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Background
Brain-computer interface (BCI) constitutes an interface 
between a computer and the human brain that allows 
people to control a computer using their brain activity 
without any body movements [1, 2]. BCI can be catego-
rized according to its control features, in which motor 
imagery BCI is an active BCI that uses the brain sig-
nals generated when people imagine body movement, 
such as moving both hands, feet, and tongue [3, 4]. 
Motor imagery BCI applications have helped people by 
providing a game controlled by brain signals [5, 6] that 
improves rehabilitation training [7, 8]. Compared with 
other BCI control features, motor imagery is intuitive, 
so its BCI is natural to users, and it offers a greater sense 
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Abstract
Brain-computer interface (BCI) has helped people by allowing them to control a computer or machine through 
brain activity without actual body movement. Despite this advantage, BCI cannot be used widely because some 
people cannot achieve controllable performance. To solve this problem, researchers have proposed stimulation 
methods to modulate relevant brain activity to improve BCI performance. However, multiple studies have reported 
mixed results following stimulation, and the comparative study of different stimulation modalities has been 
overlooked. Accordingly, this study was designed to compare vibrotactile stimulation and transcranial direct current 
stimulation’s (tDCS) effects on brain activity modulation and motor imagery BCI performance among inefficient 
BCI users. We recruited 44 subjects and divided them into sham, vibrotactile stimulation, and tDCS groups, and 
low performers were selected from each stimulation group. We found that the latter’s BCI performance in the 
vibrotactile stimulation group increased significantly by 9.13% (p < 0.01), and while the tDCS group subjects’ 
performance increased by 5.13%, it was not significant. In contrast, sham group subjects showed no increased 
performance. In addition to BCI performance, pre-stimulus alpha band power and the phase locking values (PLVs) 
averaged over sensory motor areas showed significant increases in low performers following stimulation in the 
vibrotactile stimulation and tDCS groups, while sham stimulation group subjects and high performers showed no 
significant stimulation effects across all groups. Our findings suggest that stimulation effects may differ depending 
upon BCI efficiency, and inefficient BCI users have greater plasticity than efficient BCI users.
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of control than other BCI types because motor imag-
ery BCI is active. However, challenging issues remain in 
BCI, including motor imagery BCI and other BCI sys-
tems. BCI researchers have reported that a significant 
proportion of subjects (approximately 15–30%), who 
are referred to as ‘BCI-illiterate’, failed to achieve con-
trollable BCI performance [9–12]. Those subjects were 
unable to generate the distinct brain activity pattern dur-
ing a BCI task, so a machine learning-based classifier 
failed to extract stable features even though the subjects 
performed the BCI task. Although BCI researchers have 
proposed many applications and feature extraction algo-
rithms, BCI illiteracy remains a significant challenge.

To overcome BCI illiteracy so that everyone can 
achieve controllable BCI performance, researchers have 
approached the issue from multiple perspectives. One 
approach is to develop new feature extraction algo-
rithms to identify hidden and robust features to improve 
BCI performance in the hope that they can extract con-
trol features from BCI-illiterate as well as good per-
formers [13–16]. For example, Riemannian approaches 
calculate the Riemannian distance between the tem-
plate covariance matrices and a single trial covariance 
matrix to determine the minimum distance class, which 
achieved improved performance [16], while deep learn-
ing techniques have achieved dramatically improved 
performance in subject-specific and cross-subject BCI 
models through multiple hidden layers [13, 14]. How-
ever, although those proposed advanced feature extrac-
tion algorithms improved BCI performance, it is unclear 
whether deep learning methods can improve everyone’s 
BCI performance. For example, Lee et al. [13] proposed 
subject-independent BCI using deep convolutional neu-
ral networks (CNNs), and tested it with 54 subjects. The 
subjects achieved better BCI performance compared to 
existing classification methods with respect to subject-
specific and subject-independent BCI performance eval-
uation. However, the deep learning technique did not 
solve the BCI illiteracy issues fully, as low BCI perform-
ers still remained and achieved less than 50% accuracy 
(near chance level) in binary class motor imagery. More-
over, in Xu et al.’s [17] investigation with eight different 
EEG datasets, the mean BCI performance was lower in 
the datasets with many subjects than in those with fewer 
subjects. It can be inferred that datasets with many sub-
jects may contain more who are BCI-illiterate, and whose 
performance did not improve, while high BCI performers 
who had achieved controllable performance already with 
existing algorithms improved their performance further.

Another approach extends beyond feature extrac-
tion algorithms that use the brain’s plasticity to modu-
late the brain activity related to specific BCI tasks that 
use external stimuli. This approach focuses more on the 
subject. Specifically, to target the brain activity related 

to motor imagery, two stimulation methods have been 
applied most frequently: vibrotactile and electrical brain 
stimulation. In the vibrotactile stimulation, it is known 
that somatosensory stimulation modulates corticospi-
nal excitability and the stimulation can increase motor 
evoked potentials (MEPs) [18] and electroencephalo-
graphic sensorimotor rhythms [19]. Previous studies 
have investigated vibrotactile stimulation’s effects during 
motor imagery or execution and found that it improved 
motor imagery BCI performance by enhancing the con-
tralateral event-related desynchronization (ERD) over 
the electrode channels around the motor cortex [20–23]. 
For example, Ahn et al. designed a hybrid BCI paradigm 
combined with tactile selective attention by giving atten-
tion to vibrotactile stimulation on the left or right index 
fingertips during motor imagery [20]. Further, Yao et al. 
utilized vibrotactile stimulation for delivering tactile sen-
sation to assist somatosensory attentional orientation 
(SAO) task training. They found that real tactile sensa-
tion-based training significantly improved SAO perfor-
mance after the assisted training blocks [24]. Motivated 
by Yao’s study, Zhong et al. applied tactile sensation for 
assisting motor imagery BCI training by delivering sus-
tained vibrotactile stimulation during motor imagery 
training blocks and found significant training effects 
on BCI performance compared to non-assisted motor 
imagery training [25]. In addition, Shu et al. applied 
tactile stimulation to the unilateral wrist and observed 
improved BCI performance with enhanced contralat-
eral cortical activation [22]. Similarly, it was found that 
tactile stimulation along with motor movement (wrist 
extensions of paretic hand) achieved enhanced motor-
related cortical activation in the alpha to beta bands and 
improved decoding accuracy in stroke patients com-
pared to non-tactile stimulation conditions [23]. More-
over, recent studies have observed that frequency- or 
phase-specific stimulation in vibrotactile stimulation or 
transcranial magnetic stimulation (TMS) may produce 
stronger stimulation effects compared to continuous 
stimulation [21, 26]. In particular, Zhang et al. compared 
the stimulation effects of continuous vibrotactile stimu-
lation and closed-loop stimulation activated during the 
rising/falling phase of alpha waves, and found that the 
alpha falling phase stimulation outperformed continuous 
and rising phase stimulation in motor imagery classifica-
tion accuracy and cortical activation around the motor 
cortex [21]. In addition to sensory stimulation, the other 
stimulation method is electrical brain stimulation, such 
as transcranial direct current stimulation (tDCS) [27, 
28]. For example, Baxter et al. investigated the stimula-
tion effects of high-definition tDCS (HD-tDCS) by plac-
ing anode and cathode electrodes between the CP3/P3 
electrode channels, and observed that anodal stimulation 
decreased the mean time to achieve right-hand imagery 
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successfully and increased alpha and beta band power at 
the C3/CP3 channels after the stimulation session [27]. 
However, previous tDCS studies have reported mixed 
effects with respect to the ERD after the tDCS session. 
In particular, some previous studies found an increase in 
ERD in the hemisphere stimulated during motor imagery 
tasks [29–31], while one found a decrease in ERD follow-
ing the tDCS session [32]. Still another study found that 
tDCS did not affect frequencies above 9 Hz [33].

Rather than developing new feature extraction algo-
rithms, external stimulation sources may have greater 
potential to solve the BCI illiteracy problem, as the 
stimulation methods affect brain activity. In contrast, 
feature extraction algorithms may fail to identify the 
robust features if they do not exist in the brain signals 
recorded from BCI-illiterate individuals. However, some 
limitations in the stimulation-based approaches need to 
be addressed. One consideration is the lack of a com-
parative study of vibrotactile stimulation and tDCS, the 
stimulation method used most frequently to modulate 
brain activity during motor imagery and improve motor 
imagery BCI performance. The difficulty in conduct-
ing a comparative study derives from the stimulation 
paradigm. In general, vibrotactile stimulation is deliv-
ered while subjects are performing a motor imagery task 
because the stimulation enhances the cortical activation 
that motor imagery induces [21] and thus, concurrent 
stimulation effects can be investigated. However, with 
tDCS, the stimulation effects are investigated following 
the stimulation session because recording EEG during 
the stimulation session is not applicable, and appropri-
ate stimulation is necessary to modulate brain activity. 
Thus, to compare the stimulation effects, the stimulation 
paradigms should be equal. Here, we conducted a study 
to compare the stimulation effects of vibrotactile stimu-
lation and tDCS with the same stimulation paradigm by 
assessing the effects of the vibrotactile stimulation fol-
lowing the stimulation session.

Another consideration when investigating the stimu-
lation effects is dividing the subjects according to BCI 
performance. Previous studies have found that inefficient 
(low performers) and efficient BCI users (high perform-
ers) exhibited different neurophysiological characteris-
tics. One study incorporated brain network features into 
ERD to improve low performers’ motor imagery BCI 
performance [34]. They found that the subjects benefited 
from brain network features (functional connectivity), 
and suggested that low performers may engage in motor 
imagery differently than high performers, and thus exist-
ing features, such as ERD, cannot capture the engage-
ment, although the brain network showed the possibility. 
Similarly, another study divided the subjects recruited 
into two groups based upon BCI performance, compared 
their brain networks on multiple network scales [35], and 

found significantly higher phase synchronization values 
in the right hemisphere during high performers’ motor 
imagery. In addition to brain network measures, a differ-
ence between low and high BCI performers’ frequency 
band power has been reported during the rest or pre-
stimulus period, showing that subjects with higher alpha 
band or sensory motor rhythm (SMR) power during 
those periods are more likely to achieve better BCI per-
formance [36–38]. Based upon these previous findings, 
it can be expected that vibrotactile stimulation or tDCS 
affects low and high performers differently because the 
two show different characteristics and may engage in the 
same task in different ways. In addition to the neurophys-
iological perspective, they may differ from the behavioral 
perspective. High performers who achieve controllable 
BCI performance before the stimulation session have a 
sense of control already, and their brain activity is opti-
mal and stable in the task. Therefore, external changes 
are less likely to affect them. On the other hand, low per-
formers do not have this sense of control, and their brain 
activity is not yet optimal or stable. Therefore, low per-
formers may have more potential to change.

In this study, we compared vibrotactile stimulation and 
tDCS’s stimulation’s effects on brain activity related to 
motor imagery among inefficient BCI users. Through this 
study, we investigated which brain activity can be modu-
lated by vibrotactile stimulation and tDCS and whether 
they can help improve low performers’ BCI performance.

Methods
Experimental procedure and data acquisition
We recruited a total of 44 healthy subjects for this study, 
and assigned them randomly to three groups—sham 
(control), vibrotactile stimulation, and tDCS. This experi-
ment was conducted in a quiet space, and the subjects 
were seated in a comfortable chair approximately one 
meter from a 24-inch screen. The subjects were asked 
to place both hands on a desk to prevent hand move-
ment while they performed the motor imagery tasks. We 
used OpenViBE software [39] and custom-built MAT-
LAB scripts to acquire EEG, process online signals, and 
present the motor imagery task. As shown in Fig.  1, 
EEG was recorded first for one minute during the eyes-
open resting state. Thereafter, the subjects performed a 
left- and right-hand motor imagery task that consisted 
of two offline and two online blocks each. The subjects 
received different stimuli while performing the four 
offline motor imagery blocks according to their assigned 
groups. After the stimulation session, they performed the 
same motor imagery task that they performed before the 
stimulation session, and eyes-open resting state EEG was 
recorded before and after the stimulation session. EEG 
was recorded from 19 wired dry electrode channels, ref-
erenced by the left and right earlobes at 300 Hz (DSI-24, 
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Wearable Sensing, USA). This experiment was approved 
by the Institutional Review Board at Gwangju Institute of 
Science and Technology (20,210,806-HR-62-03-02), and 
all subjects were informed about the experimental proce-
dure and signed informed consent.

In the motor imagery task, the subjects performed 
left- and right-hand motor imagery rather than actual 
movement. The subjects were asked to imagine hand 
movements in a kinesthetic rather than visual way, as a 
previous study reported that kinesthetic motor imagery 
(KMI) and visual motor imagery (VMI) exhibited differ-
ent brain activations [40]. Each trial began with a fixation 
cross for the first 1.5  s. During the next 4  s, an orange-
colored circle appeared in the center of the screen, and 
an instruction bar appeared on the left or right side. The 
subjects were instructed to continue to imagine left- 
and right-hand movements according to the direction 
of the bar until the blank screen, which remained blank 
for 1.5  s. This trial was repeated 40 times and included 
shuffled left- and right-hand trials for each block. During 
the offline phase (two blocks), there was no motor imag-
ery feedback. After the offline phase, the subjects’ EEG 
data were used to train a common spatial pattern (CSP)-
based spatial filter and Fisher’s linear discriminant analy-
sis (FLDA) classifier. Thereafter, the subjects performed 
the online phase, which consisted of two motor imagery 
blocks that showed visual feedback, for 1.5 s by moving 
the circle to classified directions.

For CSP-FLDA, an epoch was extracted from each 
trial at [1000–3500] ms to the stimulus onset, and band-
pass filtered with cutoff frequencies of 8 and 30 Hz using 
the 4th -order Butterworth filter. However, we note that 
hyper-parameters for online classifiers were changed 
after the first ten subjects. Specifically, for the first ten 
subjects, CSP-FLDA was trained by 19 electrode chan-
nels and the first and last two CSP filters were selected. 
However, electrodes around the eyes and occipital areas 
often yielded notable noise with high variation attrib-
utable to non-brain activity, such as motion artifacts, 
eye movements, and bad contacts. As a result, for the 

remaining subjects, nine electrode channels around the 
central area, including the F3, Fz, F4, C3, Cz, C4, P3, Pz, 
and P4 channels, were used to train CSP, and the first 
and last CSP filters were selected to train FLDA. In this 
study, we calculated offline BCI performance to compare 
BCI performance with the same hyper-parameter over all 
subjects, as described in Sect. 2.3.

Stimulation session design
In this study, we compared the stimulation effects on 
brain activity modulation and relevant BCI performance. 
Depending upon the stimulation group, each subject per-
formed a stimulation session in the middle of two motor 
imagery sessions. The stimulation groups consisted of the 
vibrotactile stimulation group, tDCS group, and sham 
stimulation group. Fig.  2 illustrates the stimulation ses-
sion for each group. All stimulation group subjects per-
formed four blocks of offline motor imagery task while 
receiving stimulation.

With respect to vibrotactile stimulation (Fig. 2A), two 
vibration motors (Model 310 − 113, Precision Micro-
drives, England) activated by Arduino Due board were 
used to deliver vibrotactile stimulation to the left and 
right index fingertips. Each motor is 10 mm in diameter 
with a 1.34G vibration amplitude. The Arduino board 
was triggered through serial communication with MAT-
LAB scripts for closed loop vibrotactile stimulation. 
Recent studies have shown that EEG-guided stimula-
tion can enhance the stimulation effects in vibrotactile 
stimulation and transcranial magnetic stimulation (TMS) 
by targeting motor cortex excitability states [21, 26]. 
Researchers have observed that stimulation triggered by 
the EEG alpha falling phase outperformed continuous 
stimulation with respect to the motor evoked potential 
(MEP) [26] amplitude and motor imagery BCI perfor-
mance [21]. In this respect, our study applied vibrotac-
tile stimulation according to the EEG alpha (8 ~ 13  Hz) 
phase at the electrode channels on the left (C3) and 
right motor cortex (C4) as in [21]. Specifically, during 
the vibrotactile stimulation session, the subjects were 

Fig. 1 Experimental paradigm. Each participant performed the motor imagery task before and after the stimulation session
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instructed to place their left and right index fingertips on 
each vibration motor. For each trial, 500ms-long epoch 
was extracted from the contralateral EEG channel every 
50ms (with overlapping 450ms) to calculate the alpha 
phase. The epoch extracted was band-pass filtered in the 
[8–13] Hz frequency range using a 10th -order elliptical 
infinite impulse response (IIR) filter, and the phase was 
calculated using the Fast Fourier Transform (FFT)-based 
phase tracking algorithm, as proposed and adopted pre-
viously [21, 41]; among the FFT amplitudes, the domi-
nant alpha frequency component between 8 and 13  Hz 
and the corresponding phase were used to obtain a sim-
ple sine function to predict the upcoming phase. When 
the phase predicted was falling, the vibration was deliv-
ered through the left or right vibration motor for 100ms 
according to the motor imagery class, and the inter-stim-
ulation interval was set to 100ms. Thus, the C4 chan-
nel alpha phase was extracted for the left-hand motor 
imagery trials, and the left vibration motor was activated 
when the phase predicted was falling and the converse. 
With respect to the technical details, during the vibro-
tactile stimulation session, EEG data and event markers 
that represented left- or right-hand motor imagery were 
streamed into MATLAB scripts. To minimize delay and 
synchronize the EEG data and event markers, a trigger 
hub (Wearable Sensing, USA) was used to integrate the 
EEG data and event markers into the EEG device, and 
merged data were acquired over the wire. According 
to the trigger hub’s technical specification, their wired 
latency is less than 100µs. After the motor imagery onset, 
500ms-long C3 or C4 EEG data were streamed every 
50ms while calculating their phase using the FFT algo-
rithm, which requires a simple calculation and its related 
delay in processing time is negligible. The vibrotactile 

stimulation was applied when the falling phase was 
detected, and it was activated using the Arduino board 
via serial communication within 1ms delays. However, 
we could not deliver the vibrotactile stimulation ideally. 
In practice, we delivered vibrotactile stimulation with a 
duration of 100ms, and the next stimulation was applied 
with more than 100ms inter-stimulus intervals, as set in 
a previous study [21]. We note that the 100ms duration 
was set as the minimum required stimulation duration 
in heuristic ways so that the subjects could perceive the 
stimulation and maintain attention. Consequently, the 
stimulation accuracy could be estimated as follows; when 
we assume that EEG-alpha is a 10  Hz sinusoidal signal, 
for each motor imagery trial, approximately 50% of the 
falling phases were within inter-stimulation intervals. 
As a previous study reported [21], we also observed that 
such falling phase stimulations were quite effective. How-
ever, to achieve ideal falling phase stimulation, a shorter 
stimulation duration should be developed while main-
taining the subject’s perception, which would be worth 
investigating in future. After the stimulation session, the 
subjects performed the same motor imagery task that 
they did before the session.

For brain stimulation (Fig.  2B), high-definition tran-
scranial direct current stimulation (HD-tDCS) was deliv-
ered to the motor cortex using one anode electrode and 
four neighbouring cathode electrodes (Starstim8, Neu-
roelectrics, Spain) after the EEG cap was removed. An 
anode electrode was placed to stimulate the contralat-
eral motor cortex of the non-dominant hand; because all 
subjects in the tDCS group were right-handed, the anode 
electrode was placed on C4 and the cathode electrodes 
were placed on FC2, FC6, CP2, and CP6. To minimize 
pain attributable to tDCS, sufficient gel was injected, 

Fig. 2 Vibrotactile stimulation, tDCS, and sham stimulation. This represents stimulation sessions for the vibrotactile stimulation, tDCS, and sham stimula-
tion groups. (A) represents vibrotactile stimulation, (B) represents tDCS, and (C) represents sham stimulation
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and the impedance level was maintained below 2  KΩ 
throughout the stimulation session. The stimulation 
reached a target intensity of 2mA during a 30-second 
ramping period. The stimulation session continued until 
the subjects performed four blocks of the offline motor 
imagery task, although we did not record EEG during the 
tDCS session because of electrical interference. The sub-
jects were informed that they could stop the stimulation 
at any time if they felt severe pain. In addition, the sham 
stimulation group (control group) subjects performed the 
same task as the tDCS group subjects, but they received 
sham, rather than actual stimulation. For the sham group, 
the stimulation turned off after the ramping period, and 
the subjects did not know whether they belonged to the 
tDCS or sham stimulation group. After the stimulation 
session, the subjects washed their hair and were re-fitted 
with the EEG cap. Then, they performed the same motor 
imagery task that they did before the stimulation session.

BCI performance evaluation
This study used offline BCI performance because online 
BCI classification parameters were not the same for all 
subjects. To evaluate the subjects’ BCI performance, the 
EEG data were band-pass filtered with 8–30 Hz using the 
4th -order Butterworth filter, and any 60  Hz line noise 
that remained was filtered out with the band-stop filter 
from 58 to 62  Hz. Epochs were extracted from 500 to 
3500 ms to the stimulus onset, which is the time window 
obtained heuristically. Except for the electrodes near the 
eyes, those with an amplitude greater than ± 100µV were 
removed, and subjects who had more than 30% of bad 
trials among all trials were eliminated from the analysis. 
Finally, we chose a region of interest (ROI), the nine elec-
trode channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4), for 
motor imagery BCI classification using visual inspection. 
To evaluate BCI performance, the first two motor imag-
ery blocks (offline phase) were used for training, and the 
remaining two blocks were used for testing. The Rieman-
nian minimum distance metric (MDM) [16] was used to 
extract features and evaluate BCI performance.

In this study, the subjects performed the motor imag-
ery task before and after the stimulation session to evalu-
ate stimulation effects on brain activity during motor 
imagery. Moreover, we divided each stimulation group 
into low- and high-performing groups according to their 
pre-stimulation BCI performance, as previous stud-
ies have observed that the two showed different neuro-
physiological characteristics [9, 36]. Further, our previous 
study suggested that low and high BCI performers should 
be treated differently because low BCI performers’ fea-
tures decreased the ability to generalize the cross-subject 
BCI model significantly, while subject selection may have 
increased cross-subject BCI performance [42]. In addi-
tion, we assumed that low BCI performers may have 

greater potential to change their brain activity through 
learning or external stimulation, for either better or 
worse, compared to high BCI performers because high 
BCI performers’ brain activity may be stable and opti-
mal already. To divide the subjects into low and high BCI 
performance groups, a previous study used the median 
value of the BCI performance [35], as the median value 
can divide groups with the same size and allow analysis 
to be performed on sub-groups of the same size. How-
ever, the distribution and sample size affect the median 
value. Accordingly, if the BCI performance data collected 
are biased toward high or low performance, the divided 
groups do not represent true high or low performance 
groups. Instead, we used the statistical random probabil-
ity introduced in [43] and used in our previous study [42] 
to divide low and high BCI performers, as it can produce 
a random threshold based upon the number of trials and 
the statistical significance. With 40 test trials and α = 0.05, 
we obtained 60.69% as a threshold to divide low and high 
BCI performers. As a result, we divided each stimulation 
group’s subjects into low and high BCI performers based 
upon their pre-stimulation performance and investigated 
the stimulation effects in the subgroups.

Pre-stimulus band power for motor imagery
The pre-stimulus band power was calculated from the 
online phase of the motor imagery task before and after 
the stimulation session. For clarity, we note that the pre-
stimulus band power refers to the band power calculated 
from the window preceding the motor imagery onset in 
every trial, and it is distinct from the stimulation ses-
sion. Thus, pre-stimulus band powers were calculated 
during the motor imagery task before/after the stimula-
tion. Maeder et al. investigated the relation between the 
pre-stimulus sensory motor rhythm (SMR) band power 
and motor imagery BCI performance and observed that 
higher pre-stimulus SMR trials yielded significantly bet-
ter performance compared to lower trials [37]. Accord-
ingly, we compared the pre-stimulus band power before 
and after the stimulation session for each group to inves-
tigate the stimulus effects on the pre-stimulus band 
power. The online motor imagery task phases before and 
after the stimulation session were used to calculate and 
compare the pre-stimulus band power. To perform pre-
processing, the epochs were extracted first from the EEG 
data from − 1000 to 4000 ms to the stimulus onset, band-
pass filtered with 1–40  Hz, and any epochs larger than 
± 100µV were removed, except for the electrodes near the 
eyes, and the same bad subject criterion (> 30% bad trials) 
was applied as in the BCI performance evaluation.

After extracting the epochs and eliminating the bad tri-
als, we calculated the pre-stimulus band powers by the 
logarithmic scale of the band powers in alpha (8-13 Hz), 
low-beta (13-20 Hz), and high-beta (20-30 Hz) frequency 
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bands for 1000ms preceding the stimulus onset. As the 
previous study selected an electrode channel from the left 
and right hemisphere and averaged over those electrode 
channels [37], we obtained the average pre-stimulus 
band power averaged over the C3 (left hemisphere) and 
C4 (right hemisphere) electrode channels. In addition, 
we obtained pre-stimulus band powers around the nine 
electrode channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, and 
P4) used to evaluate motor imagery BCI performance. To 
evaluate statistical significance, pre-stimulus band pow-
ers before and after the stimulation session were com-
pared using a paired Student’s t-test, and the Bonferroni 
correction was applied for the p-values obtained from the 
nine electrode channels.

Functional connectivity during motor imagery
The functional connectivity between different brain 
regions in sensor (electrode) space can be assessed using 
phase synchronization. Functional connectivity allows 
the way the cortical regions communicate with each 
other and the way the information is transmitted between 
different regions during a cognitive task to be understood 
[35, 44]. One way to measure phase synchronization is 
by assessing phase-locking, which denotes a phase dif-
ference between two signals that remains constant for a 
certain period [44]. In this study, a phase locking value 
(PLV) between the EEG channel was calculated with the 
following equation introduced in [45]:

 
PLVt =

1
N

∣∣∣∣∣

N∑

n=1

ejθ(t,n)

∣∣∣∣∣

In which t stands for an extracted epoch (second) for 
each trial n up to N, N is the total number of trials, and 
the exponential term indicates the phase difference 
between two signals in the same trial, which denotes the 
difference between two phases extracted from the two 
signals [44, 45]. As a result, the PLV can measure the 
variability of the phase difference across trials; when the 
phase difference is small, the PLV is close to 1, and is near 
0 otherwise. In this study, the online motor imagery task 
phases before and after the stimulation session were used 
to calculate and compare the PLV. Specifically, the epochs 
were extracted from the EEG data from as long as 500–
3500 ms to the stimulus onset, band-pass filtered with 
8–30 Hz, and the same trial rejection and subject rejec-
tion criteria were applied as in the BCI performance eval-
uation. With respect to scales of connectivity, this study 
employed a global PLV that can be obtained by averag-
ing the connectivity over all electrodes around the central 
area (Fig.  3), as investigated in [46]. The nine electrode 
channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) used to 
evaluate BCI performance and the pre-stimulus band 
power were selected. In addition, we investigated the PLV 
with broader frequency bands, including alpha (8-13 Hz), 
low-beta (13-20 Hz), and high-beta (20-30 Hz) bands by 
calculating the PLV within these frequency bands [35]. 
The PLV was calculated by MATLAB scripts using the 
FieldTrip toolbox [47].

The PLVs were compared in this study before and after 
the stimulation session using a paired Student’s t-test for 
subjects with low and high BCI performance in the sham, 
vibrotactile stimulation, and tDCS groups to assess the 
stimulation effects on the average strength of the connec-
tion around the central areas during motor imagery.

Results
Among the 44 subjects who were assigned randomly to 
the three stimulation groups—sham, vibrotactile stimula-
tion, and tDCS—bad subjects (> 30% bad trials), includ-
ing one who failed to concentrate on the post-stimulation 
motor imagery task because of a significant delay in setup 
after the stimulation session, were removed from the 
analysis. As a result, 39 subjects remained: 12, 13, and 
14 subjects in the sham, vibrotactile, and tDCS groups, 
respectively. Moreover, we divided each stimulation 
group into low and high BCI performance groups using 
statistical random probability. With respect to the low 
and high BCI performance groups, the subjects in each 
group who achieved a performance lower than 60.69% 
were assigned to the low BCI performance group, and 
the remaining subjects were assigned to the high BCI 

Fig. 3 The scale of functional connectivity used in this study. This figure 
represents the global phase-locking value (PLV) used in this study. The 
global PLV was obtained by averaging all PLVs between the nine electrode 
channels, as illustrated by the bold lines
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performance group. As a result, sham group subjects 
were divided into 6 low performers and 6 high perform-
ers, vibrotactile stimulation group subjects were divided 
into 10 low performers and 3 high performers, while the 
tDCS group subjects were divided into 10 low perform-
ers and 4 high performers. Although we assigned the 
stimulation groups randomly, the vibrotactile stimulation 
and tDCS groups included more low performers than the 
sham stimulation group.

Stimulation effects on BCI performance
Motor imagery BCI performances during pre-stimula-
tion and post-stimulation are depicted in Table 1; Fig. 4. 
Low performers in the sham stimulation group achieved 
53.75% (43.75 ~ 60%), and high performers achieved 
71.88% (63.75 ~ 95%) before the pre-stimulation ses-
sion. After the sham stimulation session, low performers 
achieved 53.99% (43.75 ~ 61.25%), showing no significant 

change. However, the high performers’ BCI performance 
decreased to 62.71% (47.5 ~ 85%). On the other hand, 
the low performers in the actual stimulation groups, the 
vibrotactile stimulation and the tDCS groups, showed 
improved performance. For the vibrotactile stimulation 
group, low performers achieved 52.5% (47.5 ~ 60%), and 
high performers achieved 74.17% (65 ~ 78.75%). After the 
vibrotactile stimulation session, the low performers’ BCI 
performance increased to 61.63% (46.25 ~ 76.25%), while 
the high performers’ BCI performance decreased to 
63.75% (50 ~ 75%). Finally, for the tDCS group, low per-
formers achieved 51.12% (46.15 ~ 56.25%), and high per-
formers achieved 75.11% (66.25 ~ 88.75%). After the tDCS 
session, the low performers’ BCI performance increased 
to 56.25% (46.25 ~ 76.25%), and the high performers’ BCI 
performance decreased to 63.44% (48.75 ~ 77.5%).

We compared BCI performance before and after the 
stimulation session using a paired Student’s t-test over 

Table 1 Motor imagery BCI performance
Sham stimulation

LOW HIGH

PRE POST PRE POST
BCI performance (%) 53.75 (43.75 ~ 60%) 53.99 (43.75 ~ 61.25%) 71.88 (63.75 ~ 95%) 62.71 (47.5 ~ 85%)

Vibrotactile stimulation
LOW HIGH
PRE POST PRE POST

BCI performance (%) 52.5 (47.5 ~ 60%) 61.63 (46.25 ~ 76.25%) 74.17 (65 ~ 78.75%) 63.75 (50 ~ 75%)

tDCS
LOW HIGH
PRE POST PRE POST

BCI performance (%) 51.12 (46.15 ~ 56.25%) 56.25 (45 ~ 67.5%) 75.11 (66.25 ~ 88.75%) 63.44 (48.75 ~ 77.5%)

Fig. 4 Motor imagery BCI performance before and after the stimulation. This figure represents BCI performance changes after the stimulation session for 
each stimulation and performance group. Black bars represent pre-stimulation motor imagery BCI performance, orange bars represent post-stimulation 
performance, and dashed lines represent the averages of pre- and post-stimulation BCI performance
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all stimulation groups. The results showed that the low 
performers in the vibrotactile stimulation group achieved 
significantly improved BCI performance after the stimu-
lation session (p = 0.0053 < 0.01). The low performers in 
the tDCS group achieved improved BCI performance as 
well, but the difference was not significant. The high per-
formers’ BCI performance decreased over all stimulation 
groups, and the sham stimulation group showed a signifi-
cant decrease (p = 0.048 < 0.05).

Stimulation effects on pre-stimulus band power
Among the pre-stimulus band powers, including the 
alpha (8-13  Hz), low-beta (13-20  Hz), and high-beta 
(20-30  Hz) bands, only the pre-stimulus alpha band 
power was statistically significant. In this respect, Fig. 5 
represents the pre-stimulus alpha band power changes 
after the stimulation session for low performers in each 
group. For the sham stimulation group, the mean of the 
C3 and C4 pre-stimulus alpha band powers increased 
from 7.72 ± 2.43dB to 8.27 ± 2.77dB after the sham stimu-
lation session, but the increase was not statistically sig-
nificant. In the scalp topographic view, the pre-stimulus 
alpha band powers increased after the sham stimulation 
session, but no electrode channel showed a statistically 
significant difference. For the tDCS group, the aver-
age pre-stimulus alpha band power increased from 
7.81 ± 8.15dB to 8.15 ± 3.09dB after the tDCS session, 
but this difference was not statistically significant either. 
As observed in the sham stimulation group, the scalp 
topography shows an alpha increment, but again, it was 
not statistically significant. The vibrotactile stimulation 

group showed the same alpha increment as observed in 
the other groups and remained statistically significant; 
the average pre-stimulus alpha band power increased 
from 9.20 ± 3.81dB to 10.40 ± 4.05dB after the vibrotac-
tile stimulation session (p = 0.0038). The scalp topography 
also showed the alpha increment, and a paired Student’s 
t-test with the Bonferroni correction revealed significant 
differences in the Cz, C4, and P4 electrode channels.

The high performers in each group demonstrated 
no significant changes in the pre-stimulus alpha band 
power over all stimulation groups. In the sham stimu-
lation group, the average alpha band power increased 
from 10.24 ± 3.09dB to 11.02 ± 2.98dB after the sham 
stimulation session, and the average alpha band powers 
increased from 11.72 ± 1.03dB to 12.03 ± 0.45dB after the 
stimulation session in the vibrotactile stimulation group 
and from 10.53 ± 3.77dB to 10.89 ± 3.92dB in the tDCS 
group. However, there was no significant change in the 
pre-stimulus band power, except for the significant dec-
rement in the high-beta (13-20  Hz) band power in the 
vibrotactile stimulation group (p = 0.0469). Further, there 
was no significant change in the scalp topography over all 
stimulation groups. These results are consistent with the 
finding in BCI performance that only low performers in 
the vibrotactile stimulation group achieved significantly 
improved BCI performance after the stimulation session.

Stimulation effects on functional connectivity
We investigated the stimulation effects on brain activity 
through functional connectivity assessed by global PLVs 
during motor imagery before and after the stimulation 

Fig. 5 Pre-stimulus alpha band power before and after the stimulation. The figure shows the pre-stimulus alpha band power changes after the stimula-
tion session for the low performers in each stimulation group. Each scalp topography displays only nine selected electrode channels, and the remainder 
are zero-padded. The left scalp topography represents the difference in the pre-stimulus alpha band power, and the right scalp topography displays only 
the significant electrode channels
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session around sensorimotor areas, including the nine 
electrode channels (F3, Fz, F4, C3, Cz, C4, P3, Pz, and 
P4) in various frequency bands, the alpha (8-13 Hz), low-
beta (13-20 Hz), and high-beta (20-30 Hz) bands. Fig. 6 
represents the global PLV changes for low performers in 
each stimulation group during left- and right-hand motor 
imagery. In addition, the global PLVs before and after the 
stimulation session were compared using a paired Stu-
dent’s t-test.

The average global PLVs over the motor imagery classes 
and frequency bands for the low performers showed 
no significant changes after the sham stimulation ses-
sion, and yielded no consistent trends, as the global 

PLVs increased for some subjects and decreased for oth-
ers. However, the vibrotactile stimulation and the tDCS 
groups showed statistically significant differences. Spe-
cifically, in the vibrotactile stimulation group, the global 
PLV within the alpha (8-13  Hz) band increased signifi-
cantly during right-hand imagery after the vibrotactile 
stimulation session (p = 0.0435), while the increment in 
the global PLV during left-hand imagery was not signifi-
cant. Within the low-beta (13-20  Hz) band, the global 
PLVs increased significantly for both left- (p = 0.0275) 
and right-hand imagery (p = 0.0268). The high-beta (20-
30 Hz) also showed a significant increment in the global 
PLV during right-hand imagery (p = 0.0094). In the tDCS 

Fig. 6 Global PLVs before and after the stimulation. The figure represents the global PLVs averaged over the connections between the nine electrode 
channels’ (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) changes after the stimulation session for low performers in each stimulation group
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group, the global PLV within the alpha band did not 
change significantly, while significant increments were 
observed in the low-beta and high-beta bands. Within 
the low-beta band, the global PLV during left-hand imag-
ery increased significantly (p = 0.015), and it increased 
during right-hand imagery as well, but not significantly. 
Within the high-beta band, the global PLVs increased sig-
nificantly for both left- and right-hand imagery after the 
tDCS session (p = 0.0008 and p = 0.0254, respectively).

Except for the sham group, the high performers dem-
onstrated no statistically significant change over all stim-
ulation groups and frequency bands. In this group, the 
global PLV in the low-beta band during left-hand imagery 
increased significantly after the sham stimulation session 
(p = 0.0203). However, there was no significant change in 
the global PLVs in the vibrotactile stimulation and tDCS 
groups. Still, we note that the numbers of low and high 
performers were not balanced because this study divided 
the subjects using statistical random probability, which 
is the constant value rather than the median value. As a 
result, there were three and four high performers in the 
vibrotactile stimulation and tDCS group, respectively, so 
the statistical tests for the high performers may not be 
reliable. However, this study’s focus was to investigate the 
stimulation effects for low BCI performers with respect 
to BCI performance and brain activity. Therefore, we set 
a threshold with a constant value to divide the low and 
high BCI performers rather than dividing them equally.

In the functional connectivity analysis, we observed a 
consistent trend in the results of BCI performance and 
pre-stimulus band power by dividing subjects into low 
and high BCI performers. With respect to motor imagery 
BCI performance, only low performers in the vibrotactile 
stimulation group showed significant improvement. The 
tDCS group also demonstrated improved BCI perfor-
mance, although it was not statistically significant. The 
low performers in the sham stimulation group showed 
no change after the sham stimulation. Similarly, a sig-
nificant increase in the pre-stimulus alpha band power 
was observed in the low performers only in the vibrotac-
tile stimulation group. Eventually, the global PLVs over 
the sensorimotor areas showed significant increases for 
low performers in the vibrotactile stimulation and tDCS 
groups. In contrast, no significant change was observed 
in the sham stimulation group. High performers’ BCI 
performance decreased across all stimulation groups, and 
no significant change was observed in the brain activity 
except in a small number of cases.

Discussion
This study compared vibrotactile stimulation and tDCS’s 
stimulation effects on BCI performance and brain activ-
ity. In addition, subjects in each stimulation group were 
divided into low and high BCI performers under the 

assumption that the external stimulation would affect the 
two differently. Our results demonstrated the stimulation 
effects according to stimulation types, and BCI efficiency 
with respect to BCI performance and brain activity.

Stimulation effects
We investigated stimulation effects with respect to motor 
imagery BCI performance and brain activity, includ-
ing the pre-stimulus band power and global functional 
connectivity. First, with respect to BCI performance, 
the performance of low performers in the vibrotactile 
stimulation and tDCS groups improved by as much as 
9.13% for the vibrotactile and 5.13% for the tDCS groups, 
respectively, after the stimulation session, but only the 
vibrotactile stimulation group subjects showed statis-
tically significant differences (p = 0.0053). During the 
stimulation session, all groups of subjects performed four 
blocks of offline motor imagery tasks while they received 
sham, vibrotactile stimulation, and tDCS. As a result, all 
subjects performed four blocks of motor imagery before, 
during, and after the stimulation session, and this rep-
etition could affect performance changes as the subjects 
became accustomed to the task. Therefore, the results 
should be investigated further to determine whether the 
performance changes were attributable to the repetition 
of motor imagery alone rather than vibrotactile stimu-
lation and tDCS. In this respect, the sham stimulation 
group subjects performed the same task, in that they also 
performed motor imagery tasks during the sham stimu-
lation session. In contrast to the vibrotactile stimulation 
and tDCS groups, the sham stimulation group subjects 
showed no notable change in BCI performance, but their 
BCI performance improved by as much as 0.24% after the 
sham stimulation session. Therefore, we can infer that 
the repetition of the motor imagery task without external 
stimulation did not affect the changes in low performers’ 
BCI performance. Although BCI performance needs to 
be improved further, the vibrotactile stimulation group 
subjects achieved performance significantly better than 
random chance, 60.69% obtained by the current test trial 
numbers, and statistically significant at α = 0.05, after the 
stimulation session, indicating that longitudinal stimula-
tion may improve BCI performance.

High performers suffered large performance dec-
rements after the stimulation session in all groups, 
although it may not be relevant because there were only 
three and four high performers in the vibrotactile stimu-
lation and tDCS groups, respectively. In contrast to low 
performers, high performers had achieved controllable 
BCI performance before the stimulation session already, 
indicating that they can generate distinct brain activity 
during motor imagery, so they had a good strategy and 
sense of control. External stimulation may be unneces-
sary for these individuals, or the fatigue attributable to 
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the task’s repetition may have affected them more than 
the stimulation. Another assumption is that a longer 
stimulation session may be necessary to modulate brain 
activity, as a single day session may be too short.

With respect to the pre-stimulus band power, Maeder 
et al. found that trials with a higher SMR amplitude dur-
ing the pre-stimulation period yielded better BCI perfor-
mance than lower amplitude trials [37]. They suggested 
that ongoing SMR may play a key role in motor imagery 
BCI and other motor-related tasks in general. Inspired 
by their findings, we assumed that external stimulation 
could enhance the pre-stimulus band power and improve 
BCI performance simultaneously. In this study, we inves-
tigated the pre-stimulus (1000ms preceding the stimulus 
onset) band power, including alpha (8-13  Hz), low-beta 
(13-20 Hz), and high-beta (20-30 Hz) bands, before and 
after the stimulation session. We observed increased pre-
stimulus alpha band power after the stimulation session 
across all groups of subjects, and it can be expected that 
cognitive and physical fatigue attributable to the long 
experimental tasks increased the alpha band power over-
all. However, statistical tests revealed a significant alpha 
increase only in low performers in the vibrotactile stimu-
lation group (p = 0.00038). This is consistent with the fact 
that low performers’ BCI performance improved signifi-
cantly in the vibrotactile stimulation group. Moreover, as 
Maeder et al. observed, high performers showed higher 
pre-stimulus alpha band power than low performers. 
As a result, pre-stimulus alpha plays a key role in motor 
imagery, and modulating the pre-stimulus alpha may 
help improve motor imagery BCI performance. No sig-
nificant change was observed in the low- and high-beta 
bands, except that high performers’ pre-stimulus high-
beta band power decreased in the vibrotactile stimula-
tion group (p = 0.0469).

In addition to pre-stimulation band power, this study 
was inspired by previous studies that have investigated 
the relation between BCI performance and functional 
connectivity [34, 35] in an effort to determine EEG 
characteristics other than ERD that play a role in motor 
imagery, as previous studies have reported tDCS’s mixed 
effects on ERD [29, 32, 33]. It is unclear whether ERD 
is a key feature for both low and high performers, or 
whether they engage in a motor imagery task differently 
and generate different brain activity. However, it is true 
that event-related desynchronization/synchronization 
(ERD/ERS) is an index of motor imagery used widely [4, 
30]. We calculated contralateral ERD/ERS from motor 
imagery EEG (C3 ERD/ERS during right-hand imagery 
and C4 ERD/ERS during left-hand imagery) for each 
subgroup in the same manner used in motor imagery 
BCI classification. As expected, high performers showed 
clear ERD during motor imagery in the 8-30  Hz fre-
quency range before the stimulation session, while only 

a few low performers exhibited ERD. However, we could 
not find a clear pattern attributable to ERD/ERS changes 
after the stimulation session consistent with the BCI per-
formance increase/decrease, and no significant changes 
were observed in ERD/ERS averaged over subjects. Fur-
ther, we observed some subjects who achieved decreased 
BCI performance after the stimulation session, although 
clear ERD was still observed in the 8-30  Hz frequency 
range in high performers. Conversely, we observed some 
subjects who achieved improved BCI performance after 
the stimulation session, even though there was no nota-
ble difference in ERD/ERS after the session in low per-
formers. Based upon these results, it may be expected 
that performance modulation was not sufficient to elicit 
ERD/ERS changes. Some low performer’s performance 
modulations were still within the range of low BCI per-
formance, and high performers’ performance modula-
tion was still within the range of high BCI performance, 
although it is not clear how low or high BCI performance 
could elicit the corresponding ERD/ERS changes. More-
over, contralateral ERD/ERS could be observed in differ-
ent brain areas (channels), frequencies, and time ranges 
because of inter-subject variability, which makes it diffi-
cult to generalize the results of this analysis. In summary, 
these results demonstrated that low performers who 
achieved improved BCI performance showed increased 
global connectivity and pre-stimulus alpha band powers, 
while ERD/ERS changes did not show the same pattern. 
As discussed earlier, this may indicate that low and high 
performers engage in a motor imagery task differently, 
which induces different EEG features during the task. 
To achieve a more precise analysis, in-depth investiga-
tion should be conducted that focuses more on ERD/ERS 
with a large number of subjects, which we will investigate 
in our future work.

With respect to the brain activity during motor imagery 
other than ERD, Zhang et al. found that brain network 
measures could improve low performers’ BCI perfor-
mance, suggesting that only these features may capture 
their engagement in motor imagery [34]. Leewis et al. 
investigated the difference between low and high per-
formers by assessing the average strength of all connec-
tions on different scales of the brain network [46, 48, 49], 
including the global, large, and local scales, rather than 
complex graph theory measures. Although our study did 
not consider all network scales because of a lack of avail-
able electrode channels, this study investigated the global 
PLVs during motor imagery calculated by averaging all 
connections within the electrode set (F3, Fz, F4, C3, Cz, 
C4, P3, Pz, and P4) that have a high signal-to-noise ratio 
(SNR). We observed that with low performers, vibrotac-
tile stimulation and tDCS increased global PLVs after the 
stimulation session. With vibrotactile stimulation, low 
performers exhibited significantly increased global PLVs 
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in alpha (p = 0.0435), low-beta (p = 0.0268), and high-
beta (p = 0.0094) in right-hand imagery, and low-beta 
(p = 0.0275) in left-hand imagery. The low performers in 
the tDCS group demonstrated significantly increased 
global PLVs in both left- (p = 0.015 for low-beta and 
p = 0.0008 for high-beta) and right-hand (p = 0.0254 for 
high-beta) imagery over the low- and high-beta bands. 
On the other hand, the sham stimulation group subjects 
showed no significant change in global PLVs in any fre-
quency bands and motor imagery classes. Instead, high 
performers showed a significant increase in left-hand 
imagery at low-beta (p = 0.0203), while those in the vibro-
tactile stimulation and tDCS groups showed no signifi-
cant changes. As a result, there were clear differences in 
functional connectivity, as observed in BCI performance 
and pre-stimulus band power, according to stimulation 
types and BCI efficiency (low and high performers).

The results of BCI performance, pre-stimulus band 
power, and functional connectivity showed the same 
trend, in that the low performers in the vibrotactile stim-
ulation and tDCS groups showed significant improve-
ment, while low performers in the sham stimulation 
group showed no significant changes, although the pre-
stimulus band power and functional connectivity differed 
significantly in the different frequency bands. Moreover, 
high performers demonstrated different effects compared 
to low performers in BCI performance, pre-stimulus 
band power, and functional connectivity following the 
stimulation session, indicating that dividing subjects into 
low and high performers was appropriate to investigate 
the stimulation effects.

Stimulation paradigm
We designed the same stimulation paradigm for vibrotac-
tile stimulation and tDCS in this study. BCI performance 
and brain activity in both groups were investigated before 
and following the stimulation session rather than inves-
tigating the stimulation effects concurrently. A hybrid 
technique can be more effective in vibrotactile stimula-
tion because it can enhance ERD when combined with 
motor imagery [20, 21]. However, in practice, a hybrid 
method requires the subjects to receive multiple stimula-
tion types each time they perform BCI tasks, which can 
tire the users more despite the fact that incorporating 
vibrotactile stimulation may improve their performance. 
Instead, if stimulation effects persist after the stimulation 
session, and the subjects achieve the BCI performance 
desired after multiple stimulation sessions over multiple 
days or months, they may be able to perform the BCI task 
more effectively without the stimulation. Although this 
study included only a single day session, and thus, the 
stimulation effects were investigated immediately after 
the stimulation session, our results demonstrated that 

vibrotactile stimulation could modulate brain activity 
and improve BCI performance.

Limitations and future directions
One limitation in this study is that the sample size was 
too small to investigate low and high performers in 
depth. The study was designed with a lengthy timeline 
to evaluate stimulation effects in a single day session. 
High performers may have become bored and lost atten-
tion during the lengthy experiment because they had 
achieved controllable BCI performance already, while 
low performers may have maintained their motiva-
tion longer because they want to achieve improved BCI 
performance. In addition, as we discussed, the external 
stimulation may affect low and high performers differ-
ently because they may engage in a motor imagery task 
and generate different brain activity, as in [34, 35]. How-
ever, we note that although we recruited a large number 
of subjects (N = 44) and 39 remained for the analysis, the 
subjects were divided into groups according to the stim-
ulation types, sham, vibrotactile, and tDCS. Moreover, 
each group was sub-divided according to their initial 
BCI performance to investigate low and high perform-
ers separately. As a result, there were only three and four 
high performers, respectively, in the vibrotactile stimula-
tion and tDCS groups, so it is necessary to observe the 
trend found in high performers carefully. Therefore, one 
can argue that dividing subjects may be not appropri-
ate. However, as we observed, the sub-divided subjects 
showed different characteristics with respect to BCI 
performance, pre-stimulus band power, and functional 
connectivity. In addition, those features’ stimulation 
effects were distinguished for low and high performers. 
Previous studies have found that low and high perform-
ers showed different characteristics with respect to band 
powers [9, 37] and functional connectivity [35]. Further, 
we observed that low and high performers exhibited dif-
ferent effects depending upon vibrotactile stimulation 
or tDCS. However, these results should be interpreted 
with caution because the number of high performers was 
insufficient, and performance was compared during only 
a single day session. For a more precise interpretation, 
high and low performers should be recruited equally in a 
sufficient number, and the experimental paradigm should 
be shortened by conducting multiple day sessions in 
future work.

Moreover, a single day session may not be sufficient for 
some subjects to entrain their brain activity. This analysis 
showed significantly improved performance in the vibro-
tactile stimulation group. In contrast, the tDCS group did 
not show a statistically significant change although the 
subjects achieved improved performance, and there were 
significant changes in their brain activity. However, we 
cannot conclude that vibrotactile stimulation is superior 
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to tDCS based upon this result, because the stimulation 
time required to modulate brain activity may differ, and 
the tDCS group subjects spent extra time preparing for 
the tDCS session. Therefore, multiple sessions over lon-
ger periods may be necessary to investigate the stimula-
tion effects precisely.

In terms of vibrotactile stimulation, we delivered 100 
ms vibrations for the falling phases of alpha waves. Even 
though the stimulation is initiated at the falling phase, 
it may be hard to target the falling phase of alpha wave 
accurately without affecting other phases, which is 
another limitation of this study. Actually, this stimulation 
duration was set practically as the minimum required 
duration for subjects so that they could perceive and 
maintain attention to the stimuli. We note that a previous 
study delivered 20 ms vibrotactile stimulation for every 
falling phase of alpha waves, which theoretically could 
stimulate the falling phase only [21]. They used voice coil 
tactor that is controlled by PC soundcard and an audio 
amplifier, while this study used vibration motors con-
trolled by Arduino Due board via voltage and electrical 
current. Thus, as future work, it is compelling to conduct 
more experiments for various stimulation durations (less 
than 100 ms), with targeting the falling phase of alpha 
wave. For such study, elaborate tactors, such as voice coil 
tactor used in [21], may be utilized for accurate targeting.

With respect to functional connectivity analysis, we 
calculated the average strength of PLVs over the nine 
electrode channels around the sensory motor areas (F3, 
Fz, F3, C3, Cz, C4, P3, Pz, and P4), as the EEG cap used 
in this study had a sparse electrode montage and thus, 
there were no fronto-central or centro-parietal elec-
trodes. Therefore, we calculated a very simple index to 
investigate the stimulation effects rather than using com-
plex connectivity measures, such as those from graph 
theory. Using a greater number of electrode channels can 
provide more freedom in a functional connectivity analy-
sis when investigating network features and scales, such 
as inter/intra-hemisphere analysis.

Conclusion
We conducted a comparative study here to compare dif-
ferent stimulation modalities’ effects on inefficient BCI 
users’ motor imagery BCI performance and brain activity. 
Our results showed that the vibrotactile stimulation and 
tDCS groups achieved improved BCI performance after 
the stimulation session, but the improvement in the tDCS 
group was not statistically significant. Consistently, func-
tional connectivity and pre-stimulus alpha band power 
increased significantly in the vibrotactile stimulation 
group. Moreover, we found that efficient and inefficient 
BCI users exhibited different stimulation effects, in that 
most efficient users demonstrated decreased BCI per-
formance after the stimulation. These findings indicated 

that inefficient and efficient BCI users experience differ-
ent stimulation effects as well as differ in BCI efficiency, 
although this should be investigated with more subjects 
over a longer period. In addition, this study could con-
tribute to research designed to improve BCI performance 
by modulating brain activity, rather than developing a 
new feature extraction algorithm, by providing changes 
in various brain activities during motor imagery and a 
detailed analysis, such as subgroup analyses according to 
stimulation types and BCI efficiency. At the same time, 
this study raised research questions, such as how much 
performance modulation in motor imagery BCI must be 
achieved to elicit similar ERD/ERS modulations, which 
will be investigated in future work. We believe such stud-
ies will contribute to solving the BCI-illiteracy problems 
by allowing inefficient BCI users to achieve controllable 
performance, in addition to achieving near-perfect BCI 
performance for users who have achieved controllable 
performance already.
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