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Abstract 

Background Given the heterogeneity of stroke, it is important to determine the best course of motor therapy for 
each patient, i.e., to personalize rehabilitation based on predictions of long-term outcomes. Here, we propose a hier-
archical Bayesian dynamic (i.e., state-space) model (HBDM) to forecast long-term changes in a motor outcome due to 
rehabilitation in the chronic phase post-stroke.

Methods The model incorporates the effects of clinician-supervised training, self-training, and forgetting. In addition, 
to improve forecasting early in rehabilitation, when data are sparse or unavailable, we use the Bayesian hierarchical 
modeling technique to incorporate prior information from similar patients. We use HBDM to re-analyze the Motor 
Activity Log (MAL) data of participants with chronic stroke included in two clinical trials: (1) the DOSE trial, in which 
participants were assigned to a 0, 15, 30, or 60-h dose condition (data of 40 participants analyzed), and (2) the EXCITE 
trial, in which participants were assigned a 60-h dose, in either an immediate or a delayed condition (95 participants 
analyzed).

Results For both datasets, HBDM accounts well for individual dynamics in the MAL during and outside of training: 
mean RMSE = 0.28 for all 40 DOSE participants (participant-level RMSE 0.26 ± 0.19—95% CI) and mean RMSE = 0.325 
for all 95 EXCITE participants (participant-level RMSE 0.32 ± 0.31), which are small compared to the 0-5 range of the 
MAL. Bayesian leave-one-out cross-validation shows that the model has better predictive accuracy than static regres-
sion models and simpler dynamic models that do not account for the effect of supervised training, self-training, or 
forgetting. We then showcase model’s ability to forecast the MAL of “new” participants up to 8 months ahead. The 
mean RMSE at 6 months post-training was 1.36 using only the baseline MAL and then decreased to 0.91, 0.79, and 
0.69 (respectively) with the MAL following the 1st, 2nd, and 3rd bouts of training. In addition, hierarchical modeling 
improves prediction for a patient early in training. Finally, we verify that this model, despite its simplicity, can repro-
duce previous findings of the DOSE trial on the efficiency, efficacy, and retention of motor therapy.

Conclusions In future work, such forecasting models can be used to simulate different stages of recovery, dosages, 
and training schedules to optimize rehabilitation for each person.

Trial registration This study contains a re-analysis of data from the DOSE clinical trial ID NCT01749358 and the EXCITE 
clinical trial ID NCT00057018
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Introduction
Recent modeling work has sought to predict the long-
term spontaneous recovery of individuals post-stroke 
from baseline clinical or neural data, e.g., [1–4]. Whereas 
such predictions are useful for clinical and research strat-
ification, the neurorehabilitation clinician needs to accu-
rately predict the long-term changes in motor outcomes 
in response to specific treatments. With the predicted 
responses, the clinician could then determine the best 
course of motor therapy for each patient, i.e., personalize 
rehabilitation [5].

A difficulty is that stroke is heterogeneous and exhibits 
considerable variability, including in response to motor 
therapy [6]. It is known that the integrity of the corti-
cospinal tract predicts gains in functional outcomes due 
to rehabilitation, e.g., [4, 7, 8]. However, multiple other 
factors are also likely to affect these gains, as well as the 
retention of these gains following rehabilitation. For 
instance, we have previously shown that the integrity 
of visuospatial working memory modulated the effect 
of blocked, but not distributed, training schedules in 
chronic stroke [9]. In addition, in re-analyses of the data 
of the EXCITE [10] and DOSE [11] trials, we have shown 
that approximately one-fourth of participants continued 
to see improvements in upper extremity (UE) function 
following training; conversely, another fourth lost most 
gains in UE function that resulted from therapy [12, 13].

Given this variability in response to therapy, we need a 
paradigm shift in predictive modeling in neurorehabilita-
tion that, in addition to clinical and lesion data, incorpo-
rates repeated measurements of motor outcomes as soon 
as they become available during motor therapy. Predic-
tive models that primarily consider such repeated meas-
urements indexed in time order (i.e., time-series) are 
forecasting models. For example, a recent model can more 
accurately forecast spontaneous recovery 6 months post-
stroke when incorporating repeated measurements than 
only baseline data [14]. Here, we extend such an approach 
to forecast the effect of rehabilitation in chronic stroke.

What should be the form of forecasting models in neu-
rorehabilitation? Since neurorehabilitation is based on 
the premise that sensorimotor activity improves motor 
recovery via brain plasticity, i.e., “changeability”, the 
models need to account for the changes in outcomes 
both during movement therapy, when an increase in 
performance is expected, and outside of therapy, when 
both a decrease in performance due to forgetting and an 
increase in performance are possible. Previously, we pro-
posed a piece-wise linear model of changes in a motor 
outcome in the DOSE clinical trial, in which the periods 
of therapy marked the limit between the different linear 
segments [13]. Although this model well accounted for 
positive and negative changes both during and following 

therapy, a model of this type cannot generalize to other 
datasets because it depends on the timing of training and 
measurements.

We propose a state-space modeling approach to pre-
dict motor outcomes during and following rehabilitation 
post-stroke. The model has a compact representation and 
an adjustable time resolution, allowing generalization to 
different data sets and even to different schedules of ther-
apy for individual patients. The model extends a previous 
non-linear, first-order state-space model that explained 
the long-term changes, and the variability in these 
changes, in arm use following training in the EXCITE 
trial [12]. This previous model uses a retention term to 
account for the performance decay often observed post-
training, at least in subgroups of patients [12, 13] and a 
“self-training” term to account for the change in spon-
taneous use of the paretic limb outside of training when 
UE function is above a threshold post-therapy [12, 13, 15, 
16], which further increases future use and function. In 
the present model, we further account for the response 
to therapy via an input term proportional to the dose of 
motor training, as in our previous piece-wise model [13]. 
Indeed, animal studies, meta-analyses, and recent clinical 
trials with large doses, including the DOSE trial, showed 
that large training doses improve UE function, e.g., [11, 
17–19].

Previous models in neurorehabilitation typically pre-
dict the mean of the future outcome, e.g., [8, 20, 21]. 
However, such point estimation of a future outcome is 
insufficient for clinical decision-making in neurorehabili-
tation because clinicians need to account for the uncer-
tainty of the forecast when assessing different treatment 
options.1 To provide interval estimation, we utilize the 
Bayesian approach, which extends our previous work 
[12], as Bayesian models naturally deal with uncertain-
ties by focusing on the probability distributions of all 
parameters.

A final difficulty for accurate long-term forecasting 
in neurorehabilitation, however, is that for each new 
patient, there is initially no or little data on the effect of 
motor therapy. A hierarchical Bayesian model [22] can, 
in theory, refine the initial predictions by incorporat-
ing prior information from similar patients, via “hyper-
parameters.” Crucially, these hyper-parameters can be 
used as individual prior parameters when predicting the 
response of a new individual when little outcome data are 
available, i.e., early in therapy.

1 For instance, a (hypothetical) treatment A, which is predicted to increase 
the outcome by 50% with a 95% CI of 45–55%, may be preferred to treat-
ment B, which is predicted to increase the outcome by 60% with a 95% CI of 
30–90%.



Page 3 of 13Schweighofer et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:83  

Here, we therefore propose and test a novel hierarchi-
cal Bayesian dynamic modeling (HBDM) framework 
that can accurately forecast a clinical measure follow-
ing rehabilitation in chronic stroke. As a testbed of our 
model, we use the Motor Activity Log (MAL) data from 
both the DOSE trial [11] and the EXCITE trial [10]. We 
test whether a minimal model with three terms, account-
ing for retention, response to external training, and 
self-learning, respectively, can better predict the MAL 
than reduced dynamical models and non-dynamical 
regression models for these two datasets. Then, using 
the DOSE data, we simulate the model to forecast the 
MAL of “new” patients up to 8 months ahead and study 
the change in the long-term accuracy of the forecasts as 
additional training data becomes available. We compare 
the prediction accuracy for models with and without a 
hierarchical structure for different ranges of forecasting. 
Finally, we validate the model by testing whether it can 
account for our previous results on the DOSE dataset on 
the efficacy, efficiency, and retention of motor training in 
chronic stroke.

Methods
Participants and data
We first developed and validated the model with the 
MAL data of 40 participants enrolled in the DOSE trial 
conducted at the University of Southern California [11]. 
The participants had mild-to-moderate upper extrem-
ity motor impairment chronically after stroke (onset at 
least 5-month before inclusion). Participants were ran-
domly assigned to the 0, 15, 30, and 60-h doses, with 
the dosages distributed over 3 week-long training bouts, 
separated by 1 month. The intervention was based on 
the Accelerated Skill Acquisition Program (ASAP) [23], 
which includes elements of skill acquisition through chal-
lenging and progressive task practice. The MAL Quality 
of Movement (QOM) subscale, which measures the par-
ticipant’s perception of the amount and quality of func-
tional motor tasks by asking them to recall and rate the 
quality of movement of the paretic arm for 28 activities of 
daily living [24], was collected by blinded assessors in 14 
longitudinal assessments administered: (1) twice before 
the first training bout; (2) immediately before and after 
each of the three 1-week training bouts; and (3) monthly 
for 6 months following the last training bout.

We further validated the model with the data from the 
EXCITE trial conducted at 7 US sites, in which participants 
who had a first stroke within the previous 3 to 9 months 
and with mild-to-moderate impairment were randomly 
assigned to either an immediate or a delayed Constraint 
Induced Movement Therapy (CIMT) group [10, 25]. The 
immediate group received 10 days of therapy from inclu-
sion; the delayed group received 10 days of therapy after 

a one-year delay. Participants were tested with the MAL 
QOM, recorded by blinded assessors, immediately before 
and after the scheduled therapy for both groups, and at 4 
months, 8 months, 16 months, 20 months, and 24 months, 
with a maximum of 9 data points were available. Due to 
the limited MAL data per person, we excluded participants 
with missing observations, resulting in 50 and 45 partici-
pants in the immediate and delayed groups, respectively.

The hierarchical bayesian dynamic model (HBDM)
We developed a hierarchical Bayesian dynamic model 
(HBDM) of the changes in the MAL both during training 
and outside of training post-stroke. The model has three 
levels: an individual measurement level (level 1), a subject 
level (level 2), and a population level (level 3).

Level 1: Modeling intra‑individual variations (over time)
In level 1, we modeled how the MAL is updated at each 
time t for each subject i. The model contains a single state-
space equation of motor memory, a sigmoidal function that 
maps a motor memory to a predicted MAL, and an obser-
vation model that accounts for the measurement noise in 
the MAL. The motor memory (i.e., the state of the system) 
xti and the predicted MAL mt

i are updated by the following 
equations:

 where 0 ≤ αi ≤ 1 is a retention rate parameter (such 
that αi close to 1 corresponds to little forgetting), βi ≥ 0 a 
learning rate parameter, and γi≥ 0 controls the strength of 
self-training. By passing the motor memory through the 
sigmoidal function (Eq. 2), the predicted MAL mt

i always 
lies in the proper 0–5 range of the MAL. In the DOSE 
trial, uti = [0, 5, 10, 20] + 2 is one of the four doses for 
each of the three weeks of training, including two addi-
tional hours of movement testing [13] (as a reminder, the 
total nominal doses are 0, 15, 30, and 60 h). In EXCITE, 
uti = 60, given upon inclusion (immediate group) or 1 
year later (delayed group). The constant sigmoid slope of 
0.2 was found in preliminary model fitting. Note that no 
process (state) noise was included, because the data are 
scarce [26].

To account for outliers, the observed MAL ( MALti ) is 
modeled with a generalized Student’s t-distribution; that is:

 where mt
i (the predicted MAL) is the center of the distri-

bution, σMAL is a scale parameter, and ν is the degree of 

(1)xt+1
i =

αix
t
i + βiu

t
i if uti > 0,

αix
t
i + γim

t
i else.

(2)mt
i = 10/

(

1+ e−0.2xti

)

− 5

(3)MALti ∼ StudentT
(

mt
i , σMAL, ν

)

.
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freedom. Note that σMAL is subject-independent because 
we assume the measurement noise is an inherent prop-
erty of the MAL.

Level 2: Modeling inter‑individual variations
In level 2, to account for the differences between indi-
viduals, the model parameters are assumed to be random 
variables following different probability distributions for 
each participant. Thus, in level 2, we model the individual 
parameters αi , βi, γi , as well as the initial state x0i  with the 
following prior distributions:

 where N (µ, σ) is the normal distribution with mean µ 
and standard deviation σ , the retention rate αi  is con-
strained between 0 and 1 via the sigmoid function, and 
the learning rates βi  and self-training rates γi  are non-
negative with truncated normal distributions 

(

N[0,∞)

)

 . As 
in our previous model [13], the baseline MALini is a (lin-
ear) covariate of the initial memory state:

Level 3: Modeling the population level
Finally, in the level 3 of the hierarchy, the hyper-param-
eters, θα , θβ , θγ , σα , σβ , σγ , σini , σMAL , k , and ν govern the 
prior distributions of the individual parameters. The 
hyper-parameters are initially sampled from weakly-
informative prior distributions as shown in Table 1. We 

αi ∼ 1/

(

1+ e
−N(θα ,σβ)

)

βi ∼ N[0,∞)

(

θβ , σβ
)

γi ∼ N[0,∞)

(

θγ , σγ
)

x0i ∼ N[0,∞)(kMALini, σini)

use normal priors for the location hyper-parameters θ for 
better explainability and to impose weak regularizations 
on relevant parameters, a truncated normal prior on 
the slope coefficient k to ensure positivity, and inverse-
gamma priors for the scale hyper-parameters σ , which 
tend to drive parameters further away from zero than 
truncated-normal priors.

Bayesian parameter estimation methods
Parameter estimation for HBDM involves simultaneous 
determination of the population parameters, as well as 
the individual-level parameters given all the data from 
all participants. Fitting the dynamic model given by 
Eqs.  1–3 was performed via Bayesian inference, which 
incorporates the prior distributions and data to gener-
ate a posterior distribution for each random variable via 
the Bayes’ rule. For each dataset, the HBDM fits the data 
from all participants simultaneously using the software 
Stan (via the RStan interface) [27].

We imposed weakly-informative priors on the hyper-
priors. In particular, the priors on µα and σα , to reflect the 
prior knowledge that the median retention rate is about 
0.86 as found in our previous work with the DOSE data-
set [13]. Similarly, the hyper-priors for the learning rate 
and self-training rate are selected based on the ranges of 
the parameters found in our previous studies [12] with 
the EXCITE dataset and [13] with the DOSE dataset—see 
Table 1.

Note that the MAL measurements are non-evenly 
spaced. In DOSE, the smallest spacing is 1 week and in 
EXCITE, the smallest spacing is 2 weeks. To compare the 
hyper-parameters in both datasets, we used a time-step 
of 1 week for both datasets and considered non-available 
data as missing. The Bayesian method smoothly deals 
with the issue of missing data.

Table 1 Subject-dependent parameters and population hyper-priors used in the best model

Note that we modeled the measured MALt
i
 with a generalized t -distribution centered at mt

i
 with a scale parameter σMAL and the degrees of freedom ν

Model parameters Priors Hyper-priors

Retention rate αi ∼ 1/
(

1+ e
−N (θα ,σα)

)

θα ∼ N (2,1)

σα ∼ InvGamma(3, 2)

Learning rate βi ∼ N[0,∞)

(

θβ , σβ
)

θβ ∼ N (0, 1)

σβ ∼ InvGamma(4, 2)

Self-training rate γi ∼ N[0,∞)

(

θγ , σγ
)

θγ ∼ N (0, 1)

σγ ∼ InvGamma(4, 2)

Initial state of memory x
0
i
∼ N[0,∞)(kMALini, σini) k ∼ N[0,∞)(0, 2)

σini ∼ InvGamma(3, 2)

Data Likelihood Hyper-priors

MAL (measured) StudentT
(

MALt
i
|mt

i
, σMAL, ν

)

ν ∼ Gamma(2, 0.1)

σMAL ∼ N[0,∞)(0.25, 0.1)
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We ran the No-U-Turn sampler implemented in Stan 
with  6 chains for 10,000 iterations, including 5000 
warm-up samples. We verified convergence with the 
following methods. First, we checked that the improved 
R-hat was below the recommended threshold of 1.01 
[28] for all parameters in the models for both the DOSE 
and the EXCITE datasets. The low R-hats suggest that 
the parallel simulation chains are well-mixed and have 
converged to the target posterior distribution. Sec-
ond, we checked the prior posterior overlap (PPO). 
Almost all parameters in our models (for both data-
sets) have PPO below the 35% threshold, which indi-
cates adequate parameter identifiability [29]. The only 
exceptions are individual learning rates for subjects D5, 
D7, D8, and D9 with PPOs between 35% and 40% (an 
acceptable range).

Finally, RStan automatically detects and warns users of 
various potential issues with the algorithm [30], notably 
regarding the estimated effective sample size (ESS). Upon 
termination, our models received no runtime warnings 
from RStan.

We then used the MCMCvis package and functions 
from RStan to generate summary statistics and plots of 
the posterior distributions for the parameters in our 
model. A “leave-one-subject-out” cross-validation exper-
iment (described below) was performed to evaluate the 
model’s ability to forecast individual future outcomes 
using the high-performance-computing cluster. To vali-
date the model structure, we compared the full HBDM 
with simpler models, dropping each of the retention, 
learning, and self-training terms in Eq. 1. We then com-
pared the full model to a model without random effects 
(no between-subject variability). Finally, we compared 
the full dynamic model to static linear and logistic regres-
sion models, in which the state-space Eq. (1) is replaced 
by a simple linear function of time (i.e., weeks):

where ci, di are estimated coefficients (for subject i) and 
t is the number of weeks after the initial MAL measure-
ment. Additionally, the logistic model contains the sig-
moidal function (Eq. 2) that converts motor memory into 
predicted MAL.

Model comparison (between the best model and sim-
pler models) was performed using WAIC (Watanabe-
Akaike information criterion) and PSIS-LOO (Pareto 
smoothed importance sampling leave-one-out cross-
validation) [31]. The WAIC is an estimation of expected 
log point-wise predictive density (ELPD) that adjusts for 
overfitting using the effective number of parameters. The 
ELPD is a theoretical(or ideal) measure of a model’s pre-
dictive accuracy on unseen data [31]. Maximizing ELPD 
is equivalent to minimizing the KL-divergence of the 

(4)x
t
i = ci + dit

true data-generating process to the posterior predictive 
distribution.

PSIS-LOO provides a different estimate of ELPD, 
named elpd_loo, and allows us to compute the elpd_diff, 
a measure of the pairwise difference in elpd_loo. The 
elpd_loo has shown to be asymptotically equal to WAIC 
but also “more robust in the finite case with weak priors 
or influential observations” [31]. Note that when compar-
ing several models, elpd_diff is only computed for each 
model against the best model (which has the largest elpd_
loo). Then, under the normality assumption, we estimate 
the 95% confidence interval of elpd_diff and Pr(better) , 
the probability that a model is better than the best model 
found through PSIS-LOO (i.e., when elpd_diff≥ 0).

Evaluation of forecasting accuracy on unseen data 
with the DOSE dataset
We then evaluated the long-term forecasting accuracy 
in four different scenarios on the DOSE dataset (see 
Results). We used a “leave-one-subject-out” simulated 
experiment, which repeatedly re-fits the model while 
masking a number of last MAL measurements for a 
“left-out” participant. This procedure allows us to exam-
ine the model’s ability to utilize a database of “past” par-
ticipants to predict the outcome of a “new” participant 
(with few data). We also compared the full model with 
a model without the hierarchical structure. We quanti-
fied the model’s forecasting accuracy using a modified 
RMSE, named Bayesian forecasting RMSE (BF-RMSE). 
The RMSE is the root of the average squared differ-
ence between the predicted and the observed MAL. 
When computing the RMSE  using point estimates, we 
used the posterior medians of mt

i in Eq. (2) as the mod-
el’s predictions for patient i’s MAL at week t. The BF-
RMSE, in contrast, evaulates an interval estimate against 
a  point  observation. In particular, the BF-RMSE  is the 
RMSE between each posterior draw of the forecasted 
values and the corresponding masked measurements for 
each participant. We computed the mean BF-RMSE at 
each “future” time-point, by averaging over participants, 
and used the permutation test to estimate one-sided 
p-values, i.e., the probability that the non-hierarchical 
model has a lower mean BF-RMSE than the full model.

Results
Fitting the hierarchical bayesian state-space models
DOSE dataset
Figure  1A shows examples of fits to the DOSE data for 
the best HBDM (Eqs.  1–3 in Methods) with the corre-
sponding individual parameters (retention rates, learning 
rates, and self-training rates) for eight representative par-
ticipants (two per dose). The model achieved good con-
vergence, with R-hat < 1.01 for all parameters. The fit was 
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overall excellent, with RMSE = 0.28 for all 40 participants 
(participant-level RMSE 0.26 ±0.19—95% CI), which is 
less than 6% of the MAL 0–5 scale. The median reten-
tion rates for each subject were between 0.83 and 0.89, in 
line with the mean estimated retention rate in our previ-
ous work with the EXCITE dataset of 0.86 [12]. However, 
there was a  large between-subject variability. Whereas 
several participants showed a weak training effect with 
a median learning rate of less than 0.1 (e.g., D27), some 
showed learning rates above 0.4 (e.g., D23). Whereas a 
combination of small learning and self-learning rates is 
highly detrimental for long-term performance (e.g., D27, 
D37), the opposite yields improved long-term outcomes 
(e.g., D17).

EXCITE dataset
Figure  1B shows examples of fits of the same “best” 
model to the EXCITE data and parameters for eight par-
ticipants (four for each group: immediate and delayed). 
Here, again, the model achieved good convergence, with 
R-hat < 1.01 for all parameters. The mean RMSE was 0.35 
(participant-level RMSE 0.32± 0.31 ), which is 7% of the 
MAL 0–5 scale. Thus, despite the few data points availa-
ble per participant in EXCITE (9 instead of 14 in DOSE), 
the fit is still very good. Here again, there was large vari-
ability in the parameters between participants, notably 
for the effect of training. For instance, participants E47 
and E1 showed pronounced decay outside of training, as 
captured by relatively small retention and self-training 
parameters. In contrast, participants whose MAL con-
tinues to increase post-training showed high self-training 
parameters. Finally, as for DOSE, training effects vary 
significantly between subjects (e.g., E57 and E29).

Comparison of the hyper-parameters between the two 
datasets (Fig.  1C) shows that, as a group, the EXCITE 
participants have smaller learning rates (95% CI 0.040–
0.06 for 0.12–0.30), smaller self-learning rates (95% 
CI 0.068–0.15 vs. for DOSE: 0.23–0.57), and larger reten-
tion rates (95% CI 0.93–0.97, corresponding to a time 
constant of decay 15.2–34.6 weeks, vs. for DOSE: 0.77–
0.90, time constant 3.4–11.0 weeks). We comment on the 
possible reasons for these differences in the Discussion.

We then tested for possible pair-wise correlations 
between the three parameters of Eq.  1, i.e., the reten-
tion rate αi, learning rate βi and self-training rate γi . We 
computed the 95% CI of the Pearson’s correlation coef-
ficient with bootstrapping for 5000 iterations. As shown 
in Additional file 1: Fig. S1, all parameters are positively 
correlated for both clinical trials. The (relatively small) 
correlation between the learning rates βi and the self-
training rates γi suggests that participants respond 
similarly to both types of training (supervised and self-
administered). The correlation between retention rates 
αi and the self-training rates γi confirms that individuals 
who engage in self-training also show greater retention. 
The positive correlation between retention rates αi and 
the learning rates βi is interesting as it suggests that 
those participants who best respond to training show 
the most retention. A possible explanation is that train-
ing in participants with large β can bring the partici-
pants “above threshold” (see text at the  end of results 
below and in Additional file 1: Fig. S2D), in which case 
retention is high.

Comparison with simpler models
The model comparison results show strong evidence 
that all three main terms in the state-space equation 
(retention, learning, and self-training) are required for 
a good fit for both DOSE and EXCITE datasets. Omit-
ting the learning term has the biggest effect in worsen-
ing the fit in both datasets, followed by the retention 
term and the self-training term. Not surprisingly, given 
the diversity of the MAL trajectories, the population-
level model (using only non-individual parameters, 
i.e., fixed effects) performed the worst based on both 
the WAIC (588 instead of 297 for the best model) and 
elpd_diff. For details, see Additional file  1: Table  S1A 
for DOSE and Table S1B for EXCITE.

Finally, we compared the model with two static 
Bayesian regression models: a linear model of time 
(Eq. 2) and a modified logistic model (see Methods) for 
both datasets. The logistic model performed relatively 
well compared to other models, such as the dynamic 

Fig. 1 Data, model fit, and parameter estimates for the best learning model. A DOSE data: Example of data, model fit, and parameter estimates for 
eight participants arranged by doses of training. B EXCITE data: Example for eight participants arranged by the timing of training (immediate vs. 
delayed). Upper panel: MAL data and fit for the best model for each participant. The fit was overall excellent, with RMSE = 0.28 for all 40 participants 
(individual RMSE 0.26 ±0.19). These examples also illustrate the large variability between participants. Variability in response to training is due 
to a low (e.g., D27) or high learning rate (e.g., D23). A combination of small learning and self-learning rates is highly detrimental for long-term 
performance (e.g., D27, D37), but the opposite yields improved long-term outcomes (e.g., D17). Dot: data. Lines: mean model fit. Shaded area: 95% 
CI. Lower panel: Posterior parameter distributions of the three main parameters (self-training rate γi , learning rate βi , and retention rate αi) . The thick 
bars show the 95% parameter CI and the thin bars the 99% CI. C Hyper-parameters: Posterior distributions for the corresponding hyper-parameters. 
Note that T(θα) is the transformed θα parameter (via the sigmoid function), which corresponds to the median of the logit-normal prior distribution 
for individual retention rates ( αi)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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model without learning, but still largely worse than 
the full model and the dynamic model without self-
training. This illustrates that “fixed” (non-dynamical) 
models, which cannot simultaneously account for the 
effects of learning and retention, respectively, cannot 
account well for our rehabilitation data.

Evaluation of forecasting accuracy on unseen data: 
increasing accuracy and precision with additional outcome 
data
We then evaluated the long-term forecasting accuracy 
for new participants in four different realistic scenarios 
in which the clinician would assess and re-assess pre-
dictions as additional outcome data become available 
(see Methods). Figure 2A shows the hierarchical model’s 
forecasting fits (median, 90%, and 95% CIs) on four rep-
resentative participants for the duration of the DOSE 
trial. The mean BF-RMSE (averaged over participants) at 
6 months post-training was 1.36 when only the baseline 
data were available. It then decreased to 0.91, 0.79, and 
0.69 when the MAL data following the 1st, 2nd, and 3rd 
bouts of training were available. Thus, when MAL data 
following the 2nd bout of training is available, predic-
tions at 6 months become remarkably accurate, in line 
with the Minimal Clinically Important Difference for the 
MAL of ~ 0.5 [32].

Finally, we find that the random-effect model (in con-
trast to the hierarchical model) was largely inaccurate 
when only the baseline data were included (see Fig.  2C 
and p-values between the two models in Fig.  2D). 
Whereas the benefit of the hierarchical structure is evi-
dent when fewer data are available. Indeed, after the 
3rd bout of training, predictions with and without the 
hierarchy become nearly indistinguishable, as can be 
observed by comparing the individual plots in Fig. 2A–C. 
In this case, the p-values of the pairwise differences are 
high, notably for short-range forecasts (Fig.  2D). How-
ever, interestingly, for long-range forecasts the p-values 
decrease again for all scenarios, showing the relative 
advantage of the hierarchical model (although not reach-
ing the 5% significant level). This occurs because as the 

proportion of missing data increases in long-range fore-
casts, information sharing across participants becomes 
once again more advantageous.

Qualitative model evaluation
Furthermore, we examined whether the HBDM may 
serve as a model of motor learning that could repro-
duce previous findings of the DOSE trial [13]: an imme-
diate dose-response, a decrease in efficiency with both 
additional dose and weeks of training, a negative dose-
dependent effect of training on retention, and the thresh-
old above which self-training becomes sufficient to 
further improve the MAL without supervised training. 
For this, we simulated the model of Eqs.  1–3 using all 
posterior samples of the individual parameters for each 
of the 40 participants in the DOSE datasets. We pro-
cessed and plotted the predicted MAL data in a similar 
fashion to our previous study [13]: (i) To compute the 
short-term efficacy, we computed the changes in MAL 
due to the three bouts of training. (ii) To compute the 
dose efficiency, we divided the changes in MAL due to 
the three bouts of training by each dose. (iii) To compute 
the decay following training for each dose, we computed 
the weekly change in MAL in 2-month intervals fol-
lowing training divided by the number of weeks in each 
interval. (iv) Finally, to determine the threshold above 
which self-training can further increase outcomes, we 
fitted a regression model of the weekly changes in MAL 
from immediately post-training to 6 months post-train-
ing as a function of the mean MAL post-training with 
dose as a factor.

The model reproduced our five previous results. First, 
as shown in Additional file 1: Fig. S2A, the model repli-
cated the increase in the efficacy of training with greater 
doses, with a near-linear dose-response relationship. 
Second and third, the efficiency of training depends on 
both the weekly dose and the number of training bouts 
(Additional file  1: Fig. S2B). Increasing the number of 
hours of training resulted in a decrease in efficiency in 
an exponential-like fashion. Similarly, across dosages, 
the first bout of training increased the MAL, whereas 

(See figure on next page.)
Fig. 2 Accuracy of individual long-term forecasting. A, B Examples of individual predictions for different amounts of incoming data with population 
priors for four participants, one per dose. D2: 0 h. D11: 15 h. D25: 30 h. D33: 60 h, each in four scenarios in which the availability of outcome 
measures increases for each participant (circles). Note how when MAL data following the 2nd bout of training is available, predictions at 6 months 
become remarkably accurate. B Same as in A, but here, we do not use population hyper-priors but weakly-informative priors for each participant. 
Solid lines: model prediction (posterior median). Blue shaded zones: 90% and 95% prediction intervals (from darker to lighter). Triangles: MAL 
data measured but not used to update the model. Note how, when compared with hierarchical model in A, the forecast at 6 month was largely 
inaccurate and imprecise (i.e., large prediction interval) when only the baseline data were included. C Comparison of mean BF-RMSEs for each 
week in the different forecasting scenarios. Dots and Triangles are the mean BF-RMSEs for the hierarchical and random effect (i.e., non-hierarchical) 
models, respectively. Solid and dotted lines are the best fit lines (log-linear) of the weekly mean RMSEs for the hierarchical and random effect 
models, respectively. D One-sided p-values for the difference in mean RMSEs between the hierarchical and the random-effect models for each 
forecasting scenario. Note that whereas the hierarchical model improves short- and long-term forecast until the 2nd bout of training, after the 3rd 
bout of training, predictions with and without the hierarchy become nearly indistinguishable
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the additional bouts became more and more inefficient 
(Additional file  1: Fig. S2B). Fourth, retention depends 
on time post-stroke and the dosage of training. For the 

smallest dose, the MAL increases following training (pos-
itive ∆MAL/week) , with the initial increase larger than 
in later months. In contrast, for large dosages, the MAL 

Fig. 2 (See legend on previous page.)
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decreases (negative ∆MAL/week) , with the initial decay 
larger than the decay in later months (Additional file  1: 
Fig. S2C). Whereas such an exponential-like convergence 
is not surprising given our choice of a first-order state-
space model (see examples of fit for 0- and 60-h dose in 
Fig. 1), these results match those of our previous study in 
which we approximated the retention data with three lin-
ear segments of 2 months each [13]. Fifth, these opposite 
retention results for small and large doses are due to the 
positive “self-training” effect counteracting the negative 
effect of increasing dose (the greater the dosage, the more 
the forgetting), as shown in Additional file  1: Fig. S2D. 
When the MAL post-training is above a dose-dependent 
threshold, the MAL keeps increasing, as we previously 
found with the piece-wise model [13].

Discussion
Our study presents a novel model to forecast a continu-
ous motor outcome following rehabilitation in chronic 
stroke survivors. Although previous static models can 
predict the response to interventions using baseline data, 
these models cannot account for the changes in the out-
come due to training, self-training, and retention in the 
long-term. Here, we showed that the accuracy of the 
prediction is much improved by a dynamic forecasting 
model that incorporates initial responses to training. Our 
results using data from both the DOSE and EXCITE clin-
ical trials in chronic stroke showed that the best model 
is a non-linear state-space model derived from our pre-
vious research [12, 13] that contains a retention term 
that depends on the memory at the previous time-step, 
a learning term as a function of the dose of supervised 
training, and the self-training term that uses the pre-
dicted MAL fed back to the memory model. Despite its 
relative simplicity, our model clearly captures the dynam-
ics of the MAL in response to and following training in 
both datasets. In addition, it accounts for a number of 
phenomena previously observed in the DOSE study [13].

Comparisons of the hyper-parameters between the 
two clinical trials show smaller learning rates and self-
learning rates and higher retention rate in EXCITE. 
The smaller learning rates can be explained by our pre-
vious study showing that the gains due to therapy [13] 
decrease with larger doses. Since all participants in 
EXCITE received 60 h of therapy, compared to an aver-
age of 23.5 h of nominal therapy for DOSE, it is expected 
that the learning rates for DOSE will be greater. Another 
possibility is that the type of therapy in DOSE (ASAP) is 
more effective than that of EXCITE (constraint induced 
movement therapy), but a larger group of 60  h ASAP 
training would be needed to test this hypothesis. Simi-
larly, greater self-learning hyper-parameter for the 
DOSE group is consistent with our previous findings 

that self-learning decreases with the dose of therapy [13]. 
Finally, in our previous study, we also showed that the 
greater the gains due to therapy, the greater the forget-
ting, i.e., smaller retention rates [13]. Thus, a possibility 
is that constraint-induced movement therapy training in 
EXCITE is less effective than ASAP in DOSE, leading to 
less retention. A larger study with diverse range of time 
since stroke (i.e., participants in the acute, sub-acute, and 
chronic stages), doses, and types of therapy is needed to 
test these possibilities.

Although HBDM has not yet been used to inform the 
practice of neurorehabilitation, hierarchical Bayesian 
modeling has recently been used to model “spontaneous 
recovery” in the acute and post-acute phases post-stroke 
across multiple clinical sites [1]. In our model, the hier-
archical structure improved predictions both early in 
training and for long-term forecasts for a given patient 
compared to a non-hierarchical model (see Fig.  2A) by 
“borrowing” information between patients. New incom-
ing data, as well as prior knowledge, can be naturally 
incorporated in our model, yielding an online supervised 
learning method that continuously improves the predic-
tions. Importantly, in the hierarchical models, learning 
occurs simultaneously at the individual and population 
levels: additional data improves the forecast for the cur-
rent participant and the population overall. In future 
work, a higher-level site hierarchy can be added when 
models fit data from multiple sites, as in [1].

In future applications, HBDM can be used in “preci-
sion rehabilitation.” Currently, the dose and schedule of 
rehabilitation are determined based on clinical setting 
(e.g., in-patient or out-patient), historical precedent, and 
results from clinical trials. However, with an accurate 
forecasting model, one can determine optimal schedules 
of motor training that maximize expected outcomes. For 
instance, in previous work in motor adaptation [33], we 
used optimal control theory to determine the schedule 
that maximizes the mean long-term performance pre-
dicted by a non-Bayesian motor adaptation model. Such 
predictions of the mean are useful in data-rich applica-
tions. However, in personalized medicine, and especially 
in neurorehabilitation, the data are sparse, and the uncer-
tainty of the predicted outcomes is high. In contrast, the 
current hierarchical Bayesian forecasting model gener-
ates a full distribution of the long-term outcomes based 
on the parameter uncertainty and measurement noise. 
This allows us to visualize both accuracy and precision of 
the model predictions with ease.

In contrast to our theory-driven approach, one can 
envision a purely data-driven approach to forecasting 
motor outcomes post-stroke using “black-box” models, 
e.g., [34]. For instance, deep neural networks trained with 
a large amount of data could yield good or even better 
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accuracy in long-term predictions. Recurrent neural net-
works could even generate the dynamics of recovery as 
in our model. Pre-training a model with large amount 
of population data and fine-tuning the model with indi-
vidual data (as in “few shots learning”) [35] could gen-
erate predictions for each patient. However, because 
these models contain very large number of parameters 
(“weights”), they require a large amount of training 
data and are difficult (if at all possible) to interpret. For 
these reasons, such models are often less preferred for 
high-risk, healthcare applications [36]. In contrast, our 
approach is sample-efficient and interpretable, which 
allow us to extract an understanding of the mechanism(s) 
underlying the individualized predictions by leveraging 
(reliable) clinical data- see also for a related (non-Bayes-
ian) example [37]. Analysis of the model parameters can 
help clinicians make informed decisions about therapy 
[5]. For instance, if a patient has a large learning rate but 
also a small retention rate, then it is predicted that the 
gains due to additional therapy will be short-lived.2 Alter-
natively, if the learning rate is near zero, then it can be 
predicted that even large doses of therapy will not yield 
large gains. In addition, there are no standard techniques 
for calculating interval estimates with neural networks 
for prediction problems. Prediction intervals can be esti-
mated using model ensembles, but these methods lack 
the rigor of our Bayesian approach.

Notwithstanding, there are two main limitations in our 
study. The first limitation is the use of the MAL which 
relies on self-reported ratings of the quality of movement 
across a range of tasks. Nonetheless, it is striking that 
our simple model well characterizes the dynamics in the 
MAL outcome in the two datasets, since the MAL score 
results from an average of scores for 28 activities of daily 
living. Relatedly, our “motor memory” variable cannot be 
taken literally as a neural variable, but rather as an aggre-
gate of the multiple motor memories needed to perform 
the MAL. We note that, in theory, similar models can be 
used for other outcome measures that show response to 
treatment. For instance, we could model the change in 
the Wolf Motor Function Test [25], as this measure of 
arm and hand function has been shown to increase in 
response to treatment in the EXCITE trial. A possible dif-
ference, however, is the self-training term, which depends 
on arm use (and not function). Thus, a model for func-
tion would need to be complemented with a model for 
use, as in our previous work [12]. A second limitation 
is the limited size and relative homogeneity (because of 

the restricted entry criteria) of the datasets. As a result, 
a single covariate was included in the model, the initial 
MAL. Biomarkers derived from transcranial magnetic 
resonance and brain imaging would allow us to refine 
predictions, notably soon after stroke when the predic-
tions are poor, in a more diverse population. In addition, 
the predictions would further improve with a larger num-
ber of measurements from each individual. Furthermore, 
clinical studies that use connected objects and sensors, 
e.g., [38], would allow the collection of such datasets 
that, together with a forecasting model like the proposed 
HBDM, would form the basis of precision rehabilitation 
for not only arm and hand function post-stroke but also 
other functions, such as gait rehabilitation post-stroke, or 
neurologic conditions such as traumatic brain injury or 
spinal cord injury.

Conclusion
Precision rehabilitation can potentially transform the 
practice of neurorehabilitation: the clinician, patient, 
and insurance company will be able to choose effective 
treatments based on individual predictions of long-term 
recovery. However, because of the large variability of 
stroke, making accurate long-term predictions for indi-
vidual patients is hard. In addition, because neurore-
habilitation is based on the premise that sensorimotor 
activity improves motor recovery via brain plasticity, 
the predictions need to account for increases in perfor-
mance during movement therapy, but also for possible 
decreases following therapy. In this paper, we showed 
that an HBDM that incorporates repeated measurements 
of performance obtained during movement therapy can 
forecast motor outcomes at arbitrary future time points 
based on the effects of clinician-supervised training, self-
training, and retention. The Bayesian framework gener-
ates full probability distributions of the outcome based 
on parameter uncertainty and measurement noise, and 
therefore allows visualization of both the accuracy and 
precision of the forecasts. Finally, the hierarchical struc-
ture improves predictions when little data is available 
for new patients by “borrowing” knowledge from past 
patients. As a result, clinical decisions can be made, and 
refined, early in therapy. For instance, for a new patient, 
the clinician could simulate the proposed HBDM with 
different schedules of treatment and plan the treatments 
according to the forecasted outcomes (notably the sched-
ule and dose). Then, as the real-time data from the cur-
rent patient become available, the treatment plan could 
be further refined. However, future models will need to 
incorporate multiple baseline (or real-time) covariates 
into the HBDM to obtain predictions that are both more 
accurate and precise.

2 In this case however, an alternative possibility could be that the therapy itself 
is inappropriate; perhaps too much feedback was provided during therapy 
that created a dependence (i.e., guidance hypothesis) and thus patients do not 
‘learn’.
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