be gathered for analysis. To this date, most of the research 
using wearable inertial sensors during the 6MWT were 
pilot, proof-of-concept, validation and feasibility studies 
in mostly multiple sclerosis, stroke, Parkinson’s disease, 

and chronic obstructive pulmonary disease populations 
as summarized in the recent review of Storm et al. [14].

One of the challenges of using technology-aided assess-
ments is the plethora of generated outcome measures 
which often have a high covariance [15] and are usu-
ally difficult to interpret for clinicians [16]. To avoid 
redundancy and facilitate interpretation, approaches 
such as principal component or factor analysis can be 
used to identify and group relevant outcome metrics 
into domains, e.g. rhythm and symmetry of gait. This 
approach has been applied to elderly, and Parkinson’s 
disease populations, as well as in idiopathic fallers using 
gait metrics generated from an electronic walkway [17]. 
A data-driven selection of relevant sensor-derived gait 
parameters for a comprehensive characterization of 
walking after a spinal cord injury using an extensive data-
set is still missing. So far, studies using IMUs to charac-
terize walking in individuals with SCI focused mainly on 
the validity of the sensor-derived metrics [18, 19], the 
test-retest reliability [20], or sensor-derived metrics were 
manually selected to compare different walking condi-
tions [21–23].

Current clinical assessments have mainly two pur-
poses: to track the patient’s current status objectively but 
also to serve as a foundation for rehabilitation outcome 
predictions by clinicians. Technology-aided assessments 
could further enhance such rehabilitation outcome esti-
mations. As an example, Kanzler et  al. [15] have shown 
that including digital health metrics for the prediction of 
upper limb rehabilitation outcomes in multiple sclerosis 
remarkably increased the accuracy of the model by 10%. 
Whether sensor-derived gait parameters could similarly 
help to predict if a patient will improve his or her walking 
capacity has not yet been investigated for SCI patients. 
Especially in this heterogenous patient cohort, bet-
ter prediction models of recovery profiles are needed to 
manage the patient’s expectations better and to improve 
personalized and targeted treatment plans further.

The project aimed to identify sensor-derived gait 
parameters that complement a standardized walking test. 
A dataset of patients with an incomplete SCI and healthy 
controls performing a 6MWT while wearing a sparse 
sensor setup of one IMU attached to each ankle has been 
acquired. Further, demographics and clinical scores were 
collected to bring the sensor-derived gait parameters into 
context with established clinical characteristics. A subset 
of the participants with SCI was performing the instru-
mented 6MWT several times during their course of reha-
bilitation. This longitudinal dataset allowed the training 
of a prediction model to estimate whether a patient will 
improve the walking capacity or not. The hypotheses of 
this project were that (i) sensor-derived gait parameters 
can identify gait deficits not captured by the walking 
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speed, such as compensatory movements, and (ii) includ-
ing sensor-derived parameters as predictors will improve 
the classification accuracy of whether a patient will 
improve the walking capacity in the future. A data-driven 
approach using signal processing and machine learn-
ing techniques to extract and select the relevant sen-
sor parameters was used to address these two research 
hypothesis.

Methods
Subjects
The participants of this study were individuals with an 
incomplete SCI, undergoing either a stationary or ambu-
latory rehabilitation program. Patients with all neurologi-
cal levels of injury were included if they were older than 
18 years and were able to walk for at least 10  m with-
out physical assistance of a therapist. However, the use 
of walking aids such as braces, walkers, crutches, canes 
or similar was allowed. Participants had to be excluded 
if comorbidities affecting their gait, such as orthopedic 
problems, were present. In addition, data from neuro-
logically unimpaired participants was collected as refer-
ence data of healthy controls. Similarly, these participants 
had to be older than 18 years and without any orthope-
dic problems. The measurements were approved by the 
ethics committee of the Canton Zurich (BASEC No. 
2022-00730) and merged with a previously recorded 
dataset, including data from healthy controls (KEK- ZH 
No. 2013-0202). All measurements were performed at 
the University Hospital Balgrist in accordance with the 
standards of the Declaration of Helsinki and Good Clini-
cal Practice guidelines.

Protocol and data collection
Clinical scores were collected (if available) from the 
electronic medical record system for the participants 
with SCI. From the American Spinal Injury Associa-
tion impairment scale (AIS), the lower extremity motor 
score (LEMS), the neurological level of injury (NLI) and 
the completeness of the injury were retrieved. Further, 
the Spinal Cord Independence Measure (SCIM) [24], the 
Mobility domain of the SCIM, the Walking Index for Spi-
nal Cord Injury (WISCI) [25], and the days since injury 
were compiled. A patient was assumed to be in a chronic 
stage if the injury happened more than 365 days ago. 
Demographic information has also been gathered for all 
participants, such as age, weight, height, and sex.

All participants performed a 6MWT at their self-
selected walking speed. The subjects were asked to walk 
safely but as quickly as possible along a hallway. Rest 
was allowed, and patients could also use walking aids if 
needed. The type of walking aid used and whether the 
participant needed an ankle orthosis were recorded. An 

experienced physiotherapist administered the test as 
part of the rehabilitation program. A subset of the par-
ticipants with SCI performed the 6MWT several times 
during their rehabilitation, leaving at least two weeks 
between two consecutive assessment sessions to track 
their improvement.

During the walking test, the participants had one iner-
tial sensor unit (ZurichMOVE, Switzerland) attached 
with flexible straps lateral above each ankle as shown in 
Fig. 1. The IMU modules (MPU-9250, 35 x 35 x 12 mm, 
18  g), which included a tri-axial accelerometer (range: 
±16 g), a tri-axial gyroscope (range: ±2000◦/s ), and a tri-
axial magnetometer, recorded at a sampling frequency of 
200Hz. Magnetometer data was not included in the anal-
ysis because the magnetic field is often distorted indoors. 
The two inertial sensor units were time synchronized via 
Bluetooth Low Energy.

Data postprocessing
IMUs require appropriate post-processing to extract 
metrics of interest from the raw sensor data. Here, an 
algorithm was used that was previously developed in 
our group and validated specifically for the population 
of SCI [19]. The processing steps of this algorithm are 
explained in brief in the following and the collection of 
the extracted gait parameters are summarized in Table 1. 
An extensive description of the algorithm and the accu-
racy of the sensor-derived spatio-temporal parameters 
in comparison to a gold standard system can be found in 
our previous work [19].

The algorithm uses adaptive thresholds to detect indi-
vidual steps and gait events based on the frequency spec-
trum of the data, which makes this algorithm robust 
across a wide range of walking speeds. More specifically, 
a fast Fourier transform is applied to the gyroscope data 
perpendicular to the sagittal plane ( ωz ). The first main 
frequency component of this frequency spectrum corre-
sponds to the average walking cadence. Individual strides 
and gait events, such as the initial and final foot contacts, 
are identified by local peaks in the gyroscope and accel-
erometer data. The window width, in which these peaks 
are searched for, and the threshold for the minimum peak 
height are adapted based on the average walking cadence 
and the distribution of ωz , respectively. The cadence and 
typical gait phases, such as the swing, stance, and double 
support phases can subsequently be derived from these 
gait events.

Further, the 3D sensor trajectory for each stride 
is reconstructed using a typical double integration 
approach. The underlying concept is to integrate the 
acceleration data twice to obtain displacement trajecto-
ries. However, accelerometers measure not only move-
ment acceleration, but also gravity, which needs to be 
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subtracted prior to integration. Hence, the orientation 
of the sensor is estimated using the magnetometer-free 
approach of Seel et  al. [26]. The drift in the inclination 
angle can be corrected by fusing the accelerometer and 
gyroscope data. Using this sensor orientation, the sensor 
data can be transformed from the local, moving coordi-
nate system into a global, fixed coordinate system. In this 
fixed coordinate system, the gravitational component can 
be subtracted from the vertical axis of the accelerometer 
data. After receiving the pure movement acceleration, 
this data is integrated twice for each stride using a trap-
ezoidal integration method to obtain the 3D trajectories. 
Since a magnetometer-free approach was chosen, the ori-
entation estimation suffers from a drift around the head-
ing angle, which is addressed by rotating the data towards 
the main movement direction as described by Trojan-
iello et al. [27]. In addition, the sensor data suffers from 
thermo-mechanical noise, which results in a second-
order drift when being integrated twice. Smartly chosen 

boundary conditions address this issue, such as the “zero-
velocity-update” during mid-stance modified for the 
ankle sensor placement. Spatial parameters like the stride 
length, height (maximum vertical displacement), and 
width (maximum sidewards displacement) can then be 
extracted from the sensor trajectory. Further, the walking 
speed is derived from the stride duration and length.

All gait parameters X (stride duration, step duration, 
swing phase, double support phase, stride length, stride 
width, stride height) were extracted for both legs and all 
strides. Statistical features were computed for these, such 
as the mean, coefficient of variation, the asymmetry and 
difference to reference. The coefficient of variation (cov) 
is defined as the standard deviation σ divided by the 
mean X  of all strides during the 6MWT.

Further, the asymmetry (asym) between both sides was 
computed with the symmetry index [28]:

And the difference to reference (d2r) was computed as 
the difference to the gait parameter of healthy controls 
Xref  interpolated to the same walking speed.

In addition to the spatiotemporal gait parameters, ankle 
cyclograms have been derived from the 3D sensor trajec-
tory by subtracting the endpoint’s displacement with ref-
erence to each stride’s starting point. This processing step 
results in 3D enclosed shapes, as shown for one example 

(1)cov =
σ

X
∗ 100%

(2)asym =
|Xleft − Xright |

0.5 ∗ (Xleft + Xright))
∗ 100%

(3)d2r =
X − Xref

Xref

∗ 100%

Table 1 Description of gait parameters

Gait parameter (Statistical features) Description

Stride duration (mean, cov, asym, d2r) Time between two consecutive heel strikes of the same side

Step duration (mean, cov, asym, d2r) Time between the heel strike of one side until the following heel strike of the opposite side

Swing phase (mean, cov, asym, d2r) Relative time of the time between toe off and heel strike of the same side w.r.t. the stride duration

Double support phase (mean, cov, asym, d2r) Relative time of the time when both feet are on the ground w.r.t. the stride duration

Stride length (mean, cov, d2r) Distance in-between two heel strikes of the same side

Stride width (mean, cov, asym, d2r) Maximum lateral displacement during a stride

Stride height (mean, cov, asym, d2r) Maximum vertical displacement during a stride

Cyclogram top view (ACC, SSD, area) Top view of the ankle endpoint trajectory

Cyclogram side view (ACC, SSD, area) Side view of the ankle endpoint trajectory

Smoothness Modified spectral arc length of the angular velocity of the sagittal plane

Change in speed, stride length, cadence Slope divided by the intercept of the linear fit of the parameters over the 6 min

Speed inconsistency Absolute value of the change in speed

Fig. 1 Participant wearing one inertial measurement unit attached 
with a flexible strap laterally above each ankle. Enlarged schematics 
depicts the sensor module with its local coordinate system
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patient in Fig.  2. After scaling and centering these top 
view and side view cyclograms, the shape can be com-
pared to a physiological reference shape with the sum 
of squared differences (SSD) as described by Awai et al. 
[29]. The advantage of this method is that it is independ-
ent of the stride length. An SSD of 0 would indicate no 
difference between the cyclogram of the participant and 
the physiological reference. Furthermore, the within-
subject cycle-to-cycle consistency of these cyclograms 
was quantified by the angular component of coefficient of 
correspondence (ACC) as described by Field-Fote et  al. 
[30]. The range of ACC goes from 0% (no consistency) to 
100% (perfect consistency). In addition, the area enclosed 
in these cycles was derived. The SSD, ACC, and the area 
were computed for the side and top view cyclograms.

The movement smoothness was quantified by the 
frequency spectrum of the sagittal angular velocity. 
More specifically, the modified spectral arc length was 
calculated according to Balasubramanian et  al. [31], 
because this method is less prone to differences in 
the duration of the movement and can be applied for 
cyclic movements like gait [32].

Further, the change in speed, stride length, and 
cadence over the 6 min was computed as a measure of 
fatigue. The change was defined as the slope of a linear 
fit of the speed, stride length, and cadence divided by 
the intercept of this linear fit. In addition, the speed 
inconsistency was computed as the absolute value of 
the change in speed.

To reduce redundant information, gait parameters 
were only used for the analysis from the more impaired 
side (if available for both sides), which was defined as 
the side with the lower LEMS. The right side was taken 
for the healthy controls, and if both sides had the same 
LEMS score.

Statistical analysis
Identifying gait clusters
A cluster analysis was performed on the gait parameters 
of the first 6MWT of all participants with SCI to identify 
patients with similar gait characteristics. First, a princi-
pal component analysis was executed on the scaled and 
centered gait parameters to reduce the high-dimensional 
dataset. The number of principal components (PCs) 
for the clustering was selected based on the cumulative 
explained variance. To identify the optimal number of 
clusters a hierarchical clustering using Ward’s criterion 
was performed. A k-means clustering on the PCs assem-
bled the SCI participants into distinct groups. A variance 
analysis of demographic data and clinical scores identi-
fied significant differences in the cluster composition. In 
particular, a Kruskal-Wallis test was chosen for the con-
tinuous variables (e.g., SCIM) and a Fisher test for the 
categorical variables (e.g., percentage of acute patients) 
due to the non-normality of the data. Further, the most 
discriminating gait parameters between the clusters were 
identified to characterize the walking pattern of the dif-
ferent clusters. More specifically, the first five gait param-
eters that contributed the most to each PC were selected. 
This set of parameters was further reduced to a core set 
of gait metrics, by only keeping parameters that showed a 
significant difference between the clusters (Kruskal-Wal-
lis, α = 0.05 ) and by eliminating parameters that highly 
correlated with another parameter (Pearson correlation 
coefficient > 0.9 ) to reduce redundant information. A 
post-hoc test (Dunn test, α = 0.05 ) identified significant 
differences between the clusters in this core set of gait 
parameters and allowed the comparison of the clusters to 
healthy controls.

Prediction of improvement in walking capacity
To predict whether a patient will improve the walking 
capacity significantly in the future, a machine learn-
ing model has been trained on the data of participants 

Fig. 2 Side view (A) and top view (B) cyclograms of the ankle endpoint trajectory. Curves are shown for both the left and right sides of an 
exemplary SCI patient (with a clear more and less physiological side), together with the averaged reference data of healthy controls
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that performed the 6MWT at least twice. The depend-
ent variable of the model was whether the participant 
improved in the 6MWT from the “present” to “future” 
assessment more than the standard error of measure-
ment (SEM), which was reported to be 16.5  m for SCI 
[33]. Any increase above this SEM was assumed to be 
an actual change in walking capacity rather than meas-
urement noise. In other words, a binary random for-
est classifier was trained to predict whether a patient 
will improve above the SEM or not until the following 
6MWT assessment.

Two different feature sets were used to identify 
whether the sensor-derived gait parameters can improve 
this prediction when using them as additional predictors. 
The first feature set only included the “present” 6MWT 
distance, at what time point after injury this “present” 
6MWT was performed, and the number of days until the 
“future” 6MWT was performed. If the time point of the 
first 6MWT was more than 365 days after injury, all trials 
of this patient were shifted such that the first 6MWT was 
set to 365 days, because it is assumed that after this time 
point, the patient is in a chronic state. The second feature 
set additionally included all sensor-derived gait parame-
ters from the “present” 6MWT as predictors. All features 
were scaled to have unit variance and centered around 
their respective mean. Further, redundant features (Pear-
son correlation coefficient > 0.9) were removed and only 
the first 10 most contributing features were included to 
avoid overfitting of the model to the training data.

The classifier was trained and evaluated in a leave-one-
subject-out cross-validation procedure, which means that 
the classifier was trained on all trials except for the trials 
of one participant, and then tested on the trials of this 
excluded participant. This procedure was repeated until 
the classifier was trained and tested on all data to evalu-
ate the model’s generalizability to unseen data. Accuracy 
was chosen as the evaluation metric to compare the pre-
dictive power of the two different feature sets. Accuracy 
was defined as the sum of true positives and true nega-
tives divided by the total number of observations. Differ-
ence in features between improvers and non-improvers 
were analysed with the Kruskal-Wallis test ( α = 0.05).

Results
Participants
The demographics and clinical characteristics of the 66 
participants with SCI and 20 healthy controls are sum-
marized in Table  2. Both cohorts were similar in age, 
sex distribution, and BMI. However, the healthy con-
trols achieved overall longer distances in the 6MWT 
compared to those achieved by the participants with 
SCI (644±93  m vs. 362±195  m). The cohort of par-
ticipants with SCI was quite heterogeneous. The first 

measurement was conducted in the chronic phase (> 365 
days after injury) for around 65% of the SCI participants. 
Around half of the participants had a traumatic injury. 
The majority had an injury that was both sensory and 
motor incomplete (AIS D score), whereas the NLI ranged 
from cervical to sacral. On average, the participants 
with SCI had a LEMS of 41.9± 9.5 out of a maximum 
achievable score of 50 and a SCIM of 76.2± 21.1 out of 
100. Focusing only on the mobility domain of the SCIM, 
the participants had a score of 30.2± 10.6 out of 40. In 
terms of walking aids, 47% used some type of walking aid 
and 15.2% used an orthosis, which resulted in an overall 
WISCI II score of 13.1± 5.4 out of 20.

A subset of 23 out of the 66 participants with SCI per-
formed the 6MWT more than once at different time 
points during their rehabilitation: 10 were measured 
twice, 9 were measured three times, and 4 were meas-
ured four times. The days since injury and the 6MWT 
outcome for this subset of participants are shown in 
Fig. 3. The median time between the two measurements 
was 35.5 days (Inter-quartile range: 30–79).

Characterization of the gait clusters
To identify groups of patients with similar gait charac-
teristics, the patients were clustered on the PCs derived 
from the sensor gait parameters. The first four PCs of the 
gait parameters explained 69.4% of the variance in the 
data and were selected for the clustering. Four distinct 
clusters were obtained. Their composition in terms of 
demographics and clinical scores is presented in Table 3. 
The clusters neither differed in demographics (age, sex, 
BMI) nor in the diagnosis (traumatic/non-traumatic) or 
the chronicity of the injury. However, the clusters differed 
significantly in their performance in the 6MWT, which 
determined the cluster number ordering and is presented 

Fig. 3 6MWT outcome of the subset of 23 patients with SCI that 
performed the assessment at least twice during rehabilitation. 
Data points corresponding to the same patient are connected and 
displayed with respect to their time since injury. The dotted line 
indicates the beginning of the chronic phase
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in Fig. 4. It was found that both the first cluster and the 
healthy cohort differed significantly from every other. 
Further, the clusters varied in the clinical scores, such as 
the LEMS, SCIM, SCIM Mobility, use of walking aid or 
orthosis, and WISCI. With a few exceptions, the motor 
capacity and independence measures were decreasing, 

and the use of walking aids or orthosis was increasing 
with increasing cluster number.

Further, the clusters were compared in terms of the 
most relevant gait parameters, which were obtained with 
a feature selection procedure. More specifically, the five 
most important features of each PC were picked and 
then checked for redundancy. This procedure resulted in 
eight gait parameters shown in Fig. 5, where the results 
are displayed for each cluster and the healthy controls. 
Comparing the clusters to the healthy controls with 
respect to these eight features, it was found that cluster 
1 and healthy controls did only differ in terms of their 
performance in the 6MWT. Cluster 2 showed a signifi-
cantly higher stride width, stride duration, and an abbre-
viated double support phase (negative d2r). Cluster 3 
had a higher stride duration, a lower top view area, and 
a higher variability in the double support phase. Further-
more, the speed was less consistent than in healthy con-
trols. Cluster 4 had a longer stride duration and higher 
stride width than healthy controls.

When comparing the individual clusters to each other, 
it was found that the stride duration of cluster 1 differed 

Fig. 4 6MWT performance of the 4 clusters and healthy controls 
(HC). Significant differences are indicated by *(< 0.05), ** (< 0.01) or 
***(< 0.001)

Fig. 5 Selected gait parameters (A–H) shown for the 4 clusters and healthy controls (HC). Significant differences are indicated by *(< 0.05), ** (< 
0.01) or ***(< 0.001)
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significantly from those of the other 3 clusters, but no 
substantial discrepancy has been found between these 3 
clusters. The stride widths of clusters 2 and 4 were sig-
nificantly higher compared to the other two clusters. 
Further, the top view area of cluster 2 was significantly 
higher than in the other three clusters. The stride length 
was more extended (positive d2r) in cluster 2 than in 
cluster 1. The variability (cov) of the double support 
phase was lower in cluster 1 than in cluster 2 and 3 and 
the d2r of the swing phase was different in cluster 2 com-
pared to cluster 3. More specifically, the swing phase of 
cluster 2 was found to be prolonged, whereas that of clus-
ter 3 shorter than in healthy controls walking at the same 
speed. Accordingly, the d2r of the double support phase 
differed significantly between clusters 2 and 3, as well as 
between clusters 2 and 4. The speed was less consistent in 
cluster 3 than in cluster 1.

Prediction of improvement in walking capacity
A subset (23 patients) was measured either 2, 3, or 4 
times during the course of their rehabilitation. When 
counting two consecutive 6MWTs as one observation for 
the prediction model, the dataset consisted of 40 obser-
vations. Twenty-one observations were “improvement” 
and 19 “no improvement”, depending on whether the 
improvement in the 6MWT distance was greater than 
the SEM of 16.5 m or not, respectively.

The prediction model of whether a patient will perform 
better at the next 6MWT with an improvement more 
than the SEM was tested on two different feature sets and 
is presented in Fig. 6. The binary classification yielded an 
accuracy of 70% when the model was trained on the “pre-
sent” 6MWT distance, the days since injury, and the days 
until the next 6MWT assessment only. Including sen-
sor-derived gait parameters (feature set 2) improved the 

performance of the classifier by 10% and thus achieving 
an overall accuracy of 80%. The 10 most important fea-
tures selected by the model were (in the order of impor-
tance): the days since injury, the change in cadence, the 

Fig. 6 Classification performance of “Feature Set 1” (A) and “Feature Set 2” (B) of the prediction whether a participant will improve the walking 
capacity. Confusion matrices show both the normalized (and absolute) counts for each class

Table 2 Demographics and clinical characteristics of the 
participants

Values are presented as mean ± standard deviation. BMI body mass index, AIS 
ASIA Impairment scale, NA not assessed, NLI neurological level of injury, LEMS 
lower extremity motor score, SCIM spinal cord independence measure, WISCI 
walking index for spinal cord injury

Cohort SCI Healthy

Number 66 20

Age 55.6 ± 15.1 years 58.6 ± 11.4 years

Sex 28.8% female 20% female

BMI 24.9 ± 4.9 kg/m2 24.0 ± 3.86 kg/m2

6MWT 362 ± 195 m 644 ± 93 m

Chronicity 34.8% acute

Diagnosis 48.5% traumatic

AIS B: 3

C: 2

D: 50

NA: 11

NLI Cervical: 25

Thoracic: 22

Lumbar: 12

Sacral: 2

NA: 5

LEMS 41.9 ± 9.5

SCIM 76.2 ± 21.1

SCIM Mobility 30.2 ± 10.6

Walking Aid 47.0% with

Orthosis 15.2% with

WISCI II 13.1 ± 5.4
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side view ACC, the days until the next 6MWT, the asym-
metry in the double support phase, the change in stride 
length, the asymmetry of the swing phase, the stride 
height, the change in speed, and the area of the side 
view. How the features of set 1 and the additional sensor-
derived features differed between the improvers and non-
improvers is shown in Figs.  7 and 8, respectively. Most 
improvers were in the acute phase. And on average, there 
were fewer days until the next 6MWT. Interestingly, the 
“present” 6MWT distance did not differ significantly 
between the improvers and non-improvers.

From the sensor-derived features, it was found that 
improvers tend to have a positive change in speed, stride 
length, and cadence. Further, the improvers showed a 

higher stride height and side view area. The improvers 
also showed on average a slightly better cyclogram con-
sistency (ACC side view) and a slightly lower tempo-
ral asymmetry (asymmetry of the double support and 
swing phase), but these last findings were not found to be 
significant.

Discussion
In this work, we presented a data-driven characteriza-
tion of the gait properties of patients with a SCI. The 
data of 66 participants with SCI and 20 healthy controls 
performing a 6MWT while wearing IMUs attached to 
their ankles was used. A subset of 23 SCI participants 
performed the 6MWT at least twice, with a minimum 

Fig. 7 “Feature Set 1”: Days since injury (A), days until next 6MWT (B) and present 6MWT (C) grouped by whether the patient will improve until the 
next 6MWT or not. Significant differences are indicated by *(< 0.05), ** (< 0.01) or ***(< 0.001)

Fig. 8 Gait parameters (A–H) of “Feature Set 2” grouped by whether the patient will improve until the next 6MWT or not. Significant differences are 
indicated by *(< 0.05), ** (< 0.01) or ***(< 0.001)
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of two weeks between each assessment. Machine learn-
ing and statistical methods were used to select wearable 
sensor-derived outcome measures relevant (i) to identify 
and characterize groups of SCI patients with similar gait 
characteristics and (ii) to predict whether a patient will 
improve their walking capacity significantly in the future.

The patients with SCI included in this study repre-
sented this heterogeneous patient cohort. More spe-
cifically, patients with different levels (from cervical to 
sacral) and completeness (sensory and motor) of the spi-
nal injury were measured, from both acute and chronic 
stages. The average performance in the 6MWT of the 
participants with SCI included in this study was slightly 
higher (362±195 m) than values of chronic SCI patients 
(317±22  m) found by Barbeau et  al. [34]. The fact that 
around 35% of the participants with SCI in this study 
were in the acute phase and thus usually having a lower 
walking capacity explains the larger standard deviation.

Characterization of the gait clusters
A clustering procedure based on sensor-derived gait 
parameters separated the patients into four clusters. The 
cluster’s composition and gait characteristics were ana-
lyzed by identifying the most relevant and non-redun-
dant gait parameters.

Cluster 1 was the most prominent cluster, with 37 
patients. The mainly chronic SCI patients in this clus-
ter had a significantly lower performance in the 6MWT 
than the healthy controls but did not differ in any of the 
sensor-derived gait parameters. Hence, participants of 
this cluster walked slower but with a physiological walk-
ing pattern. Our recommendation for physiotherapy of 
patients in this cluster would be to improve their walk-
ing capacity by improving their intra- and inter-muscular 
regulation with strength training and coordination train-
ing. This should improve muscular control and overall 
fitness to foster speed improvement.

Participants of cluster 2 walked significantly slower 
than the participants of cluster 1. The most prominent 
walking characteristic of this cluster was the increased 
stride width and increased top view area, which are both 
indicators for a lateral circumduction and thus com-
pensatory movements [35]. Further, the double support 
phase is abbreviated (d2r) in cluster 2 in comparison to 
reference data presumably due to the compensatory 
movements mainly during the swing phase leading to 
redistribution in the relative gait phases. This indication 
is further confirmed when comparing the cluster com-
position of cluster 2 and 3: an overall lower LEMS and 
a higher percentage of chronic patients was found in 
cluster 2. Hence, we can assume that patients of cluster 
2 learned compensatory strategies that enable this group 
to walk faster in comparison to acute patients with better 

muscle scores. This is in line with the literature, as sev-
eral studies show that functional improvement can occur 
independently from neurologic recovery by using com-
pensatory mechanisms [6, 36]. Our recommendation 
for patients in this cluster is to improve their movement 
quality by innervation training and strength training of 
the target muscles rather than focusing on improving 
speed.

The most prominent characteristic of cluster 3 was 
found to be the high variability of the double support 
phase and the speed inconsistency. This high variability 
in rhythm has been shown to be a risk factor for falling 
[37]. We would recommend focusing on reducing mainly 
the temporal variability in these patients, e.g., by using 
robotic devices, such as the Lokomat®, or simple tread-
mill training. The predefined walking consistency and the 
many repetitions would foster a regular and periodic gait 
pattern towards safer walking.

Similar to cluster 2, an increased stride width was 
obtained in cluster 4, which again indicates a lateral cir-
cumduction and thus compensatory strategy [35]. In 
addition, cluster 4 was the smallest cluster with only four 
patients and showed a high variance, especially in the gait 
parameters related to the gait phases. We assume these 
patients suffer from multiple gait deficits, resulting in a 
wide variance in the gait parameters. Especially for the 
57% acute SCI patients included in this cluster, we rec-
ommend an individualized assessment of the foundations 
for walking, such as postural control and standing sta-
bility. Then, deficits with the possibility of improvement 
should be identified and addressed in a personalized defi-
cit-oriented training manner.

The main findings of this clustering including a physi-
otherapy recommendation for each cluster are summa-
rized in Fig. 9.

Prediction of improvement in walking capacity
Using the longitudinal data of a subset of patients with 
SCI that performed the 6MWT at least twice, predictors 
of whether a patient will improve in the future more than 
the SEM were identified. When the present 6MWT dis-
tance, the time since injury, and the days until the next 
6MWT were provided as inputs to the model a prediction 
accuracy of 70% was achieved. It was found that improv-
ers were mainly acute SCI patients that were measured 
again after a median of 34 days. Interestingly, the perfor-
mance in the 6MWT of the improvers ranged from 45 m 
to 585 m and was not statistically different from the non-
improvers, which means that both slow and fast walkers 
were able to improve their walking speed. This is in line 
with the literature where it was previously observed that 
the recovery of walking speed in SCI patients did not 
depend on the initial speed [6]. Wirz et al. demonstrated 
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that in SCI patients, it rather depended on an inherent 
capacity of functional improvement irrespective of initial 
impairment.

Adding sensor-derived gait parameters as predictors 
for the binary classification model could improve the 
prediction accuracy by 10%, to 80%. The sensor-derived 
features exhibited that improvers tend to have a higher 
change in speed, stride length, and cadence as predictors. 
Since the majority of improvers were in the acute phase, 
we assume that these patients improve their speed, stride 
length, and cadence consistency, both due to becoming 
more familiar with the test and also because they get 

better in estimating their abilities over the 6 min. Fur-
ther, the non-improvers showed a lower stride height and 
lower side view area in the present 6MWT, which might 
indicate weak hip and knee flexors to lift the foot. Previ-
ous studies stated that hip flexors, hip extensors, and hip 
abductors are determinant for ambulatory function [38, 
39]. In addition, improvers tend to have a lower asymme-
try in the gait phases (double support and swing phase) 
and higher cyclogram consistency (higher ACC), even 
though these observations were not significant. In sum-
mary, patients that improved their performance in the 
6MWT already had a more physiological walking pattern 

Fig. 9 Summary of the main findings on the cluster composition, gait characteristics and recommendations. LEMS lower extremity motor score

Table 3 Cluster composition

Demographics and clinical characterization of the clusters with the corresponding p-values of the Kruskal-Wallis test. Values are presented as mean ± standard 
deviation. BMI body mass index, AIS ASIA impairment scale, NLI neurological level of injury, LEMS lower extremity motor score, SCIM spinal cord independence 
measure, WISCI walking index for spinal cord injury

Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value

Number 37 14 8 7

Age 54.8 ± 15.3 60.2 ± 15.4 52.2 ± 14.3 55 ± 15.7 0.619

Sex 24.3% female 21.4% female 62.5% female 28.6% female 0.193

BMI 25.3 ± 4.6 kg/m2 24.9 ± 5.1 kg/m2 22.1 ± 8.2 kg/m2 24.1 ± 5.1 kg/m2 0.752

6MWT 489 ± 123 m 306 ± 135m 121 ± 64m 80 ± 42m < 0.001

Chronicity 29.7% acute 35.7% acute 62.5% acute 57.1% acute 0.232

Diagnosis 48.6% traumatic 42.9% traumatic 37.5% traumatic 71.4% traumatic 0.601

LEMS 45.8 ± 7.6 37.3 ± 9.3 41.1 ± 10.3 34.7 ± 10.1 0.005

SCIM 85.2 ± 18.5 69.0 ± 16.9 60.6 ± 21.6 59.6 ± 17.6 < 0.001

SCIM Mob. 36.3 ± 7.0 27.4 ± 9.6 19.8 ± 6.6 15.6 ± 4.9 < 0.001

Walking Aid 24.3% with 57.1% with 100% with 85.7% with < 0.001

Orthosis 10.8% with 0% with 25.0% with 57.1% with 0.006

WISCI II 16.8 ± 4.2 12.6 ± 5.4 11.0 ± 4.0 7.0 ± 1.1 < 0.001
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than the non-improvers, and thus it can be assumed that 
the improvers mainly improved their speed and thus per-
formance in the 6MWT by improving their overall fitness 
and speed consistency. Accordingly, the gait deficits of 
the non-improvers presumably hinder this group from 
improving their speed considerably.

Limitations
The main limitation of this work is that many of the gait 
parameters correlate with speed, such as for example the 
cadence, swing phase, and stride length, which is widely 
known [40]. Hence, it is difficult to disentangle walking 
quality and speed for participants walking at different 
speeds. Further, the slow walking patients are often the 
more severely affected part of the population. We tried 
to address this issue by providing parameters that are less 
related to walking speed, e.g., the measures related to 
variability and symmetry. Future work focusing on walk-
ing quality should consider collecting data of patients 
walking at similar speeds to get rid of this effect.

Since most of the data was collected as part of the clini-
cal routine, the assessments were unequally spaced in 
time. 6MWT assessments were performed approximately 
every four weeks on average, but especially for chronic 
patients, the assessments were performed less often and 
only when the patient was in ambulatory rehabilitation. 
This unequal time spacing introduced additional noise 
in the data that we tried to address by providing the 
time until the following assessment as a predictor to the 
model. Moreover, sensor-derived gait parameters suf-
fer generally from estimation errors. Such errors would 
distort both the clustering of participants as well as the 
prediction model. As shown in previous work [19], the 
algorithm used to derive the spatio-temporal parameters 
showed excellent results even for individuals with SCI 
walking with distinct gait deficits at slow walking speeds 
of 0.5 m/s. Hence, the effect of estimation errors on the 
clustering and prediction model should be minimal.

Clinical implications and future work
The results underline the benefit of using wearable iner-
tial sensors during the 6MWT. Based on the sensor-
derived gait parameters, different groups of patients were 
identified that differed not only in terms of walking speed 
but also in terms of quality-related gait characteristics. 
Future work of our group will focus on translating these 
findings into the clinical routine by providing an easy-to-
use tool for sensor-based gait assessments, including a 
tablet-based gait report. Part of this report will focus on 
the gait parameters identified in this work. Such a tool 
will foster a more deficit-oriented gait therapy by using 
the objective gait measures and the corresponding rec-
ommendations for physiotherapy provided in this work. 

Furthermore, the tool will also allow to objectively track 
improvements in gait metrics other than pure walking 
speed. This would give a more comprehensive picture of 
the rehabilitation progress of individuals and might be 
beneficial to justify the continuation of therapy towards 
health insurance companies.

Including sensor-derived metrics in the prediction 
model resulted in an accuracy of 80% of the estimation 
whether a patient will increase his or her walking capac-
ity. Combining such a data-driven model with the exper-
tise and experience of clinicians would result in better 
expectation management of patients and more accurate 
definition of rehabilitation goals. Nevertheless, more 
work on clinical applicability of such prediction models 
is needed.

Moreover, the possibilities of applying this sensor-
based gait analysis system go beyond the standard-
ized 6MWT. Given the sparse sensor setup used in this 
study, gait measurements could even be performed in an 
unconstrained setting such as the home environment of 
patients which would give insights into the actual walking 
performance of patients during daily life. Furthermore, as 
the sensor-based gait analysis gives a more comprehen-
sive picture of the walking pattern, potentially shorter 
measurements could be possible which would further 
increase the accessibility of these tests for a wider range 
of patients. Future work could focus on determining the 
minimum number of steps needed for a robust charac-
terization of the walking pattern using IMUs.

Conclusions
This work presented a method to identify non-redun-
dant and interpretable gait parameters to characterize 
walking after a SCI. Gait parameters were derived from 
a sparse inertial sensor setup, which opens up the pos-
sibility of being used within the clinical routine as a 
technology-aided gait assessment. The extracted gait 
metrics complemented the standard clinical assessment 
by providing information related to fatigue, compensa-
tory mechanisms, and rhythm issues. Hence, the diverse 
gait deficits of this heterogeneous patient cohort could be 
described more objectively and comprehensively than in 
the current clinical practice. Further, sensor-derived gait 
parameters enhanced the prediction of whether a patient 
will improve his or her walking capacity in the future and 
exhibited predictors related to improvement in walking 
capacity. In conclusion, this work is a step towards using 
sensor-based gait analysis for rehabilitation assessment 
of patients with a SCI. Such sensor measures could not 
only foster a more deficit-oriented therapy by provid-
ing objective measures on gait deficits but also enhance 
more targeted rehabilitation plans under consideration of 
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better recovery profile prediction models when including 
sensor-derived parameters.
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