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Abstract 

Background Anger dyscontrol is a common issue after traumatic brain injury (TBI). With the growth of wearable 
physiological sensors, there is new potential to facilitate the rehabilitation of such anger in the context of daily life. 
This potential, however, depends on how well physiological markers can distinguish changing emotional states 
and for such markers to generalize to real‑world settings. Our study explores how wearable photoplethysmography 
(PPG), one of the most widely available physiological sensors, could be used detect anger within a heterogeneous 
population.

Methods This study collected the TRIEP (Toronto Rehabilitation Institute Emotion‑Physiology) dataset, which com‑
prised of 32 individuals (10 TBI), exposed to a variety of elicitation material (film, pictures, self‑statements, personal 
recall), over two day sessions. This complex dataset allowed for exploration into how the emotion‑PPG relationship 
varied over changes in individuals, endogenous/exogenous drivers of emotion, and day‑to‑day differences. A multi‑
stage analysis was conducted looking at: (1) times‑series visual clustering, (2) discriminative time‑interval features 
of anger, and (3) out‑of‑sample anger classification.

Results Characteristics of PPG are largely dominated by inter‑subject (between individuals) differences first, then 
intra‑subject (day‑to‑day) changes, before differentiation into emotion. Both TBI and non‑TBI individuals showed 
evidence of linear separable features that could differentiate anger from non‑anger classes within time‑interval 
analysis. However, what is more challenging is that these separable features for anger have various degrees of stability 
across individuals and days.

Conclusion This work highlights how there are contextual, non‑stationary challenges to the emotion‑physiology 
relationship that must be accounted for before emotion regulation technology can perform in real‑world scenarios. It 
also affirms the need for a larger breadth of emotional sampling when building classification models.

Keywords Affective computing, Anger, Contextualized rehabilitation technology, Emotion, Emotion recognition, 
Physiology, Photoplethysmography, Pervasive computing, Traumatic brain injury, Wearable

Background
Anger dyscontrol (i.e., difficulty controlling episodes 
of anger) is a prevalent issue after brain injury that can 
have damaging consequences on self-care and relation-
ships [1–3]. With the proliferation of wearable sensors 
and pervasive computing, there is new potential for 
technology to facilitate behavioural therapy supporting 
emotion regulation in the context of daily life [4]. Affec-
tive computing is the area of research that explores how 
technology interfaces with emotional phenomena [5]. 
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Particularly, research into physiological affect recogni-
tion, or the ability for computing devices to detect emo-
tions via bodily signals, could enable individuals with 
traumatic brain injury (TBI) to self-manage anger dys-
control events before or as they occur. This potential, 
however, is predicated upon finding markers within phys-
iology that are able to distinguish the changing emotional 
states of an individual, and for such markers to general-
ize to real-world settings. Of interest are markers from 
the autonomic nervous system (ANS), as most portable 
physiological sensors monitor aspects of the ANS (e.g., 
heart rate, respiration, electrodermal activity, etc.) [6, 7].

This research aims to further explore the potential 
of one ANS signal: photoplethysmography (PPG), and 
its ability to differentiate anger within a heterogene-
ous population. In this background, we begin by outlin-
ing the indicand-indicator framework to understand 
the emotion-ANS relationship, then we present a brief 
overview of TBI and its implications on the emotion-
ANS relationship, later we explore PPG as a candidate 
physiological signal, and then review prior work on PPG 
related changes associated with anger. Lastly, we end this 
section with our motivation for studying a heterogeneous 
emotion-physiology dataset, particular in how it expands 
the spectrum of emotion regulation variability across 
individuals.

Emotion and ANS physiology
The ANS regulates bodily functions of the internal organs 
and has been known to relate to emotional change [8, 9]. 
This psychophysiological relationship has been previ-
ously framed with three components: (1) the indicand—
an abstract psychological characteristic that is of interest 
but difficult to measure (i.e., emotion); (2) the indicator 

– a measurable physiological characteristic that is related 
to the indicand (e.g., heart rate); and (3) the indicand-
indicator relationship, which describes how changes in 
the indicand relate to changes to the measurable values 
of the indicator [10, 11]. Notably, the indicand-indicator 
relationship can range from a null relationship, to sim-
ple one-to-one linear mappings, to complex nonlinear 
mappings that have many known or unknown external 
influences on the indicator values [11–13]. Under this 
framing, ANS physiology is both influenced by the emo-
tion proper, and external influences that relate to either 
the non-emotional context (e.g., body posture, tempera-
ture, physical activity, etc.) or emotional context (e.g., 
behavioural, and mental demands regulating emotion), 
see Fig. 1.

For affect recognition applications, the challenge then 
is two-fold: (1) to distinguish when an indicator physio-
logical signal is being influenced by emotion, as opposed 
to other contextual bodily changes; and (2) to identify 
which and to what extent an emotional state is present in 
the current indicator value. This characterization aligns 
with the view that emotions are subjective, internal feel-
ings that have qualities of intensity, temporal presence 
(e.g., onset, peak, decay), and differentiation (i.e., differ-
ent types of feelings) [14–16]. Additionally, as opposed 
to underlying mood, emotions have event-relatedness 
and are driven by either exogenous (i.e., external sen-
sory pathways) or endogenous (i.e., internal thought or 
memories) cues [11]. Such a stance is in agreement with 
clinical descriptions of anger dyscontrol, in that it is a 
spontaneous event, driven by either an individual’s exter-
nal situation or their internal memories/thoughts [1].
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Fig. 1 Emotion‑Autonomic Nervous System (ANS) (indicand‑indicator) relationship, showing potential influencing pathways and contextual noise. 
The indicand is inferred from a function of the indicator (inclusive of sensor measurement and interference) and contextual factors
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Traumatic brain injury
Traumatic brain injury (TBI) is caused by blunt or pene-
trating trauma to the head. This trauma can cause a wide 
array of focal and diffuse damage to the brain, including: 
cerebral contusions, diffuse axonal injury, and shearing 
strains [17, 18]. Additionally, secondary damage due to 
bleeding and intra-cranial pressure can result in further 
damage after the initial impact [19]. As there are a wide 
array of injury mechanisms, chronic TBI is considered 
a complex heterogeneous injury, where each patient has 
differing impairments [20]. Functionally, chronic TBI can 
have a persistent negative impact on the basic sensory/
motor systems, cognitive functions (such as memory, 
language, attention, visuospatial, executive functions, 
etc.), mood/emotion regulation, and personality. The 
long-term effects of TBI may result in difficulty return-
ing to school/work, loss of social relationships, reduced 
mental health, and difficulties completing tasks of daily 
living [21].

Despite TBI being a heterogeneous injury, in that no 
two injuries are alike, the prevalence of control issues 
related to anger remains high throughout the TBI pop-
ulation [1]. Anatomically, it is thought that damages to 
the hypothalamus, amygdala, septum, anterior temporal 
lobe, frontal cortex, and prefrontal cortex have a role in 
anger or aggression tendencies. Specifically, frontal lobe 
injuries are believed to be linked with loss of control of 
emotionally charged behaviour [22]. An added complica-
tion is that TBI injury may also influence ANS reactiv-
ity to emotion stimuli, with TBI found to generally have 
lower physiological reactivity to emotion than healthy 
controls [23]. However, this evidence must be interpreted 
with care, as in some cases the criteria for controls were 
only matched by demographic attributes (i.e., gender, age, 
education) and not physiological attributes that could 
bias ANS measures.

Photoplethysmography
Although a number of ANS signals have been explored 
for affect recognition (see reviews [6, 7, 24]), photop-
lethysmography (PPG) remains of high interest due to 
its low-cost, prevalence, and compact form in wearable 
devices (e.g., smart watches, headbands, etc.). This port-
able form aids the potential for PPG to be used in con-
textualized rehabilitation applications: an approach that 
aims to integrate rehabilitation strategies into real-world 
context [4, 25]. Furthermore, research into the PPG 
waveform is still evolving, as there is clinical acknowl-
edgement that its relationship with the ANS is not yet 
fully mapped – thus, there is potential for new insights 
to be derived from this waveform [26, 27]. Hence, PPG’s 
trade-offs between physiological indexing, technology 
feasibility, and context plausibility remain an area for fur-
ther investigation [28]. It is for these reasons that PPG 
was chosen as the focus of this research.

The PPG waveform (see Fig. 2) is created by either light 
transmission or reflectance through body tissue (i.e., 
skin, bone, blood, arterial/venous vessels), and is pri-
marily influenced by the rhythmic fluctuation of blood 
through a tissue site [29]. PPG is a volumetric signal, that 
has a pulsatile component related to the blood volume 
of each heartbeat, and a quasi-static component that has 
been linked to underlying respiration, sympathetic nerv-
ous activity, and thermoregulation [26]. The PPG pulse 
has two phases: anacrotic – the rising edge of the pulse, 
related to systole; and catacrotic – the falling edge of 
the pulse, related to diastole. In healthy individuals with 
compliant arteries, a dicrotic notch is seen in the catac-
rotic phase and associated with a second elevated pulse. 
Since the recorded signal is a complex interaction of light 
with biological tissue, the PPG waveform varies depend-
ing on the sensor location (e.g., wrist, finger, etc.) and 
orientation of the tissue site with motion. Clinically, PPG 
has been used for physiological monitoring (e.g., blood 
oxygen saturation, heart rate, blood pressure, respira-
tion), vascular assessment (e.g., arterial disease, venous 
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Fig. 2 The photoplethysmography (PPG) waveform. IBI: interbeat interval
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assessment, tissue viability), and autonomic function 
measurement (e.g., heart rate variability, thermoregu-
lation, blood pressure) [26, 27, 30]. Previously derived 
features for these clinical assessments include morpho-
logical, temporal, spectral, and nonlinear characteris-
tics of the PPG waveform. Additionally, new time-series 
characteristics could be discovered that have further clin-
ical value [27].

PPG sensing, however, is not without its challenges. 
Particularly, noise artifacts caused by motion (i.e., gross 
motor movement, tremors, coughing/yawning, etc.), skin 
displacement, skin blanching, and ambient light leakage 
at the sensor-skin interface, all impede the accuracy of 
physiological assessment [26, 31, 32]. Motion artifacts are 
especially challenging because the noise is typically in-
band (i.e., overlapping the signal frequency), which com-
plicates PPG noise separation techniques beyond simple 
frequency filters [31]. Furthermore, reproducibility of 
the PPG signal is affected by several factors including the 
sensor-tissue interface, ambient temperature, and daily 
variations in physiology either in or across individuals 
(i.e., posture, skin thickness/color, wakefulness, breath-
ing, etc.) [33, 34]. Despite attempts to calibrate for these 
differences, standard normalization practices have not 
been established to account for such physiological vari-
ability [27]. Together, these challenges must be overcome 
before PPG can be fully realized in pervasive sensing 
applications, such as contextualized rehabilitation.

PPG sensing of anger
The knowledge base of how PPG relates to anger stems 
predominantly from two fields of research: psychophysi-
ology and affective computing. Both fields explore the 
indicand-indicator relationship with slightly different 
approaches to seek understanding. Psychophysiology 
forms an evidence base through repeated experimen-
tal trials, where the independent variable is the elicited 
emotion, and the dependent variable(s) are the observed 
physiological responses. Through repeated experimen-
tation, psychophysiology researchers look for corrobo-
ration (usually correlative in nature) in the observed 
physiological responses to determine evidence of ANS 
response specificity for different emotions. PPG, as one 
such ANS measure, has been recorded over numerous 
psychophysiology studies, as well as its related influ-
encing systems (i.e., cardiovascular, blood pressure, 
respiration). In the complementary case of affective 
computing, the indicand-indicator relationship is inves-
tigated through data modelling. Affective computing 
researchers compile large datasets of emotion-physiology 
pair examples, which are later interrogated by machine 
learning techniques to explore a mapping function from 
the observed physiological value (i.e., indicator) to an 

inferred emotional state (i.e., indicand) [7, 24]. The integ-
rity of this mapping function is dependent on the sam-
pling of emotion-physiology pair examples within the 
dataset. Therefore, larger, more thoroughly sampled data-
sets are needed to encompass and model the complex-
ity of emotion-physiology in daily life [35]. Highlighted 
below are core findings related to PPG and anger.

Psychophysiological response to anger
Psychophysiology studies of emotion typically comprise 
of a three-step methodology: (1) a baseline physiological 
measure of neutral emotion, (2) an induction to the tar-
get emotion with/without subjective confirmation, and 
(3) a response physiological measure for comparison to 
baseline. Within this framework there are a diversity of 
ANS physiological measures (e.g., heart rate—HR, heart 
rate variability—HRV, blood pressure—BP, etc.), emo-
tion induction techniques (e.g., film, personal recall, real-
life manipulations, picture viewing, etc.), and measured 
physiological response intervals (i.e., 60- to 30-s areis 
most common, but has range from 0.5- to 300-s inter-
vals [8]). The diversity of these techniques highlights a 
key challenge in compiling an evidence base within this 
literature, as variations between response patterning may 
be attributed to experimental methodology differences, 
in addition to the elicited emotion and context [36].

In a review of 134 studies, Kreibig [8] found directional 
stability for ANS response patterning to anger as defined 
by the existence of directional change from a neutral 
baseline in a majority of studies. Relevant to PPG, cardio-
vascular responses showed reciprocal sympathetic acti-
vation and parasympathetic inhibition, as indicated by an 
increase in HR, decrease in HRV, variable systolic blood 
pressure (SBP), increased diastolic blood pressure (DBP), 
increase in total peripheral resistance (TPR) and decrease 
in finger pulse amplitude (FPA). Additionally, anger led 
to greater respiratory activity, as seen though increased 
respiration rate (RR), and decreases in inspiration time 
 (Ti) and expiratory time  (Te). Of note, the emotion of fear 
had a similar ANS response patterning to anger, and only 
TRP was found to differentiate the two with an increase 
in anger, and a decrease in fear. An important caveat is 
that although these aggregate directional changes existed, 
there were occurrences when anger produced an ANS 
response that was counter to these aggregates. Kreibig 
suggests that these opposing variations may be due to 
sub-forms of anger that deviate from the common modal 
response pattern, as various types of induction tech-
niques could produce different motivators for anger (e.g., 
approach-oriented anger, withdrawal-oriented anger, 
anger in defense of other, anger in self-defense, indigna-
tion, etc.) [8].
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When looking beyond directional change and into the 
intensity of ANS response, meta-analysis reviews have 
produced similar results, supporting evidence of ANS 
change when emotion is present. Cacioppo et  al.’s [37] 
review of 22 studies found that anger produced greater 
HR acceleration compared to disgust and happiness. 
Additionally, when comparing anger to fear, anger pro-
duced: higher DBP, lower HR, larger TRP, lower stroke 
volume (SV), and larger finger pulse volume (FPV). A 
concluding remark from this review was that discrete 
emotions (i.e., happy, sad, anger, fear, disgust) were not 
easily differentiated from ANS response alone – how-
ever, Cacioppo et  al. [37] also noted that their analysis 
examined statistical differentiation via univariate physi-
ological measures and not in terms of multivariate ANS 
response patterning. In a more recent review, Siegel et al. 
[38] compared 204 studies with multilevel meta-analysis 
and multivariate pattern classification analysis (MPCA). 
Anger resulted in an increase of mean effect size (change 
from neutral baseline) for HR, DBP, SBP, RR – however 
for all these measures, the results were largely heteroge-
neous (i.e., large variability in effect size between studies). 
With MPCA, Siegel et  al. [38] found low classification 
performance (31.5% accuracy) in differentiating types of 
emotion using ANS measures. Furthermore, the authors 
proposed that the variability in effect sizes makes it dif-
ficult to claim that there exists one unique ANS modal 
response (i.e., fingerprint) for each emotion type, rather 
they argue that ANS responses are contextually modu-
lated and should be viewed from a populations perspec-
tive, in that expected ‘archetypal’ ANS responses to a 
certain emotion are population aggregates, and that 
variability within the population is a definitive aspect of 
response patterning. In contrast to Kreibig’s view of emo-
tion sub-forms [8], a populations view claims that there 
are no true modal/ ‘archetypal’ ANS responses even 
within sub-forms of emotion, as each expression is con-
text dependent [38].

This brief review of psychophysiology literature high-
lights several points that are relevant for understand-
ing the indicand-indicator relationship of anger-PPG: 
(1) There is substantial evidence showing that anger 
induces some form of ANS response, particularly in the 
cardiovascular (i.e., sympathetic activation, parasym-
pathetic inhibition, blood pressure changes) and res-
piratory systems, both of which are influential systems 
to the PPG waveform. (2) Although aggregate results 
may show directional stability in ANS response or an 
increase in mean effect size, there exist counterexamples 
(i.e., opposing directional response) and heterogeneity 
(i.e., non-standard ANS response patterning). While the 
cause of this ANS response variability is heavily debated 
within psychophysiology literature (e.g., spontaneous 

error, sub-groups of emotion [8], or populations hypoth-
esis [38]), the existence of variability adds complexity to 
understanding the anger-PPG (indicand-indicator) map-
ping. (3) A large number of studies in psychophysiol-
ogy literature tend to focus on laboratory environments, 
healthy individuals, and ANS change from neutral base-
line. Such experimental constraints may limit the true 
complexity of the anger-PPG relationship as it exists in 
daily life (e.g., other environments, heterogeneous popu-
lation differences, ANS response from various moods/
emotion other than neutral emotion, transitions between 
emotions, etc.). This is particularly relevant for the TBI 
population, as there may be impairments that influence 
the psychophysiological relationship: such as deficits 
in emotional empathy that have been observed to alter 
physiological responsivity when compared to healthy 
controls [39, 40].

Modelling PPG to emotion
Within affective computing literature, PPG has been used 
as an indicator signal for numerous studies (e.g., [7, 11, 
24]), either on its own or in conjunction with other physi-
ological signals in order to differentiate emotional states. 
Typically, this involves a process of segmenting (i.e., win-
dowing) streams of physiological data, deriving features 
from these segments, training a learning model to differ-
entiate how these features map to emotional states, and 
then testing the performance of the model on unseen/
out-of-sample physiological data. Studies have ranged 
in their application of PPG features, from known physi-
ological features within medical literature (e.g. [41],), to 
exploratory features (e.g. [42]), and automated feature 
generation (e.g., [43] defined under blood volume pulse—
BVP) with positive differentiation results—supporting 
the idea that PPG has characteristics, including more that 
could be discovered that benefit the emotion classifica-
tion task.

However, not all studies can be interpreted with opti-
mism. Concerns have been raised about the transpar-
ency of the accuracy metric when applied to imbalanced 
emotion datasets [44], and questionable rigour of hold-
out test sets that may have artificially inflated some study 
results [7]. Reported classification accuracies have ranged 
between 40 and 94%, however this is highly dependent 
on the dataset at hand, and modeling approaches cannot 
easily be compared between datasets [7]. Additionally, 
as Kreibig [11] notes, many affective computing studies 
have focused on the problem of emotion differentiation 
(i.e., physiological signals that always co-occur with emo-
tion), rather than emotion detection, where physiologi-
cal signals exist in all emotion/non-emotion contexts. 
Emotion differentiation is a stepping stone to the larger 
real-world problem of emotion detection. To advance our 
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understanding of the emotion detection problem, emo-
tion-physiology datasets with greater contextual varia-
tion are needed.

A further challenge when interpreting affective com-
puting literature centers around the issue of emotion 
sampling within a dataset and generalization from that 
sampling. Numerous studies and prominent datasets 
have constrained sampling methods, typically utilizing 
one form of emotion elicitation (e.g., video or standard-
ized pictures) to represent an emotion class [7, 24], when 
it has been previously reported in psychophysiology lit-
erature that different elicitation methods for the same 
emotion could evoke different ANS responses [36]. Fur-
thermore, few emotion specific datasets (i.e., non-mood, 
non-stress focused) have explored multi-day sampling 
for individuals due to the challenge of labelling these 
transient emotion events in everyday life (i.e., natural-
istic studies tend to use coarser sampling methods such 
as experience sampling, that are not well suited for cap-
turing the dynamics of transient events [7, 45]). The few 
studies that have explored this transient emotion space 
have noted the influence of daily confounds and the 
need to build adaptive systems that can address these 
dynamics [46–48]. Finally, the TBI population is under-
represented within affective computing datasets, thereby 
limiting our understanding of how population heteroge-
neity could influence indicand-indicator relationships.

Research gap
In summary, there are several factors motivating this 
research. First, PPG remains a high interest candidate 
signal, as its relationship to multiple physiological sys-
tems (e.g., cardiovascular, respiratory) holds promise 
for its use as an indicator signal to an emotion indicand. 
Second, there is a need to further explore daily and con-
textual changes in emotion-physiology datasets, as these 
will be encountered in real-world applications. Although 
naturalistic datasets attempt the breadth this exploration, 
natural immersion comes at the expense of accurate tem-
poral labelling of emotion. As such, laboratory studies 
with diverse elicitation methods (i.e., both endogenous 
and exogenous, with additional physical context) may 
provide a middle ground between immersive elicitation 
and temporally accurate tracking of emotion phenomena. 
Third, the TBI population remains understudied for emo-
tion-physiology (indicand-indicator) relationships, as no 
affective computing datasets (to our knowledge) have 
included this population.

Therefore, in line with the motivation to develop a 
wearable device that aids the self-management of TBI 
anger dyscontrol—the goal of this study was to estab-
lish groundwork feasibility for PPG’s use as an indica-
tor signal to anger within a heterogeneous population. 

Specially, we sought to understand how PPG varies as an 
indicator signal when exposed to a variety of contextual 
changes (i.e., individual differences, emotional changes, 
and day-to-day variability in physiology), and to examine 
the stability of the anger-PPG (indicand-indicator) rela-
tionship for differentiating anger from non-anger across 
such contexts.

The choice to include both TBI and non-TBI individu-
als within this dataset was motivated by two factors: (1) 
the desire to capture a broad range of emotion regula-
tion capacity, thereby sampling its possible effects on 
the indicand-indicator relationship; and (2) sampling for 
potential transfer learning between individuals. The sec-
ond point is especially important for affective computing 
applications in clinical populations, as the labelling of 
subjective emotion data for these populations is time-
intensive and may face large practical constraints. Hence, 
if there is useful information gained from a non-clinical 
population, this may expedite the development process.

Research questions

1. Indicator variability: How does PPG vary across 
individuals (including demographics), day-to-day 
changes, emotions, and variability in emotion regula-
tion capacity (as approximated by TBI status)?

2. Indicand-indicator relationship: What characteristics 
of PPG are able to differentiate anger from non-anger 
across individuals and day-to-day changes?

3. Application design: How can the above findings be 
integrated into the design of an anger classification 
model for an emotion regulation application?

Methods
Figure  3 summarizes the methodological approach 
of this study. We begin this section by describing our 
emotion-physiology dataset, the data preparation 
steps, and finally our data analysis approach. The three 
research questions are explored respectively in our data 
analysis by: (A) time-series visual clustering, (B) dis-
criminative time-interval analysis, and (C) out-of-sam-
ple anger classification.

Dataset description
The following subsections describe the collection of the 
Toronto Rehabilitation Institute Emotion-Physiology 
(TRIEP) dataset. Using Picard et  al.’s five factor guid-
ance for high quality affective computing datasets [46], 
TRIEP was defined as having the following criteria: both 
subject- (i.e., endogenous) and event-elicited (i.e., exog-
enous) content, laboratory setting, internal feeling, open-
recording, and known experimental emotion purpose. 
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While the most naturalistic datasets are done in a real-
world setting, with hidden-recording, and hidden experi-
mental purpose, this dataset attempts to strike a balance 
between naturally elicited emotion and the temporal 
accuracy of emotion labels. Real-world datasets often 
struggle with defining the exact moment of emotional 
events, as it is difficult to continuously label subjective 
internal feelings beyond an experience sampling method 
[49]. Laboratory datasets, which have a variety of emo-
tion induction methods, can still provide benefit for the 
affective computing field as they permit high-quality con-
tinuous labels, which allows for further interrogation into 
the temporally evolving emotion-physiology relationship. 
In line with the aims of this research, TRIEP was created 
to be a highly heterogeneous dataset in terms of partici-
pants (including clinical population), emotion induction 
material (i.e., endogenous/exogenous driven), and multi-
day physiological confounds (i.e., day-to-day physiologi-
cal changes and physical exercise).

Dataset participants
Participants were recruited from two groups: (1) healthy 
individuals (non-TBI) and (2) individuals who had sus-
tained a traumatic brain injury (TBI). Prior to recruit-
ment, study approval was received from the Toronto 
Rehabilitation Institute-University Health Network 

Research Ethics Board (protocol #15-9925) and the 
University of Toronto Research Ethics Board (protocol 
#33567).

• Healthy individuals were eligible for the study if they 
were: (1) 19 years or older, (2) fluent in English and 
(3) had no history of brain injury. Recruitment for 
healthy individuals was conducted through online 
demographic ads and print flyers.

• Individuals with TBI were eligible for the study if 
they were: (1) 19 years or older, (2) fluent in English, 
(3) had a clinical diagnosis of traumatic brain injury 
based on medical record or patient self report; (4) 
TBI symptomatology sufficient to warrant in-patient 
or out-patient rehabilitation; and (5) were at least five 
months or more post injury. Recruitment for eligible 
individuals with TBI was conducted through outpa-
tient community clinics and a prior study volunteer 
pool at Toronto Rehabilitation Institute. Upon being 
screened eligible to the study, a clinical neuropsy-
chologist reviewed the capacity for informed consent 
before approaching individuals with TBI or their sub-
stitute decision makers for study recruitment. After 
entering the study, individuals with TBI performed 
a neuropsychological battery to characterize their 
cognitive functioning (see Table  1). All study par-
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ticipants with TBI had two cognitive impairments 
in mild or greater, or at least one neuropsychological 
test in mild or greater. One participant with TBI had 
a severe GCS score of 3.

For both groups, individuals were excluded from the 
study if they had any of the following criteria: (1) history 
of psychotic disorder, (2) diagnosed developmental disor-
der, and (3) other known neurological conditions or sys-
tem disease of the central nervous system (e.g., dementia, 
Parkinson’s disease, multiple sclerosis, Huntington’s dis-
ease, lupus, etc.). All participants had the capacity to pro-
vide informed consent or had a legal substitute decision 
maker. None of the TBI participants were known to be 
taking antidepressant medications.

In total 40 individuals participated in the data collec-
tion sessions, with 32 included for further analysis due 
to recording errors in the data collection process. Four 
healthy individuals were excluded due to a high ratio of 
non-corroborative emotion labels (explained in Data 
Preparation, ‘Emotion Validation’ below), one healthy 
individual was excluded due to sensor recording error, 
and three healthy individuals were excluded due to no 
anger elicited in at least one day session. Table 2 summa-
rizes demographic information for the remaining partici-
pants in both groups.

Elicitation protocol
All participants completed two emotion elicitation ses-
sions, each approximately 120 min long, and conducted 
on different days (at least one week apart) to minimize 
repetition effects. Within each day session, participants 
were seated in front of a computer screen and in a quiet 
room to limit external influences. The exception to this 
was during the emotion elicitation with walking section, 
when participants were asked to walk on the spot and the 
computer desk was raised to a standing position. All ses-
sion prompts and elicitation material were cued through 
the computer screen. The experimenter was seated out of 
view of the participants. Prior to beginning each record-
ing session, all participants completed a five-minute 
resting baseline. Approximately halfway through the 
elicitation session, participants were able to have a short 
break from protocol, and the five-minute resting baseline 
was repeated upon their return.

Table 1 Neuropsychological characterization of cognitive function (TBI group)

PAI: Personality Assessment Inventory; ss = scaled score; SD = standard deviation; T = t-score; Z = z-score; %ile = percentile

Test name Raw score, mean (SD) Norm score, mean (SD) Function measured

Trail Making Test A 56.89 (45.36) T = 37.22 (17.65) Simple visual attention

Trail Making Test B 90.22 (48.23) T = 44.89 (15.52) Mental flexibility, set shifting

Symbol Digit Modalities Test—Written 45.40 (22.50) Z = ‑0.76 (2.03) Speed of mental processing

Symbol Digit Modalities Test—Oral 56.60 (24.18) Z = ‑0.49 (2.07) Speed of mental processing

Stroop—Word Reading 84.00 (24.56) T = 38.50 (11.30) Selective attention

Stroop—Reading Color Naming 67.30 (18.76) T = 41.55 (12.49) Selective attention

Stroop—Color Word 43.90 (13.72) T = 48.90 (13.72) Selective attention

Stroop—Interference 6.63 (6.44) T = 56.45 (6.43) Selective attention

Spatial Span Forwards 7.90 (1.97) ss = 9.30 (3.06) Visual attention

Spatial Span Backwards 7.40 (1.58) ss = 10.40 (2.27) Visuospatial working memory

Digit Span Forwards 9.10 (2.42) %ile = 35.80 (32.92) Auditory verbal attention

Digit Span Backwards 7.10 (2.69) %ile = 55.10 (35.06) Auditory working memory

Grooved Pegboard Dominant Hand 88.11 (30.99) T = 34.67 (14.87) Manual motor speed and dexterity

Grooved Pegboard Non‑Dominant Hand 85.63 (14.37) T = 42.13 (13.42) Manual motor speed and dexterity

PAI—Anxiety 19.00 (10.95) T = 52.40 (10.35) Anxiety

PAI—Depression 18.70 (15.04) T = 54.70 (16.07) Depression

PAI—Mania 27.10 (12.04) T = 54.40 (13.16) Mania

PAI—Alcohol Scale 4.00 (3.62) T = 48.50 (6.60) Alcohol Misuse

PAI—Drug Scale 7.50 (15.61) T = 51.00 (13.21) Drug Misuse

PAI—Aggression Treatment Consideration 8.70 (5.87) T = 42.70 (6.90) Aggression

Table 2 Demographics of participants

Healthy TBI

N (# Female) 22 (13) 10 (4)

Age, Mean (SD) 32.1 (10.3) 43.5 (12.9)

Years of Education, Mean (SD) 15.0 (1.6) 15.4 (1.7)
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As individuals have their own subjective biases to emo-
tional material [50, 51], a variety of elicitation methods 
were selected to maximize the potential of eliciting tar-
get emotions and to diversify the exogenous/endogenous 
factors driving each emotion. In total, five different elici-
tation methods were used: (1) pictures, (2) pictures while 
walking, (3) self-statements, (4) videos, and (5) personal 
recall. Each method offered a different length of elicita-
tion and depth of natural immersion [52]. All methods 
were chosen to allow participants to self-rate their emo-
tions in real-time, while experiencing the material. Tar-
get emotions were chosen from the four quadrants of the 
Circumplex Model of Affect [53], which is a commonly 
used representation of emotions based on positive/nega-
tive affinity (valence) and degree of activation (arousal). 
In this manner, we align to the view that elicitation mate-
rial has affective quality that may perturb an individual’s 
subjective feelings towards a target emotion. The choice 
of the four arousal-valence quadrants, as opposed to 
including a wider breadth of emotion experiences that 
can be describe with arousal-valance-dominance dimen-
sions, was a practical constraint on timing due to possible 
experimental fatigue from a long elicitation protocol.

Below is a description of the elicitation methods used 
during each day session:

• Pictures (4 sections per day, randomized order): 
Two picture sets were used in this study: The Inter-
national Affective Picture System (IAPS) [54] and 
the Geneva Affective Picture Database (GAPED) 
[55]. Both collections have been used extensively 
in human emotion studies to evoke brief, reaction-
ary emotions. Each picture has normative ratings 
for their assumed valence/arousal response, and can 
either be presented on its own or in succession with 
similar pictures to elongate the emotional response. 
Within each day session there were four different pic-
ture elicitation sections. Each section contained 20 
successive pictures, presented for six seconds per pic-
ture to target a specific quadrant of the Circumplex 
Model of Affect (e.g., high arousal, low valence).

• Pictures while walking (4 sections per day, rand-
omized order): Similar to above, four different pic-
ture elicitation sections were presented to the partici-
pant to target a specific quadrant of the Circumplex 
Model of Affect (20 pictures, six seconds per pic-
ture). However, for these sections, the participant 
was asked to walk lightly in place while rating their 
emotions. This introduced contextual motion noise 
in the physiological sensor data.

• Self-statements (2 sections per day, randomized 
order): When many self-statements (e.g., “I feel 
rather aggravated now.”) are read in succession and 

ruminated upon, this has been shown to evoke a 
sustained emotional response. For this study, Enge-
bretson’s Anger Induction (E-AI) approach [56] and 
the Velten Mood Induction Procedure for Elation 
(VMIP-E) [57] were used to elicit anger and happi-
ness respectively. Both procedures contain phrases 
that escalate from neutral to high emotional intensity 
(E-AI contains 50 statements, VMIP-E contains 53 
statements). Participants were shown statements at a 
pace of approximately seven seconds per phrase and 
asked to experience each statement as though it was 
their own thoughts.

• Video clips (9 videos per day, fixed order): Film and 
news clips were selected to evoke continuous and 
transitional emotions [58]. Prior to the study, a num-
ber of videos were pre-screen by 70 adults (mean age: 
32.7 ± 11.4, age range: 19 to 60, 32 female), and rated 
for their valence and arousal content. A selection of 
these film clips was curated based on their consist-
ency to evoke specific arousal/valence ratings across 
a population. Each day elicitation session used nine 
different video clips, which were counter-balanced 
in time (approximately 15-min) and target emotions 
(see Table 3).

• Personal recall (2 sections per day, randomized 
order): recalling past autobiographical events is a 
technique aimed at evoking specific emotions asso-
ciated with relevant life situations [59]. Prior to each 
day session, participants were asked to write out two 
specific events, one that made them happy and the 
other angry. Within each elicitation session, these 
events were recalled internally for two minutes to 
elicit an emotion. Participants were asked to imag-
ine themselves in the situation and relive their emo-
tions. This procedure for prompting autobiographi-
cal events was based on the solitary recollection 
approach [60].

A summary timeline for each day session is presented 
in Table  3. With the exception of videos, all elicitation 
material were randomized within their given block. All 
emotion sections were preceded by a 30-s clip of neutral 
elicitation material (i.e., low stimulus figure) and followed 
by a 90-s clip of neutral elicitation material. The excep-
tion to this was the of the video section, where videos 
were played almost immediately after each other to add 
transitional complexity in the emotion data. The entire 
block of 9 videos was preceded/followed by the 30/90-s 
neutral stimuli.

Outcome measure: physiological recording
For each day session, raw PPG signals and accelerometer 
data were recorded by the Empatica E4 sensor which was 
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Table 3 Summary of elicitation material timing and target normative scores

Elicitation 
Session 
(Day) 

Material 
Block

Elicitation Material 
Sections

Timing 
(seconds)

Avg Valence (1 
low to 9 high), 
Mean (STD)

Avg Arousal (1 
low to 9 high), 
Mean (STD)

A Pictures A HA-PV Pictures 120 7.17 (0.50) 6.25 (0.65)
HA-NV Pictures 120 1.30 (0.94) 7.11 (0.43)
LA-NV Pictures 120 3.26 (0.64) 4.32 (0.48)
LA-PV Pictures 120 7.70 (0.78) 2.41 (1.24)

Videos A Video: Sad Passing 132 1.76 (1.55) 5.81 (2.06)
Video: Fight 103 2.14 (1.49) 7.71 (1.35)
Video: Shot in Woods 97 2.07 (1.21) 7.14 (2.32)
Video: Teen Attack 104 2.44 (1.21) 6.19 (2.32)
Video: House Loss 36 2.43 (1.09) 4.86 (2.35)
Video: Angry Reporter 66 2.67 (2.11) 7.06 (1.16)
Video: Happy 130 8.14 (0.95) 5.00 (1.92)
Video: Bad Driver 55 3.17 (1.69) 6.83 (1.65)
Video: Winter 132 7.06 (1.30) 2.28 (1.90)

Pictures HA-PV Pictures 120 7.19 (0.54) 6.23 (0.47)
While HA-NV Pictures 120 1.37 (0.83) 7.04 (0.46)
Walking A LA-NV Pictures 120 3.29 (0.64) 4.07 (0.59)

LA-PV Pictures 120 7.64 (0.65) 2.39 (1.23)
B Pictures B HA-PV Pictures 120 7.00 (0.39) 5.57 (0.28)

HA-NV Pictures 120 1.97 (0.75) 6.40 (0.44)
LA-NV Pictures 120 3.69 (0.71) 4.35 (0.68)
LA-PV Pictures 120 7.77 (0.73) 2.39 (1.29)

Videos B Video: Verbal Taxi 99 1.50 (0.76) 6.93 (1.54)
Video: Saving Kitten 144 8.00 (1.15) 5.38 (2.50)
Video: Sexist Remark 77 2.10 (1.34) 7.19 (1.54)
Video: Gun Violence 60 2.63 (1.36) 6.06 (2.14)
Video: Road Rage 105 3.52 (1.81) 7.19 (1.63)
Video: Subway Bug 132 2.50 (1.46) 7.63 (1.31)
Video: Missing Boy 65 1.94 (0.93) 6.56 (2.00)
Video: Cancer 125 2.50 (1.16) 5.00 (1.71)
Video: Patagonia 90 7.29 (1.64) 1.79 (1.05)

Pictures HA-PV Pictures 120 6.95 (0.51) 5.77 (0.44)
While HA-NV Pictures 120 1.97 (0.63) 6.34 (0.34)
Walking B     LA-NV Pictures 120 3.54 (0.82) 4.26 (0.62)

LA-PV Pictures 120 7.97 (0.64) 2.13 (1.06)
A and B Self- E-AI Statements ~400 N/A         N/A

Statements   VMIP-E Statements ~424 N/A         N/A
Personal Anger Event 120 N/A         N/A
Recall Happy Event 120 N/A         N/A



Page 11 of 28How et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:107  

worn on the non-dominant wrist of each participant. 
The Empatica E4 is a commercial research device that 
captures PPG using a dual-red/green infrared source at 
64 Hz [61]. Tri-axis accelerometer data was recorded at 
32 Hz for a motion noise reduction algorithm.

Outcome measure: emotion labelling
Labelling emotion is a subtle task, as requiring individu-
als to self-report their emotions may contaminate their 
current emotional experience [62]. To circumvent this, 
past researchers have relied on retrospective labelling 
(i.e., rating what was previously experienced moments 
before) or observer labelling (i.e., third-party observers 
rating an individual’s emotion based on facial or behav-
ior changes). Both methods have the advantage of not 
conflicting with an individual’s current emotional state; 
however, they lack the ability to report the subjective 
emotional experience on a moment-by-moment basis. 
In retrospective labelling, individuals may not remem-
ber exactly what was felt throughout the time-course of 
an emotional experience, or they may have a recency bias 
towards the last felt emotion [62]. For observer labelling, 
there can be large discrepancies between raters who are 
evaluating the same individual, and not all emotional 
change may correspond to observable behaviors [63]. 
The choice of labelling technique is therefore a trade-off 
between multiple factors, where subjectivity and time-
granularity may come at the expense of an increased rat-
ing task-load.

Nevertheless, past studies have found that subjective, 
real-time emotion changes can be tracked with the use of 
rating dials, sliders, and other continuous scales [64–66]. 
In comparison to discrete retrospective scales, such as 
the commonly used Self-Assessment Manikin [67], these 
continuous scales have been capable of recording changes 
in emotional intensity with high temporal accuracy. 
However, there is a balancing point with the use of such 
scales, as the more descriptive the rating (e.g., increas-
ing the number of axes/dimensions rated), the more 
cognitively demanding the rating task becomes, which 
in turn distracts or fatigues from the current subjective 
experience [65, 68]. Moreover, patients with cognitive 
deficits may be more prone to error or mental fatigue 
as the complexity increases. Therefore, since this study 
involves individuals with TBI, a one-axis slider approach 
was chosen to lower dual-tasking demands. Additionally, 
to establish an affective ground truth, principles of emo-
tional triangulation were applied, where multiple subjec-
tive labelling methods are used to corroborate each other 
[69]. In this study, participants rated their emotions with 
two complementary approaches:

1. [Primary rating] real-time, continuous emotion 
slider: A custom valence slider (see Fig. 4) was used 
with a small display that had 8 red LEDs on the left, 
and 8 green LEDs on the right. The position of the 
slider represented the intensity of valence in either 
the negative direction (left) or positive direction 
(right). As the slider moved position in either direc-
tion, the LEDs would light accordingly, as visual feed-
back for the user on their current subjective rating. 
When the slider was in the middle, the two LEDs in 
the middle would change color to a neutral yellow. 
This visual feedback was placed directly below the 
emotion elicitation material so that the individu-
als could simultaneously rate their emotion as they 
experienced the material. Participants used their 
dominant hand to control the slider scale.

2. [Secondary rating] retrospective descriptive 
words: Following each elicitation section (see 
Table  3), participants were asked to select one 
word from an arousal-valence figure [70] that best 
describes their overall emotion for that section. This 
was a method of confirming subjective internal emo-
tion, as real-time valence response should corrobo-
rate with the quadrant of the chosen word.

Fig. 4 Custom valence rating slider. [Top] LED array [Bottom] slider 
interface
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Prior to beginning each day session, each participant 
received training, or a refresher on how to use the rat-
ing tools. The participant was informed that there was no 
right or wrong response to any of the materials, only that 
their rating should follow as closely as possible to their 
felt emotion. In each training, the participant received an 
explanation of the rating slider, a calibration of the slider 
extremes, and were given time to familiarize themselves 
with the retrospective rating words. Following this, the 
participant rated their emotions on two practice sections 
to become accustomed to the rating interface and to clar-
ify any questions they had.

Data preparation
Emotion validation
For all participants, each emotion section was screened 
for corroboration between their retrospective verbal 
label and real-time valence ratings (e.g., an anger ver-
bal response should correspond with real-time negative 
valence ratings). Elicitation sections that had disagree-
ment between these values were removed from further 
analysis due to the uncertainty of the true subjective 
emotion. Following this, four participants that no longer 
had samples from all five elicitation strategies were 
removed from further analysis. Corroboration accuracy, 
as defined by the percentage of elicitation sections that 
had valid corroboration, over the total number of elicita-
tion sections for each participant, was calculated to be: 
91.23 ± 8.01% across the healthy group and 93.22 ± 5.55% 
across the TBI group.

PPG noise reduction
Since minor movements can induce motion artifacts in 
PPG, a noise reduction algorithm was applied to the raw 
PPG signal to obtain a clean reference signal. To coun-
teract motion effects, the raw PPG signal was filtered by 
a combination adaptive and notch filter as proposed by 
Zhang et al. [71], a current state-of-the-art for PPG heart 
rate (HR) estimation. Prior to filtering, all tri-axis accel-
erometer signals were re-sampled to 64 Hz to match the 
PPG sampling rate. A filter window of 10-s was chosen, 
with an overlap of 8-s, resulting in a 2-s recovered PPG 
waveform at every overlap. LMS-Newton parameters 
were set to M = 17, μ = 9E−5, α = 2E−4 and δ = 400. All 
filter code was implemented in Matlab R2018a [72].

Although the recovered PPG signal from Zhang et al.’s 
[71] algorithm can preserve key frequency and morpho-
logical characteristics of the PPG waveform, such as the 
dicrotic notch, it is possible that other important undis-
covered characteristics may be lost in the filtering pro-
cess. Indeed, noise filters have inherent information loss 
as they choose to pass through key characteristics and 

exclude others in the filtering process. A number of filters 
that prioritized frequency characteristics for HR extrac-
tion, often do so at the trade-off of losing morphological 
characteristics of PPG, such as amplitude changes related 
to respiration [73]. Due to this, the noised reduced PPG 
signal was used only as a reference signal in this noise 
reduction workflow. Raw PPG signals that achieved 
an adequate likeness to the clean reference signal were 
passed for further analysis. To calculate this, raw PPG 
signals that had a Pearson Correlation Coefficient above 
0.6 to the reference signal (within the window frame), 
were passed.

Data windowing and labelling
Various sizes of time-series windows have been used 
across psychophysiology and affective computing litera-
ture (typical ranges between 0.5- to 300- seconds [8]). 
Each window choice explores a different view of how 
emotion could relate to underlying physiology. For PPG, 
a shorter window investigates moment-by-moment 
local changes of near-term heartbeats, whereas a longer 
window is situated to explore more global cardiovascu-
lar (e.g., heart rate variability) and respiratory effects. 
To remain exploratory in nature, this study opted for 
medium-term windows with length of 70-s, and an over-
lap of 30-s. This medium-term approach is an interme-
diary balance between short- and long-term variations 
in the PPG waveform, with potential sensitivity to both. 
Each PPG window was labelled with its retrospective 
verbal label (translated into binary class of anger/non-
anger), summary demographic labels (i.e., age, gender, 
participant ID, day session), and TBI status (i.e., a proxy 
for emotion regulation capacity).

For window labels, there was non-exclusive handling 
of different emotion elicitation strategies. That is, for 
example, the segmented windows from video elicitation 
material were labelled into the binary class or anger/non-
anger, in the same way that windows from the other elici-
tation sections would be (i.e., self-statements, pictures, 
personal recall, etc.). This approach was taken because 
the final goal is a real-time system that could perform 
in real-life across a multitude of daily stimuli, elicitation 
complexity, and transitions. By aggregating these elicita-
tion approaches together, our analysis attempts to mine 
for similar physiological patterning within them.

Each window comprised of a time-series vector of 4480 
points (70 s * 64 Hz). On average, 87 ± 16 windows were 
extracted for each participant out of a maximum of 127 
windows across the two days of sampling. The difference 
in windows extracted per participant was due screen-
ing from the PPG noise reduction step and identified 
non-corroborative sections from emotional labelling. In 
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total, 2769 time series windows were extracted across all 
participants.

HCTSA: time-series feature extraction
In line with the motivation that PPG may contain yet-to-
be discovered characteristics that are applicable to emo-
tion recognition, this study used an exploratory approach 
for feature extraction with the Highly Comparable Time 
Series Analysis (HCTSA) Toolbox (v0.98, implemented 
in Matlab R2018a [72]). HCTSA is a compilation of over 
7500 time-series analysis techniques from the numer-
ous fields of study that investigate time-series data. It 
includes techniques from statistical distribution, station-
arity, correlation, frequency transforms, basis functions, 
model fitting, nonlinear dynamics, complexity/informa-
tion theory, and other domain applications (including 
healthcare, e.g., HRV measures, etc., that have been used 
as “classic” affective computing physiological features) 
[74, 75]. The benefit of HCTSA is a systematic and unbi-
ased feature discovery approach. By leveraging the wide-
breadth of time-series domain knowledge, as opposed to 
manually curating time-series features, HCTSA can lead 
to the discovery of new features relevant to the classifi-
cation task [76]. Additionally, in contrast to automated 
feature extraction techniques, such as neural networks or 
genetic programming, HCTSA features remain interpret-
able and non-dependent on network topology. Notable 
uses of HCTSA include emotional speech [75] and physi-
ological signals (e.g., peripheral nerve firing [77], EEG 
non-linearity [78]).

HCTSA was applied to each time series window, result-
ing in a matrix of 2769 × 6697 (Time Series Windows × 
Features) after excluding time-series calculations that did 
not result in a real number (e.g., positive/negative infinity 
[79]). All features were then normalized across partici-
pants using max–min to 0–1. This linear transformation 
preserves the relationships between raw data values for 
further exploration.

Data analysis
Time-series visual clustering
To gauge how PPG characteristics vary with contextual 
changes, we constructed a visual landscape of this varia-
tion through time-series visual clustering:

After applying HCTSA, each of the 2769 time series 
windows is represented as a point in a high dimensional 
space, with the 6697 PPG features composing the dimen-
sional axes of the space [77]. To interrogate relationships 
in a high dimensional space, visual analysis via dimen-
sionality reduction is a useful tool for uncovering patterns 
and structure within raw time-series data [80]. Uniform 
Manifold Approximation and Projection (UMAP) is one 

such dimensionality reduction technique that aims to 
preserves local and global structure in the data, especially 
when compared to other dimensionality reduction tech-
niques such as t-SNE [81, 82]. This preservation property 
is helpful when exploring relationships within the raw 
data that may otherwise be lost in other data transforma-
tions. UMAP performs dimensionality reduction by first 
constructing a high dimensional graph representation of 
the data and then optimizing this graph to a low dimen-
sional space [83]. Within this optimization, key hyperpa-
rameters are selected that alter the weighting of global or 
local data preservation [84].

For this study, default UMAP parameters were used 
as n_neighbours = 15, min_dist = 0.1, and lower order 
dimension as 2. UMAP plots were constructed with vis-
ual edges intact, to discern whether neighbouring points 
were connected from the high dimensional space. Data 
points were labelled with participant ID, session day, TBI 
status, and demographic information (age/gender). For 
visual analysis, data points were examined for structure 
in clustering (e.g., group separation, ordinal gradation of 
labels), repeated patterns, outliers, and anomalies in the 
data [80]. Reported visual structure was tested for con-
sistency on a variance of UMAP parameters (n_neigh-
bours = 15, 30, 60, 100; min_dist = 0.1 to 0.3).

Discriminative time-interval features
To find the features/characteristics of PPG that are 
best able to differentiate anger from non-anger, we first 
identify the top PPG features that separate anger from 
non-anger classes within each day session (i.e., time-
interval)—then we compare the commonality and stabil-
ity of these top features across all day sessions:

Using the HCTSA framework, each elicitation session 
was analyzed independently for linear discriminative 
features that separate anger from non-anger classes. As 
each daily session was treated as a distinct time-interval 
[76], comparisons could be made between different indi-
viduals and daily changes to gauge the stability of found 
discriminant features. For all features within every day 
session, a linear classifier was trained and tested on in-
sample session data using the HCTSA framework [75], 
with classification accuracy as the output metric. The 
linear classifier determined how well a linear boundary 
separates anger/non-anger classes. Such an approach is 
akin to using directional change (i.e., increasing/decreas-
ing physiological values from a baseline) for determining 
physiological reactivity, a common method employed in 
psychophysiology studies [8].

Evidence of anger/non-anger linear feature separa-
bility: Since many features (i.e., the 6697 valid features 
following HCTSA feature extraction) are tested for linear 
separability, there exist a possibility that certain features 
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obtained a high classification accuracy by chance [75]. To 
account for this multiple hypothesis testing, a null distri-
bution of classification accuracy scores was created for 
every feature in each session. This null distribution was 
made with the following steps: (1) randomly permutating 
the class labels assigned to feature values extracted from 
the time-series windows; (2) calculating the test statistic 
(i.e., classification accuracy scores from the trained clas-
sifier) for this permutation; and (3) repeating the process 
k = 1000 times to obtain a distribution of the null test 
statistic. Time-interval features were considered signifi-
cantly linearly separable if they exceeded two conditions: 
(1) the 0.01 false discovery rate (FDR) test statistic from 
the null distribution; and (2) the majority vote baseline 
for imbalance class accuracy (anger/non-anger classes) 
calculated for each session. After all sessions were tested 
for their significant linearly separable features, individu-
als were categorized according to the existence of linearly 
separable features within their day sessions. Individuals 
fell into one of three categories based on their evidence of 
linear separability: (1) strong evidence (both sessions had 
at least 40 or more linearly separable features); (2) mod-
erate evidence (only one session had at least 40 or more 
linearly separable features); (3) weak evidence (both ses-
sions had less than 40 linearly separable features). A fur-
ther population comparison between TBI and non-TBI 
groups was done with the Fisher Exact Test (Freeman-
Halton extension) to compare the distributions into the 
linear separability categories between these groups.

Common feature aggregation: For every session, all 
significantly linearly separable features were sorted by 
classification accuracy. The top 40 of these features were 
then grouped into a combined pool across all sessions. 
A tally rank was made of the occurrences of each feature 
that shared tertiary similarity across individuals/daily 
sessions. Tertiary similar operations were defined by 
HCTSA naming, whereby similar time-series operations 
belong to the same algorithm family and have the same 
defining arguments [79]. For example, “IN_AutoMutual-
InfoStats_diff_20_gaussian” belongs to the overall corre-
lation family of operations, the master family of statistics 
on auto-mutual information (AMI) from a time-series, 
and a tertiary operation family that explores AMI differ-
ences in a time-series using Gaussian estimation with a 
max delay of 20.

Feature stability across sessions: Prominent ses-
sion features were then compared between all sessions 
to gauge feature stability. A cosine similarity score was 
calculated between pairwise sessions to determine the 
similarity of their top linearly separable features (up to 
40 features, under tertiary HCTSA naming). Output of 
cosine similarity ranges from 0 (no similarity) to 1 (iden-
tical list). Each session was then plotted in a hierarchical 

clustering matrix, using average linkage based on Euclid-
ean distance [85], to show similarity to other sessions in 
the data pool.

Out-of-sample anger classification: UMAP metric learning
Finally, to explore how our findings can be integrated into 
the design of an emotion regulation application, we pro-
totyped an anger classification approach:

This approach for anger classification was motivated 
by practical application constraints and findings from 
the prior empirical steps. The primary application con-
straints being: (1) non-stationary changes in a wearable 
setting, where physiological data is encountered newly 
each day—encompassing all changes from daily physi-
ological variations and any contextual modulators of 
the indicand-indicator relationship; (2) difficulty in col-
lecting training data for the indicand-indicator relation-
ship—thus highlighting the need to leverage past labelled 
sessions from the same individual or related individu-
als (i.e., transfer learning). As such, this motivated an 
approach for a classifier that could be applied to newly 
unseen daily data, and which could leverage historical 
data from related individuals amidst any contextual vari-
ations that makes that data applicable/inapplicable for 
the new session at hand. As evidenced and explained 
later, our empirical findings highlighted the need for this 
context sensitive approach—specifically, it showed that 
there existed topologically separate subgroups within the 
data that had related PPG features for anger/non-anger 
separability.

The existence of these locally separate clusters in the 
PPG data space (i.e., data points that have PPG waveform 
characteristics that are largely distinct from each other), 
yet related in terms of PPG feature separability for anger, 
led to a hypothesis that there may exist a topology (i.e., 
manifold structure) which links together these sepa-
rate clusters. In this sense, even though there is a broad 
heterogeneous landscape of PPG variation (whether by 
changes in individual, context, emotion stimuli, etc.), 
there could exist definable regions within this landscape 
which are attributable to the anger-class. The challenge 
then is using historical data to identify the topology of the 
anger class, and the subsequent transform that can group 
these anger clusters together for easier classification.

As UMAP is a strong approach for identifying topology 
in data (including sparse data), it can also be applied in a 
supervised way to learn a topology to separates classes. 
McInnes [86, 87], has describe this process for super-
vised UMAP learning as a metric learning approach, in 
that UMAP learns a transform that can map the original 
data space to a new metric that separates class labels. To 
accomplish this, UMAP intersects the simplicial sets of 
the unlabelled data topology and the labelled categorical 
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metric. This intersection preserves topological connec-
tions in the original data only when they have the same 
class label, thus leading to an outcome of distinct topolo-
gies separated by class label. Thus, for categorizing new 
out-of-sample data, these new data points are embedded 
into the discovered metric based on their similarity to 
data points from the learned intersection.

Supervised UMAP was used with a leave-one-session-
out cross validation (LOSOCV) approach. Training data 
were all day sessions excluding the test session in ques-
tion (i.e., the training set encompassed day sessions from 
all participants, including the alternate day session of the 
individual under test). For this training data, a supervised 
UMAP was trained to map the original data space into a 
10-dimensional new metric space. Essentially each axis in 
this new metric space acts as a learnt feature that opti-
mizes class separation between anger/non-anger classes. 
A SVM (support vector machine) was then trained on 
this new metric space for classification. SVM param-
eters were chosen to be balanced weights with a radial 
basis function (RBF), optimizing for C (0.1–100) and 
γ (0.0001–10) via randomized grid search and fivefold 
CV. The trained UMAP metric space and SVM classifier 
was then used to classify the excluded test session data. 
Results were compared against a minority class baseline 
(as the rarer occurring anger class is of interest) for clas-
sification accuracy and F1 score. F1 score is an important 
outcome measure for imbalance class problems when 
there are low probability risk events. In our anger detec-
tion application, the minority risk event is important to 
identify, and hence should be weighted into the scoring 
metric. This is in contrast to classification accuracy (ratio 
of correct predictions to the total number of samples), 
where both classes are equally important in the classifica-
tion score.

This division of training and test data was chosen to 
avoid temporal autocorrelation between the two datasets 
(i.e., there would be no adjacent windows between the 
training set and the test set, since these were from dif-
ferent days of data collection). This is a more challenging 
classification problem, but more akin to a real-world sce-
nario of building classification models for an individual 
(which would likely be trained on previous day(s) of emo-
tion-physiology data from a given individual, or other 
related individuals). Classification based on windows (as 
opposed to emotion event epochs) was chosen because 
this is a how a real-time system would view incoming 
data (i.e., there is a constant stream of new windows that 
would have to be classified for a real-time response).

Results
Time-series visual clustering
Dominant local clusters: From visual analysis (see 
Fig.  5), many PPG data points are clustered first within 
an individual’s daily session, and second predominantly 
within close relation to the individual’s other daily ses-
sion cluster. Clusters tend to encompass a new region in 
the data space, showing that there are non-inclusive (i.e., 
non-stationary) changes to the PPG waveform charac-
teristics between days. It is noted that for certain indi-
viduals, their between-session difference is greater than 
the difference to another individual’s session, indicating 
a large contrast in daily physiology and/or sensor-skin 
interface. In total 19 individuals (59.5%) showed a near 
neighbour (i.e., edge connected) similarity between day 
sessions, 8 individuals (25.0%) within one session simi-
larity, and a smaller proportion of 5 individuals (15.6%) 
having a larger deviation between daily sessions. Visual 
UMAP distances are not interpreted as an exact measure 
of difference, but a relative indicator of how closely data 
clusters are related.

Demographic influence on PPG (sub-groups): It is 
noted that certain individuals appear more related than 
others by their cluster distances (taking into account edge 
connections). For example, PT02 and PT08 share a simi-
lar grouping. Both are in the TBI group, but of different 
gender and different age demographics. When exploring 
possible effects of demographics and TBI status on PPG 
(see Fig. 6), there does not appear to be a dominant clus-
tering associated with demographic changes (i.e., grada-
tion of age clusters as an ordinal category) or emotion 
regulation capacity (i.e., gradation of TBI status clusters 
from each other), instead we see sub-clusters related 
to subgroups of demographics or TBI status. Possibly, 
there exists other physiological attributes that were not 
recorded (e.g., body mass index (BMI), blood vessel siz-
ing, skin tone, etc.), which could explain variations in and 
the existence of these sub-clusters.

Influence of emotion on PPG: In contrast to other 
individual or demographic related clusters, anger emo-
tion clusters are smaller and more sporadic in the UMAP 
landscape (see Fig.  6). When exploring how emotion 
influences PPG, anger/non-anger classes appear to be 
highly mixed within the PPG data, indicative that among 
the aggregate of PPG features, emotions have a lesser 
influence on PPG than compared to individual differ-
ences. Despite this smaller influence, there exists minor 
local clusters of anger data points, which often relate to 
temporal auto-correlation of an emotion event.
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Discriminative time-interval analysis
Evidence of anger/non-anger differentiation: Of the 64 
elicitation sessions conducted (32 individuals, 2 sessions 
each), 47 were able to identify at least 40 features which 
exceeded linear separability significance thresholds (i.e., 

0.01 FDR and majority vote baseline). The remaining 17 
sessions (26.6% of total) had partial features in this top 
40 count that did not exceed the significance thresholds. 
These partial feature sessions accounted for 11 sessions 

Fig. 5 UMAP data visualization of entire PPG dataset. Colored by individual day session, where each participant had two day sessions ( e.g., P01‑A 
is participant 01’s day A session). Dominant structure is due to individual differences. Edge connections show similarity between certain individuals 
and sessions. During visual cluster analysis individual points were checked for their actual labels to ensure color assignment were interpreted 
correctly
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of the non-TBI group (25.0% of group total) and 5 ses-
sions of the TBI group (25.0% of group total).

Table  4 summarizes the occurrence of these sessions 
across participants, stratified by TBI status. Although 
linear separability is seen in most individual sessions, a 
proportion of individuals experience at least one ses-
sion where psychophysiological differentiation between 
anger classes is more challenging, based on linear fea-
tures alone. This proportion is similar between TBI status 

Fig. 6 UMAP data visualization with stratification labels. Dense regions represent structure in data: [Top‑Left] Anger, no anger; [Top‑Right] TBI, 
non‑TBI; [Bottom‑Left] Gender; [Bottom‑Right] Age

Table 4 Strength of linear discriminating features (≥ 40) for 
anger/non‑anger across participants

Strong 
separability (both 
sessions)

Moderate 
separability (one 
Session)

Weak 
separability (no 
sessions)

Non-TBI 13 (59.1%) 7 (31.8%) 2 (9.1%)

TBI 5 (50.0%) 4 (40.0%) 1 (10.0%)

Total 18 (56.3%) 11 (34.4%) 3 (9.3%)



Page 18 of 28How et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:107 

groups. Under the Fisher Exact Test (Freeman Halton 
extension) there is no statistically significant difference 
between the non-TBI and TBI distributions (p = 0.858).

Common top feature aggregation: The most common 
family of operations that differentiate anger/non-anger 
across participant sessions are listed in Table 5. A num-
ber of these operations are based on modeling the struc-
ture of the time series and exploring the remaining error 
(i.e., residuals) that the model does not account for. In 
this regard, certain emotional states may show more sta-
bility throughout the PPG window than others, resulting 
in higher errors in the residuals when there is a variation 
from this state. Auto-mutual information, shape motifs, 
point density embedding, and power spectrum analysis 
are all sensitive to periodicity, as well as deviations from 
it when comparing two time series. In total, the number 
of shared features across all participant sessions is a small 
percentage – accounting for 17.2% of all sessions at maxi-
mum commonality.

Feature stability across sessions: Fig.  7 depicts a 
hierarchical cluster heatmap of all day sessions and the 
respective similarity between their top linear features 
that differentiate anger/non-anger classes. Sessions are 
highlighted in group boxes when their cosine similarity 
exceeds 0.25. It is noted that there are three dominant 
clusters, each grouping 6 or more day sessions. Interest-
ingly, these cluster encompass a mix of TBI and non-TBI 
individuals, as well as sessions not from the same indi-
vidual. Five individuals (i.e., P12, P21, PT02, PT09, PT10) 
had both of their sessions within the same cluster, indica-
tive of similar anger-separable features that differentiated 

emotion across days. However, the large majority of indi-
viduals had different anger-separable features when com-
paring their two day sessions, as cosine similarities were 
less than 25%, indicating non-stationary changes in the 
emotion-physiology relationship (at least from a linear 
perspective).

When mapped to the UMAP PPG space, these three 
dominant clusters form different sparse sub-groupings, 
indicating the challenge of gauging which features are 
important for emotion separability from PPG character-
istics alone (see Fig. 8). There appears to be local regions 
in the dataset that prioritize different features for class 
separability.

Out-of-sample anger classification
Anger prediction results from LOSOCV are reported in 
Table  6, with each participant reporting their averaged 
scores. Although an improvement can be seen in the 
UMAP + SVM accuracy scores above the minority vote 
baseline, F1 scores showed only moderate improvement 
for certain participants.

Discussion
In this discussion, we interpret the results as they relate 
to our research questions. Specifically, we explore: (1) 
how the PPG indicator signal varies through individ-
ual, day-to-day, and emotional regulation capacity (as 
approximated TBI status) changes; (2) how character-
istics of PPG are able to differentiate anger/non-anger 
across these changes (indicand-indicator relationship); 

Table 5 Common operation differentiating anger/non‑anger across participants

Operation family # Sessions Description

MF GARCH_ar_P1_Q2 11 Fits a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model to the time‑series (order 
P = 1, Q = 2). Explores the appropriateness of model

IN_AutoMutualInfoStats_
diff_20_gaussian

11 Automutual information statistics on the differences of the time‑series. Uses gaussian estimation 
with a max delay of 20

MF_arfit_1_8_sbc 10 Fits Autoregressive (AR) models from order P = 1 to 8 on the time series. Optimal model is selected 
with Schwartz’s Bayesian Criterion (SBC). Statistics on model coefficients, final prediction error, and eigen‑
decomposition, etc

SB_MotifThree_diffquant 8 Coarse grain motifs of an equiprobable three level alphabet (ABC) on the time‑series differences. Outputs 
proportion of motifs ranging from word lengths 1 to 4

MF_ExpSmoothing_05_best 8 Fits an exponential smoothing model, by using half of the time‑series as a training set to find the optimal 
smoothing parameter: alpha. Outputs fitting parameters and statistics on residuals

MF_AR_arcov_5 7 Fits an AR model of order 5 to the time series. Outputs parameters of model and residual analysis

MF_StateSpace_n4sid 7 Fits a state space model to the time series. Trains on first half of the time‑series and predicts on second half. 
Outputs model parameters and statistics on residuals

SP_Summaries_fft 7 Power spectrum statistics using Fast Fourier transform (e.g., peaks, bandwidth, shape of cumulative sum, 
etc.)

CO_Embed2_Basic_tau 7 Properties of a point density embedding in 2D space (e.g., output of points near diagonals and geometric 
shapes)

WL_fBM 6 Wavelet estimation of fractional Brownian motion or Gaussian noise in the time series
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Fig. 7 Comparison of top discriminating PPG features for anger/non‑anger across sessions. Related feature sets are paired on hierarchical tree map. 
Dominant groupings are color marked with square boxes
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(3) and how the above findings can be integrated into the 
design of an emotion regulation system.

Indicator variability: landscape of PPG variation
Time-series visual clustering identified core attributes 
associated with PPG variation across individuals and 
emotion. The most common cluster structure was attrib-
uted to daily differences between individual day ses-
sions. Daily clusters of sensor data have been previously 
reported by Picard et al. [46] in the Eight-Emotion Data-
set and inferred to be associated with daily physiological 
change, contextual emotional change, and sensor-skin 

interface variation. Similar to their dataset, it is uncertain 
from this experimentation the exact contribution of how 
these factors influence between-session differences (leav-
ing a question for further exploration). However, unique 
to this study, it was noted that observed sensor differ-
ences between day sessions varied across individuals (i.e., 
differences in connected edge similarities in UMAP plot-
ting), giving further evidence that the factors influencing 
daily sensor data have non-stationary properties.

A further structure was seen with daily clusters hav-
ing more global groupings that encompass multiple ses-
sions from an individual. In aggregate, it was common to 

Fig. 8 Dominant groupings of sessions with similar anger discriminating features on UMAP PPG plot
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see inter-individual separation of associated day clusters, 
which highlights how individual distinctiveness is a dom-
inant attribute within the features of the PPG waveform. 
This is in agreement with biometric literature on physio-
logical signals, where ECG (electrocardiogram), a related 
cardiovascular waveform, has unique attributes for per-
sonal identification [88]. Hence PPG is varying based on 
individual inter-subject differences, as well as, daily intra-
subject changes.

Shifting broader from individual differences, there 
were occurrences of related session clusters between 
certain individuals (e.g., PT02 and PT08, among others). 

A plausible explanation for this may be the close physi-
ological similarity between a smaller grouping of individ-
uals, as these sub-groupings were not easily attributable 
to only demographic or TBI status (i.e., there exists other 
factors not recorded in this study, which cause the sub-
grouping of similar PPG). Finally, when related to emo-
tion, PPG showed smaller local clusters of related 
emotion types within a session, highlighting how varia-
tion in emotion is more of a local perturbation on top of 
the larger day/session and inter-individual differences.

Indicand-indicator relationship: changing anger-PPG 
separability
Although all sessions were able to identify at least one 
PPG feature that linearly separated anger from non-anger 
classes, the number and types of these features varied 
from session to session. In total 17 sessions (26.6% of 
total) had weaker separability in PPG features according 
to the top 40 threshold. This variation could be related 
to the sampling of emotion classes as different endog-
enous/exogenous elicitation strategies may have evoked 
nuanced ‘sub-types’ of emotion (which has been previ-
ously inferred to cause variation in ANS response [8]), 
and/or due to uncontrolled daily physiological and psy-
chological context influencing the ANS response (i.e., in 
line with the populations hypothesis for ANS response, 
where the ‘prototypical’ emotion-class response is an 
aggregate of contextual variations [38]). Globally, very 
few anger-separable PPG features were shared across all 
participants and sessions (see Table  5)—the most com-
mon of these PPG features encompassed a small sub-
set of the study sessions (~ 17%), and included features 
related to: Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH) residuals, Automutual 
information based on Gaussian estimation, and Autore-
gressive (AR) models selected with Schwartz’s Bayesian 
Criterion (SBC). It was noted that smaller sub-groupings 
of sessions, held more anger-separable features in com-
mon (see Fig. 7), showing a possibility of shared learning 
between these sessions.

The large variation in features that separated anger/
non-anger classes between sessions calls to question 
whether prior normalization methods in affective com-
puting are sufficient to encompass possible changes in 
the indicand-indicator relationship between sessions. 
Prior approaches of normalizing to a ‘neutral emotion’ 
physiological baseline [46, 89] tend to be based on the 
idea that a linear transform of indicator features can 
shift daily sensor values to be comparable to each other, 
and assumes features of interest still exhibit the same 
directional change within a daily session. These meth-
ods may have had modeling success due to conditions of 

Table 6 Anger prediction scores (leave one session out)

Bold values indicate higher score in comparison

Baseline (Minority) UMAP + SVM

F1 ACC  (%) F1 ACC  (%)

P01 0.189 10.5 0.255 52.3
P02 0.308 18.2 0.222 51.8
P03 0.261 15.0 0.359 68.8
P04 0.313 18.6 0.286 78.6
P05 0.365 22.4 0.390 70.6
P06 0.349 21.1 0.157 39.9
P07 0.543 37.3 0.400 54.2
P08 0.545 37.5 0.609 67.9
P09 0.417 26.3 0.346 64.2
P10 0.393 24.5 0.489 48.9
P11 0.405 25.4 0.516 55.2
P12 0.472 30.9 0.412 51.2
P13 0.200 11.1 0.264 51.9
P14 0.148 8.0 0.100 28.0
P15 0.382 23.6 0.286 65.3
P16 0.286 16.7 0.435 83.3
P17 0.606 43.4 0.441 50.0
P18 0.310 18.3 0.291 33.0
P19 0.613 44.2 0.517 50.0
P20 0.372 22.9 0.206 28.0
P21 0.544 37.4 0.509 68.1
P22 0.355 21.6 0.395 40.9
PT01 0.316 18.8 0.346 29.2
PT02 0.461 29.9 0.396 49.6
PT03 0.242 13.8 0.353 86.3
PT04 0.460 29.9 0.471 37.9
PT05 0.336 20.2 0.074 71.9
PT06 0.482 31.8 0.523 50.6
PT07 0.191 10.6 0.255 51.8
PT08 0.400 25.0 0.372 69.3
PT09 0.466 30.4 0.500 64.7
PT10 0.437 28.0 0.439 75.3
Mean 0.380 24.2 0.363 56.8
SD 0.121 9.4 0.129 16.5
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the dataset, rather than its ability to generalize to wider 
emotion-physiology circumstances. For example, the 
Eight-Emotion Dataset made use of the Clynes protocol 
to elicit emotion over one individual, which is a protocol 
that has specific sequencing and imagery type for evoking 
emotions [46]. Hence, the sequencing structure and elici-
tation similarity may have preserved directional changes 
seen in certain ANS features across different days of data. 
As more variability is included in the elicitation proto-
col (i.e., changes to elicitation timing, sequencing, and 
medium of material—as akin to the various ways emo-
tion could be triggered in real-life), these ANS indicator 
features could lose some of their directional structure, 
which was evident in this study through the differences 
in separable features between daily sessions, as well as 
reported ANS response variance in psychophysiology lit-
erature [38].

Interestingly, not all participants exhibited large vari-
ability in separable features between their daily sessions 
(e.g., P12, PT02, PT09, PT11). For these individuals, 
there were a larger set of common separable features that 
were shared across their daily sessions. This raises a key 
question for modelling: how does one determine when 
an indicand-indicator relationship is changing between 
day sessions, versus when it remains largely the same 
(i.e., separable features are held in common)? Such a 
question essentially seeks the context of the anger-PPG 
(indicand-indicator) relationship. Context, in this sense, 
is interpreted to mean the state-base property of the 
emotion-physiology (indicand-indicator) system, which 
is influenced by emotional/non-emotional changes [11].

In this study, it was observed that contextual similar-
ity of anger-separable PPG features was difficult to deter-
mine from the characteristics of PPG alone (i.e., see 
Fig.  8, where related sessions are not grouped together 
based on the global UMAP mapping of PPG features 
and the transformed mapping learned with supervised 
UMAP performed poorly in out-of-sample classifica-
tion). Hence, one would need to determine alternatives 
for deriving context from observed sensor (indicator) 
readings. A typical approach would be to include addi-
tional physiological/sensor modalities in the recording 
stream, hopefully serving as state variables/features that 
are sensitive to contextual states. However, the inclusion 
of more sensors does not guarantee that contextual states 
are observable from sensor data, and affective computing 
models may have to contend with the challenge of infer-
ring unobservable states.

Application design: challenges for anger detection
In an attempt to overcome daily non-stationary vari-
ations in the PPG sensor data, contextual local pockets 
of the anger class, and to learn from prior out-of-sample 

sessions—we proposed using supervised UMAP as a 
means to normalize/transform the PPG data space into 
one that was amenable for the anger detection task. 
Essentially, supervised UMAP would learn how to trans-
form local regions within the original PPG data space into 
class defined regions in the new metric space (i.e., local 
regions in the original PPG data space would be attrib-
utable to a specific anger/non-anger class). There were 
several assumptions embedded into this approach: (1) a 
PPG data point had a fixed attribution to an anger class 
(i.e., the specific value of PPG features on each dimen-
sional axis could only define one class attribution), and 
(2) unexplored regions in the PPG data space (i.e., non-
stationary data variation that have not been observed 
by sensor readings), could be topologically attributed to 
a neighbouring class, and that the collected dataset was 
sufficient to define this attribution in unexplored regions.

Although UMAP + SVM showed improvements in 
accuracy over a minority vote baseline (see Table  6), 
the 56.8% mean accuracy is only marginally better than 
chance. F1 score did not show an improvement for 
UMAP + SVM over a minority vote baseline. This poor 
performance of the supervised UMAP approach high-
lights how challenging truly out-of-sample testing data is 
for emotion-physiology modelling. As seen from the PPG 
data structure (see Fig. 5), new daily (i.e., out-of-sample) 
sessions usually encompass distinct regions in the PPG 
landscape, meaning that their feature values are non-sta-
tionary/distinct from prior values in the dataset. A point 
of failure is when supervised UMAP has to approximate 
class regions in an unseen data space with few known 
data structures (i.e., other data points that define class 
regions). McInnes [87] has stated that supervised UMAP 
can fail when data structure is not sufficient, as seen in 
our attempt. However, the variation in F1 and accuracy 
scores across participants may point to better structural 
sufficiency for some of these participants over others (i.e., 
that there was enough overlapping data from prior ses-
sions that could define class attribution in the test ses-
sion). This leads to a further question of how much data 
across individuals and day sessions would be sufficient 
to define the emotion-PPG relationship within a given 
population.

The other point of failure relates to the assumption of 
fixed class attribution for specific PPG values. Similar to 
other non-stationary data streams, emotion-PPG data 
could experience real or virtual drift, which affects the 
underlying values of PPG data and their relationship to 
emotion class labels [90]. Virtual drift, where the mar-
ginal distribution P(x) changes over time has been pre-
viously reported in affective computing datasets and 
thought to be combated with dataset normalization [46, 
89]. However, real drift where the posterior probability 
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P(y|x) of emotion labels changes over time relative to 
PPG values, points to the contextual challenge of PPG 
alone defining anger classes (i.e., a specific PPG data 
point may be attributed to anger at one point in time 
and non-anger in another). In this case, non-stationary 
models would have to be developed to account for these 
changes, such as ensemble approaches that adapt to shift-
ing days of data [47].

Application design: implications for emotion 
regulation systems
Integrating the above, we highlight several implications 
for developing a future emotion regulation system:

1. Non-stationarity of sensor data: Similar to prior 
affective computing datasets that included multi-days 
of sampling (e.g. [46, 47],), we report that sensor data 
values exhibit day-to-day differences that must be 
accounted for across the population. A core challenge 
with this non-stationarity data is accounting for the 
effects of sensor-skin interface variation (influenc-
ing indicator values), and physiological/psychological 
contextual change (affecting the indicand-indicator 
relationship). Both effects may manifest in variations 
of the marginal and posterior probability distribu-
tions related to sensor values and labels respectively. 
Traditional static classification models are not suffi-
cient to combat this challenge, and further explora-
tion into adaptive systems or dynamic models are 
needed for real-world performance.

2. Reliability of PPG as an indicator to anger: 
Although for a majority of sessions (73.4%) there 
existed > 40 PPG features that could separate anger 
from non-anger, the inconsistency of these features 
and the existence of sessions that had limited sepa-
rability is concerning. On the basis of PPG features 
alone, it was not seen that PPG could reliably act as 
an indicator signal to anger—in that more informa-
tion is needed to ascertain which and how specific 
PPG features are able to separate anger/non-anger 
in a given situation (inclusive of the individual, emo-
tional/non-emotional changes). We consider this 
information to be state-variables of the emotion-
physiology (indicand-indicator) system, and there is a 
need to identify these contextual variables to improve 
PPG’s reliability as an indicator signal to anger.

3. Defining emotion-physiology state context: The 
existence of some individuals having similar anger-
separable features between their sessions, and others 
that did not, supports the idea that there are contex-
tual state variables that can differentiate these sce-
narios. Traditionally, the search for state variables 
takes the form of additional physiological or activity-

based sensors/features (i.e., additional recorded data 
streams). However, when additional sensors cannot 
be added to a device or are insufficient to identify 
system states, other approaches for identifying hid-
den/unobservable system states could be applied 
(e.g., Takens’ embedding theorem for nonlinear 
dynamical systems to recover state variables from the 
time-lag embeddings of a single variable [91]).

4. Prospects for shared learning to individuals in the 
TBI population: When considering the implication of 
emotion regulation capacity (as approximated by TBI 
status) on the indicand-indicator relationship, there 
appears to be some possibility of transfer learning 
between specific day sessions of individuals despite 
this difference. Notably, when comparing anger-sep-
arable PPG feature similarity between day sessions, 
there were several clusters that had both TBI and 
non-TBI day sessions (see Fig. 7), supporting the idea 
of a similar anger detection task within these clusters. 
As a specific example, if creating an anger identifica-
tion model for an individual with TBI, e.g., PT09, and 
our out-of-sample test session is day A (i.e., PT09-
A), then our interpretation is that pair emotion-PPG 
examples from day sessions P12-A, P12-B, PT02-A, 
PT02-B, P18-B, and PT09-B have high relevance 
for this anger identification training task (i.e., this 
includes learning from individuals without TBI).

5. Data sufficiency: Since physiological data are dif-
ficult and time intensive to label for emotions, real-
world systems should endeavor to utilize forms of 
related data. Transfer learning between individuals 
and within an individual, is an important topic for 
affective computing. On a wider scale, as more data 
points are collected across individuals, emotions, and 
days, this evokes the question of how much data are 
sufficient before we see repeated patterns in the emo-
tion-physiology system?

To summarize, our empirical exploration expands 
beyond describing “what” needs to be done, to proposing 
a possible “how” better modelling could be accomplished. 
In addition to obtaining and exploring a challenging 
heterogeneous dataset for affective computing (i.e., 
multi-day, multi-elicitation, and the inclusion of a clini-
cal population), a major unique finding of this study was 
highlighting nuanced changes in emotional-physiology 
state context. Particularly, in Fig. 7, we showed how cer-
tain individuals had more stable discriminative features 
for anger than other individuals across their two-day 
sessions (i.e., whether their day sessions were related in 
cosine similarity for their top 40 discriminatory features). 
One common interpretation of this, is that physiological 
features that do not have stability across days of sampling 
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would be poorly matched to an emotion inference task. 
However, underlying this interpretation is an assump-
tion that emotion-physiology relationships need to exist 
in a co-occurring context. Meaning, if a trait of physiol-
ogy is seen to change with an emotional phenomenon 
in one scenario (i.e., feature discrimination), and then 
seen not to change with the same emotional phenome-
non in another scenario (i.e., no feature discrimination), 
that this is evidence of a weak or null emotion-physiol-
ogy relationship. Stated another way, because of feature 
instability across day sessions, we would typically disre-
gard features that do not show consistent discriminatory 
potential.

Yet, emerging work on dynamical systems, of which 
many naturally occurring systems are, offers an alter-
native explanation for this dichotomy: that both co-
occurring (e.g., a correlative and discriminatory) and 
non-co-occurring (e.g., an uncorrelated and non-discrim-
inatory) phenomena can exist within the same emotion-
physiology relationship, as this relationship may alter 
through different states in time. Meaning that features 
that would typically be disregarded, could actually be val-
uable and just be changing in its relationship to emotion 
in time (i.e., there are periods of time that this feature is 
discriminatory to a certain emotion phenomenon, and 
periods of time where this feature is not discriminatory). 
This helps to offer a hypothesis of why some individuals 
are related in discriminatory features (Fig. 7) more than 
other individuals. I.e., this may not be a chance occur-
rence, but rather related to a temporal sampling of an 
emotion-physiology system that changes its internal rela-
tionships through time. One way to operationalize such a 
system, is by viewing it as a nonlinear dynamical system 
to define emotion-physiology state context.

Our empirical exploration also highlights how time-
series approaches, could be used to mine further insights 
into the complexity of emotion-physiology relationships. 
We acknowledge that these methods are not without 
their limitations, yet with the heterogeneity and com-
plexity of emotion-physiology data (especially when 
considering greater diversity in the sampling population, 
broader time-course sampling, and further contextual 
confounds when moving to real-world applications), the 
necessity of interrogative data-mining methods that help 
to explore this heterogeneity becomes ever more impor-
tant. The methods presented in this paper focused on 
large time-series feature exploration, time-series visual 
clustering, and data mining. We view these as tools with 
different advantages and disadvantages for their use case, 
and invite affective computing researchers to consider 
how these and other time-series methods can inform 
our understanding of heterogeneous emotion-physiology 
datasets.

Limitations
Although this study explores a highly heterogeneous 
emotion-physiology dataset, it nonetheless is limited 
by the sampling of that dataset. This study samples only 
a small subset of the overall population (22 non-TBI, 
10 TBI), is constrained to two days of data across each 
participant, and selected for participants that had a pro-
pensity to anger within our elicitation protocol. Addi-
tionally, the choice was made to sample emotions from 
the circumflex model of affect, which limits the diversity 
of emotions (i.e., excludes emotions varying due domi-
nance). As well, balancing of target emotion samples 
from the circumflex model was not controlled for, and 
may be an alternate reasoning to explain the difference 
of separable features between each day session. Further 
studies can expand upon sampling the heterogeneity 
and non-stationary elements seen in our dataset. Par-
ticularly, greater sampling over within-day/between-day 
physiological changes, diversity of emotion events, vari-
ation in non-emotion context, and a wider breadth of the 
population will lead to a better empirical understanding 
of the emotion-PPG relationship. With balance, broader 
sampling needs to be thoughtfully weighted against the 
accuracy and temporal granularity of emotion labelling 
strategies. Additionally, exploration into different physi-
ological window sizes and stride lengths could uncover 
further temporal dynamics within this relationship.

Furthermore, this study took a binary view of anger 
when examining the anger-PPG relationship. As such, it 
is not sensitive to changes in intensity of emotion, dif-
ferences in motivating drivers of emotion, or ambiguity 
in emotional states. Emotional states that were perhaps 
ambiguous (i.e., true subjective disagreement between 
real-time felt emotion and a retrospective emotion label) 
and not due to labelling error, were not included in this 
study. Future studies can aim to integrate ambiguity or 
uncertain in an emotion label into the modelling process.

Likewise, our characterization of overall participants 
was more limited to demographic attributes. With the 
need to better understand how PPG can be normalized 
across day-to-day/individual differences, further charac-
terization of the sensor-tissue interface and anatomical 
differences would be useful. This includes, but is not lim-
ited to, changes in body mass, skin tone, and blood vessel 
sizing. Additionally, other physiological sensors may also 
help to characterize these differences within a modelling 
approach. When considering possible confounds related 
to TBI’s influence on ANS emotion reactivity, further 
experimentation could look at regional brain deficits (as 
characterized by functional brain imagining during emo-
tion) and its implication to ANS response.

Lastly, this study was an initial groundwork explora-
tion into the feasibility of anger detection within the TBI 
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population, however we did not specifically select for 
individuals that had clinical presentation of severe anger 
dyscontrol. Future work should look to explore ANS 
response of these individuals during dyscontrol episodes 
in naturalistic settings.

Conclusion
This study presents an initial empirical view into the 
characteristics of the PPG waveform and the anger-PPG 
(indicand-indicator) relationship as it varies through a 
diverse, heterogeneous dataset that includes individu-
als with TBI. Our dataset is a first in affective computing 
literature that includes this TBI population. Addition-
ally, this dataset includes diverse endogenous/exogenous 
elicitation material over two days of sampling. Results 
highlight how PPG features have non-stationary char-
acteristics, yet structure associated with day-to-day dif-
ferences, inter-individual differences, and population 
sub-groups. Furthermore, there is evidence to support a 
contextually modulated anger-PPG relationship, in that, 
there are times where PPG features identifying anger 
changed substantially over different days of sampling, 
and other times where these features remained congru-
ent. This presents a challenging problem for the creation 
of emotion recognition systems, as future classification 
models will have to be designed in a way to account for 
both these non-stationary and contextual changes. With-
out sensitivity to contextual change, PPG remains an 
unreliable indicator signal for anger. Future work utilizing 
PPG as an indicator signal to emotion should attempt to 
integrate contextual state variables in modeling the emo-
tion-physiology system. We encourage future research-
ers to explore more heterogeneous emotion-physiology 
datasets for the development of these emotion recogni-
tion systems, as well as to broaden a methodological base 
for interrogating emotion-physiology relationships in 
such datasets.
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