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Abstract 

Background Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many 
activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit 
from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control 
is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during con-
traction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. 
Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains 
to be investigated.

Methods In this work, we assessed the feasibility of using force myography measured from the forearm to control 
a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact partici-
pants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., 
seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In 
an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for clos-
ing) and further assessed the impact of individual training arm configurations on the overall performance.

Results We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual 
accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, rang-
ing from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found 
that the number of training arm configurations could be reduced from nine to six without notably decreasing clas-
sification performance.

Conclusion The results of this work support the general feasibility of using force myography as an intuitive intention 
detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges 
and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor 
hand impairment during activities of daily living.
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Background
Neurological injuries, such as spinal cord injury or stroke, 
can lead to impaired hand function and thus may have a 
significant impact on the independence and quality of 
life of the affected individuals. Assistive devices, such as 
robotic hand orthoses (RHO), can help their users regain 
independence by supporting grasping function during 
everyday tasks [1]. However, reliably and safely detecting 
their movement intention for device control is crucial to 
gain the full benefit from using such devices.

For many RHO used commercially or in research, con-
ventional direct control inputs, such as buttons or joy-
sticks, are used to control the actions of the device [2, 3]. 
These inputs are often the strategy of choice due to their 
robustness and ease-of-use. However, operating such 
inputs is detached from the physiological movement 
generation and thus is presumably neither perceived as 
natural by their users, nor is expected to promote neuro-
plasticity and consequently motor recovery. To alleviate 
this issue, strategies based on non-invasive measure-
ments of biosignals provide options for a potentially 
more natural control.

The most conventional biosignal used for the control 
of assistive devices is surface electromyography (sEMG), 
and has shown its potential for gesture recognition in 
both impaired and unimpaired populations [4–6]. How-
ever, the quality of a sEMG signal is sensitive to sources 
of noise from the surroundings or the used hardware, 
sweat, signal crosstalk and electrode shifts, making its 
prolonged use as an intention detection strategy chal-
lenging [5]. Force myography (FMG), i.e., monitoring 
interface forces between the limb and a wearable such as, 
e.g., an instrumented textile band, resulting from volu-
mentric changes in the muscles during contraction and 
relaxation, poses a promising alternative [7]. Multiple 
studies have shown that FMG can perform comparably 
to sEMG in terms of classification accuracy in gesture 
recognition tasks [8, 9] or even reported that FMG out-
performed EMG in lower muscle activation levels [10]. 
Furthermore, other works have shown FMG to be more 
stable over time [11, 12] and more robust to concurrent 
activation by undesired actions [10]. This is specifically 
relevant in the context of assistive RHO considering their 
target population, i.e., people with weakness and reduced 
muscular activity in their upper limbs. Despite these 
promising indications, the studies using FMG to control 
upper-limb assistive devices are still relatively scarce. Pri-
marily, FMG has been used in gesture classification for 
prosthetics [7, 8, 13, 14]. Only a limited number of stud-
ies have also exploited FMG for RHO control, whereas 
in most cases the signal was collected from the fore-
arm contralateral to the worn RHO [15, 16]. However, 
measuring FMG from the contralateral side restricts the 

conduction of bimanual tasks which are crucial for many 
activities in daily living. Thus, for RHO which are primar-
ily targeting assistive applications in activities of daily liv-
ing, contralateral control is not fully representative. Only 
a few studies collected FMG signals from the forearm 
ipsilateral to the RHO [17, 18], yet did not evaluate this 
strategy quantitatively.

In this work, we explored the feasibility of using FMG 
signals collected from the forearm using a custom-made 
wearable to distinguish different grasp patterns and intui-
tively control an assistive RHO worn on the hand ipsilat-
eral to the wearable in an offline manner. Further, in view 
of a real-world application, we attempted to optimize 
classifier training procedures in terms of time and com-
plexity by determining the training arm configurations 
that achieved the highest classificaton accuracies. The 
analysis of the data collected from neurologically-intact 
participants encouraged the further implementation of 
such a technique for RHO control, but also underlined 
the additional challenges which may arise when tran-
sitioning to application for people with neurological 
impairments.

Materials and methods
FMG band
Using an instrumented armband has shown to be a valid 
approach to detect relevant changes in FMG signals [19, 
20] and allows for simplified sensor placement. Due to 
the lack of suitable commercially available solutions, a 
custom-built sensor band similar to the one used used by 
Xiao and Menon [19] was designed (Fig. 1A, B). To detect 
the force generated by the muscle’s volume changes in 
the forearm during muscle activations, force-sensitive 
resistors (FSRs) were used. Twelve FSRs (FSR402, Inter-
link Electronics, Inc., Los Angeles, CA) were embedded 
on the inner textile layer of the band with a 3cm distance 
between two consecutive sensors. The resulting band was 
suitable for arm circumferences between 20cm and 36cm 
which covers adult forearm circumferences reported by 
Delva et al. [21]. Circular acrylic plates were fixed on the 
back of the sensing area of the FSRs to enable a more 
even pressure distribution, and increase sensitivity for a 
consistent sensor read-out [22].

Signal collection and analog-digital-conversion was 
done on a microcontroller attached to the band (Arduino 
Nano BLE, Arduino s.r.l., Monza, Italy), where each 
FSR was connected to an individual digital output and a 
shared analog input. To quantify individual sensor read-
ings at the analog input, a voltage divider circuit was 
implemented using a 56 kOhm pull-down resistor [17]. 
As commonly applied for FMG data acquisition [23], 
the targeted sampling frequency was approximately 100 
Hz. The collected data was sent via USB to a computer 
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running a Python script where it was saved for further 
analysis.

Robotic hand orthosis
In this study, we investigated whether FMG signals could 
be used to control a fully wearable and portable RHO, the 
RELab tenoexo (Fig. 1C). This RHO has been designed to 
support grasp function in people with sensorimotor hand 
impairments through active assistance in finger flexion 
and extension [24]. Its fingers consist of a three-layered 
sliding spring mechanism, which allows for a compliant 
grasping of objects of different sizes and shapes with-
out the need to control individual interphalangeal joints 
[25]. Two Bowden cable-based remote actuation systems 
transmit the force from the motors stored in a back mod-
ule to the spring mechanism in the hand module [26]. 
One system actuates thumb flexion and extension, while 
the second actuates combined flexion and extension of 
the remaining four fingers. A manual slider allows for 
thumb opposition to enable the most relevant grasp types 
for daily tasks.

Recruitment
Participants were recruited at ETH Zurich for a sin-
gle experimental session. All participants gave writ-
ten informed consent, and all experimental procedures 
were approved by the ethics committee of ETH Zurich 
(2021-N-171). Neurologically-intact individuals with no 
impaired hand function who were above 18 years of age, 
able to give informed consent and understand the tasks 
involved in the study were eligible to participate. Major 
depression or deficits in cognition, communication, 
comprehension, or memory were defined as exclusion 
criteria.

A total of ten participants were enrolled in the study 
(all male, mean age 27.2 years, standard deviation SD = 
2.2 years). Forearm circumferences ranged between 26 
and 30 cm (mean: 27.0 cm, SD = 1.6 cm).

Experimental protocol
The full study setup and protocol is depicted in Fig.  2. 
Participants were seated at a table and had the RHO 
donned on their right hands. The FMG band was donned 

Fig. 1 Overview of the hardware setup, i.e. FMG band and RHO: A Inner layer of the custom-built FMG band consisting of a textile strap with 12 
FSR sensors incorporated. B Outer layer of the custom-built FMG band consisting of a textile strap with an incorporated microcontroller for signal 
acquisition and a Velcro strap to allow for adjustable sizing. C FMG band worn on the forearm and RHO donned
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on the ipsilateral (i.e., right) forearm at the location of 
the largest circumference and rotated until the micro-
controller was placed above the brachioradialis muscle. 
The band was adjusted until it was tight, yet comfortable 
as subjectively reported by the participants. Depending 
on the participant’s forearm circumference, only signals 
from sensors needed for one full loop around the forearm 
were acquired and sensors laying on top of those were 
considered inactive, resulting in a lower number of active 
sensors. The state of the RHO, i.e., “open” and “closed”, 
was manually changed by the examiner using a push but-
ton for the duration of the full experiment.

In an initial phase, the participants were instructed to 
try performing four gestures while wearing the RHO. 
While the state of the RHO was open, the two gestures 
were “relaxed open” (RO) and “try to close” (TC). For the 
gesture TC, the participants had to try to close their hand 
while the closing movement was counteracted by the 
force generated by the finger spring mechanism of the 
RHO. Vice versa, when the state of the RHO was closed, 
the two gestures were “relaxed closed” (RC) and “try to 
open” (TO). Participants were instructed to perform the 
two “not relaxed” gestures TO and TC with approxi-
mately half of their individually perceived maximal force. 

Fig. 2 Study setup and protocol: A Study setup depicting the participant sitting in front of a table and the seven static positions (1–7) and two 
dynamic movements (8–9) assessed in the protocol. B Study protocol consisting of donning, an initial phase, the signal collection phase of five 
repetitions per gesture and arm configuration, and donning
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During this initial phase, a first visual inspection of signal 
quality was performed before the commencement of the 
experiments.

In the data collection phase, participants were asked 
to perform one of the four gestures while in a specific 
arm configuration. A sequence of performing each ges-
ture continuously for 10s followed by a 5s break was 
conducted (Fig. 2B) and repeated for a total of nine arm 
configurations, i.e., seven static hand positions (positions 
1–7) and two dynamic movements (movement 8–9) with 
a break of 60s after each arm configuration as depicted in 
Fig. 2A. The static positions were selected based on the 
positions proposed by Radmand et al. [27] and their rel-
evance in terms of activities of daily living that could be 
supported by the RHO. Since the intended target popu-
lation of the RHO, i.e., people after spinal cord injury 
with upper limb weakness, predominantly are wheelchair 
users, the proposed positions below table level and above 
head level were left out. The two closer positions at face 
level were fused into a single position in front of the par-
ticipants’ mouth, since eating and drinking have been 
reported to be among the most desired tasks for target 
users of RHO [28]. The two dynamic movements con-
sisted of a circular movement horizontally on table level 
and vertically in the right humeral plane, respectively. For 
all arm configurations and all gestures, the participants 

were instructed to sit comfortably and relaxed, and to 
have their hand oriented such that the thumb was facing 
upwards (except in static position 7) and the elbow facing 
downwards, and to have the shoulders in a non-elevated 
position. For position 7, the thumb faced the partici-
pant’s mouth in order to simulate the hand position dur-
ing drinking. At all times, visual cues which showed the 
current arm configuration as well as the current gesture 
to be performed, were provided to the participants as 
text and image on a computer screen (Fig. 3). During the 
breaks, the participants had time to switch between arm 
configurations. The experimenter then inspected the arm 
configuration visually and, if required, provided instruc-
tions for adjustment to the participants. The whole 
process for each arm configuration including all four ges-
tures was repeated five times.

Signal processing and analysis
There were two possible states of the RHO, i.e., “RHO 
open” or “RHO closed”. During “RHO open”, only the 
gestures RO or TC could be performed, whereas dur-
ing “RHO closed”, only RC and TO could be performed. 
Since the current RHO state is always known and each 
state effectively only allows two possible gestures, we 
could use that information to simplify the four-class 
gesture recognition problem into two separate binary 

Fig. 3 Visual cues provided to the participants A Visuals cueing the current arm configuration to the participants, examples shown for static 
position 3 (top) and dynamic movement 8 (bottom). B Visuals cueing one of the four gestures to be performed to the participants
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classifications, which in the following will be referred to 
as “RHO open” (RO/TC) and “RHO closed” (RC/TO).

In order to detect the user’s intent based from the 
collected raw FMG signals, different data process-
ing pipelines, i.e., combinations of preprocessing steps 
and classification algorithms, were examined. Assessed 
preprocessing steps were: moving average filtering, 
Min-Max scaling, standard scaling, feature selection, 
and Principal Component Analysis (PCA), whereas 
assessed classification algorithms were: Support Vector 
Machine (SVM), K Nearest Neighbor (KNN), Random 
Forest (RF), and Linear Discriminant Analysis (LDA) as 
these have previously shown promising results for ges-
ture classification using FMG [7, 13, 22].

For each participant, out of the five collected repeti-
tions, four were used for classifier training and valida-
tion and the remaining repetition was used for testing. 
Different signal processing pipelines were evaluated 
in a four-fold leave-one-out-cross-validation manner 
and the overall highest performing pipeline was then 
selected to be applied for individual model genera-
tion. Reported classification accuracies are test accu-
racies obtained using the fifth repetition. Additionally, 
we measured training, as well as inference times. The 
training time was the time needed to train the model 
with our training data. The inference time was the time 
the model needed to make a prediction for a single 
sample. To measure the latter, we measured the time 
required for the total test set and divided it by the num-
ber of samples in that set.

In order to determine if the data collected in any arm 
configuration contributed more to the classification per-
formance, a sequential forward selection technique was 
used [29, 30]. For this technique, we first determined the 
classification accuracies when only including data from a 
single configuration into the training set, and the config-
uration with the highest achieved accuracy was selected. 
In a second step, data from the selected configuration 
was combined with data from each of the remaining con-
figurations individually to form the training set with two 
configurations. The respectively achieved classification 
accuracies were again compared and the combination 
achieving the highest accuracy was selected. This proce-
dure was repeated until all configurations were included. 
The same signal processing pipeline as in the previ-
ous analysis was used for all participants. Despite being 
trained on data collected only in individual arm con-
figurations or combinations thereof, the classifiers were 
always tested on the full test set which included data 
from all arm configurations. The resulting classification 
accuracies were averaged across all participants and both 
classifications in order to determine the overall contribu-
tion of individual arm configurations.

A Wilcoxon signed-rank test at a 0.05 significance level 
was performed to analyse statistical differences in per-
formance between the classifiers “RHO open” and “RHO 
closed” as well as for the sequential forward selection of 
training arm configurations. A Mann–Whitney-U-Test 
was used to determine statistical differences between the 
performance of participants using 9 and those using 12 
sensors. All data analyses were conducted offline using 
Python 3.7.12 in Google Colab (12 GB RAM, no use of 
a GPU).

Results
Classification performance
The pipeline resulting in the highest classification accu-
racy in validation and which was consequently used for 
testing included no filtering, no feature selection, stand-
ard scaling and a SVM classifier using a Radial Basis 
Function (RBF) kernel. Parameters were tuned using a 
grid search. The resulting confusion matrices for each 
classification averaged over all participants are shown in 
Fig.  4. For the classification “RHO open”, the true class 
RO was about 1.5 times better predicted than TC (error 
rates 3.6% and 5.5% , respectively). Similarly, for the clas-
sification “RHO closed”, there were about 1.6 times more 
false predictions ( 12.0% ) compared with the RC class 
( 7.5%).

Individual overall classification accuracies are shown 
in Fig.  5, ranging between 75.4% (ID8, classifier “RHO 
closed”) and 100% (ID4 and ID7, classifier “RHO open”). 
Averaged over both classifiers, participant ID1 achieved 
the highest accuracy ( 98.6% ) and ID2 performed the 
worst ( 81.4% ). No significant differences were found 
between participants using nine (n=8, i.e., ID1, ID3, ID4, 
ID5, ID6, ID7, ID8, ID9) and those using twelve (n=2, 
i.e., ID2 and ID10) active sensors ( p > 0.05 ). For all par-
ticipants except ID2 and ID6, the classification “RHO 
closed” performed worse than “RHO open”, whereas 
the difference in performance overall was significant 
( p = 0.049 ). The difference between the distinctness of 
the gestures in the two classifications is also visible when 
looking at the difference in raw voltage readings of the 
sensors (i.e., during “RHO open”, the readings between 
the gestures RO and TC were compared and during 
“RHO closed”, the readings between the gestures RC and 
TC were compared). As depicted in Fig. 6, the difference 
in sensor readings averaged across all nine arm configu-
rations and all participants using nine or twelve active 
sensors, is smaller for the classification “RHO closed” 
than “RHO open” for each sensor. However, it has to be 
noted that the relation from sensor readings to pressure 
generated by the muscle contraction is not linear.

Classifier training took, on average, 16.35 s (SD = 15.06 
s) for the classification “RHO open” and 46.44 s (SD = 
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Fig. 4 Confusion matrices. Confusion matrices for both classifications, “RHO open” and “RHO closed”, averaged over all arm configurations and all 
participants, normalized over the ’true’ condition

Fig. 5 Classification accuracies. Achieved classification accuracies for each individual participant, as well as mean and standard deviation 
of accuracy across all participant for both classifications “RHO open” and “RHO closed” (*: p ≤ 0.05)
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25.20 s) for the classification “RHO closed”, whereas 
inference times for both classifications were approxi-
mately 0.05 ms (SD = 0.04ms) and 0.13 ms (SD = 0.08 
ms) per sample, respectively. The largest measured infer-
ence time was 0.26 ms (classification “RHO closed”, ID 
9). Significant differences were found in the training and 
inference times between the two classifications “RHO 
open” and “RHO closed” (training time: p = 0.013 , infer-
ence time: p = 0.010).

Arm configuration analysis
The achieved test accuracies during sequential forward 
selection is given in Fig. 7. The arm configuration which 
contributed the most to the ability of the model to pre-
dict gestures was the dynamic movement 9, i.e., a circular 
horizontal movement on table level. Listed by the order 
of contribution, the static positions 6, 7, 2, and 3 followed 
before the dynamic movement 8 and the three static 
positions on the right humeral plane, i.e., 5, 1, and 4. For 
the classification “RHO open”, the peak was achieved 
after adding position 3, and for the classification “RHO 
closed” after adding the dynamic movement 8, respec-
tively. Compared to training on position 9 only, the first 
significant improvement in accuracy for both classifica-
tions was found after the three positions 6, 7, and 2 were 
added ( pRHOopen = 0.002 , pRHOclosed = 0.037 ). For the 
classification “RHO open”, no further significant increase 
was found after adding the remaining positions 3, 8, 5, 
1, and 4. However, for the classification “RHO closed”, a 

further significant improvement was found after addi-
tionally adding position 3 and movement 8 ( p = 0.004).

Discussion
The aim of this work was to investigate the feasibility of 
using force myography signals collected from the forearm 
as an input method to control a robotic hand orthosis 
worn on the ipsilateral hand. We collected signals from 
ten participants performing four gestures in nine differ-
ent arm configurations, i.e., seven static positions and 
two dynamic movements, corresponding to typical hand 
use in daily life. We determined corresponding offline 
classification accuracies and assessed the impact of indi-
vidual arm configurations in the classifier training data 
on the overall classifier performance.

Feasibility of controlling a RHO
The overall achieved average classification accuracy of 
92.9% (individual classification RO/TC: 95.5%, RC/TO: 
90.3%) exceeds the target accuracy of 90% proposed by 
Scheme and Englehart for reasonable, non-frustrating 
use in upper-limb prosthetics [31]. The total response 
time of the system, i.e., the time from movement inten-
tion to classification, consists of four aspects: the time 
from movement intention (measurable by electroenceph-
alography) to electrical muscle activation (measurable by 
EMG), typically around 15–25 ms [32], the time between 
the onset of electrical muscle activity and the onset 
of muscle contraction (measurable by FMG), i.e., the 

Fig. 6 Normalized mean sensor reading differences across all arm configurations. Difference of mean sensor readings (Left: averaged 
across participants with nine active sensors (n=8), right: averaged across participants with twelve active sensors (n=2)) for both gestures 
per classification, averaged across all arm configurations for each sensor Ch1-Ch9. Readings are normalized by the overall maximal average 
difference achieved (indicated by “ × ”. Bold lines denote averaged difference across participants and arm configurations, transparent areas indicate 
mean ± standard deviation. Note that sensor readings are not linear and cannot be directly associated with pressure
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electromechanical delay of the muscles, typically around 
50 ms [33], the delay by the sampling of the FMG signal, 
i.e., 10 ms at 100 Hz, as well as the inference time. Thus, 
even considering the largest measured inference time 
of 0.26 ms, the total speed of response adds up to only 
approximately 85 ms, which is still more than fast enough 
to produce predictions in a real-time application, assum-
ing that the bandwidth of human hand movement is typi-
cally below 4.5 Hz [34]. We can assume that this holds 
true even when switching to a microcontroller on-board 
the RHO with less processing power than the proces-
sor used for the analysis in this study, since the infer-
ence time makes only a very small fraction of the overall 
response time. Accordingly, classification accuracy and 
response time indicate general feasibility, but the fact that 
one of the classification accuracies only marginally falls 
above that limit calls for further investigation.

FMG has previously been examined for the control of 
an RHO by Yap et al. [15] who reported 95% online clas-
sification accuracy distinguishing four hand gestures in a 
fixed elbow configuration in three neurologically-intact 
participants in a setting where FMG was measured from 
the forearm contralateral to the RHO. Such a contralat-
eral setting could foster bilateral movement training, 
which in turn can promote functional recovery in the 

contralateral paretic hand [35]. However, for practical 
control of an assistive RHO in activities of daily living, 
it is important that FMG data is acquired on the fore-
arm ipsilateral to a worn RHO so that it does not limit 
bimanual activities. No previous studies have reported 
quantitative performance metrics such as classification 
accuracies using FMG in the ipsilateral setting. Xiao 
et al. [17] employed the ipsilateral setting in their study 
to help the participants familiarize themselves with the 
control of a RHO by using FMG signals collected from 
their ipsilateral forearm. Esposito et al. [18] implemented 
both, contra- and ipsilateral control and selected between 
those settings depending on the quality of the measurable 
FMG signal of the user. However, neither of these studies 
reported any quantitative results of the ipsilateral setting.

Despite only conducting a presumably simple binary 
classification compared to previous works distinguishing 
more gestures, the classification accuracies achieved in 
our work were not notably superior to other studies that 
employed FMG for gesture recognition. Using a similar 
sensor setup as the one used for our work, Xiao et al. [19] 
detected grasping actions in pick and place tasks with 
a comparable accuracy of 92% in neurologically-intact 
participants; Jiang et  al. [29] were able to distinguish 
between 48 hand gestures in a cross-trial evaluation with 

Fig. 7 Sequential forward selection of arm configurations. Achieved classification accuracies by adding arm configurations one-by-one 
during sequential forward selection for both classifications “RHO open” and “RHO closed”. Bold lines denote averaged accuracies across all 
participants, transparent areas indicate mean ± standard deviation and peaks are indicated by “ × ” (*: p ≤ 0.05 . **: p ≤ 0.01 , n.s.: not significant)
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an accuracy of 83.5%. The main reason that we could not 
achieve notably higher accuracies than these studies is 
likely the inherent physical restrictions posed by the RHO 
on the hand. Therefore, the gestures to classify were not 
as distinguishable as, e.g., a fully open hand and a closed 
fist, but rather resembled an isometric muscle contrac-
tion in the transition phases between the current states 
of the RHO (trying to close while RHO open/trying to 
open while RHO closed). In addition, Xiao et al. [19] also 
reported significantly higher prediction accuracies when 
using FMG signals collected from the wrist instead of the 
forearm. However, for many RHO, the wrist is covered 
by the device and does therefore not allow placement of 
FMG sensors in that area. All these observations support 
that wearing the RHO makes it more difficult to get dis-
tinguishable signals and thus correctly classify a desired 
action compared to gesture classification without wear-
ing a RHO.

The significantly worse performance of the classifica-
tion “RHO closed” compared to “RHO open” matched 
the expectations from observations during data collec-
tion and unstructured feedback by the participants. In 
neurologically-intact participants, finger flexors are usu-
ally stronger than finger extensors [36]. This leads to the 
expectation that during flexion (i.e., gesture TC) larger 
and hence more distinguishable FMG signals could be 
measurable than during extension (i.e., gesture TO). 
Further, when the RHO was open, the participants only 
had to counteract the stiffness of the springs in the fin-
gers to perform the gesture TC. However, when the RHO 
was closed, it provided an additional force intended for 
grasp assistance, which the participants had to counter-
act in order to perform the gesture TO. Thus, it might be 
that the maximum force applied by the participants, as 
instructed by the experimenters, was too small to achieve 
a more distinct volumetric change in the muscles.

Looking at the different error modes in Fig.  4, we 
can distinguish between two types of failure for each 
classification: when a desired change of RHO-state is 
wrongly detected or when an actual desired change is 
not detected. The most frequently occurring error was 
found when the participants tried to change the state 
from RHO closed to open (true class TO), yet the RHO 
stayed closed (predicted class RC). While this type of fail-
ure might be annoying, it can usually be solved by just 
trying to conduct the desired gesture again. On the other 
hand, a misclassification when intending to keep the 
RHO closed yields an unintended opening (true class RC, 
predicted class TO). When the user is holding an object, 
this leads to dropping it. This failure mode is therefore 
considered to be the most critical. Although this failure 
mode occurred less than 7% of the time, it could be con-
sidered to adapt the decision threshold of the classifier 

for future iterations, in order to reduce the risk even fur-
ther at the expense of a potential increase of undetected 
opening attempts [37].

Variation in performance between participants
Some variation in performance between participants was 
observed. Out of the ten participants, only six achieved 
an acceptable classification accuracy above 90% for both 
classifications “RHO open” and “RHO closed”. Further, 
although the classification “RHO open” performing over-
all significantly better than “RHO closed”, there were 
two participants for which the contrary was observed. 
Besides the participant’s individual ability to generate 
consistent muscle activations, further sources potentially 
introducing variability could be differences in band tight-
ness based on the participant’s oral feedback [7], incon-
sistency in the sensor locations as previously investigated 
in EMG [38], e.g., after prolonged wearing time, or the 
amount of force applied against the finger mechanism of 
the RHO to perform the intended gesture.

An approach to try to compensate for the observed 
inter-participant variability is to use individually opti-
mized data processing pipelines, i.e., combinations of 
preprocessing steps and classification algorithms, instead 
of a general pipeline for all participants. However, when 
investigating this option in a preliminary analysis, we 
found that such individual pipelines only performed 
marginally better in validation and, when translating to 
unseen data during testing, they performed even slightly 
worse than the general pipeline which was used in this 
work. Using the same pipeline across all participants 
leads to simpler processing and is consistent with other 
studies involving neurologically-intact participants [15, 
19, 29]. However, it should be investigated whether an 
individual pipeline could provide a meaningful improve-
ment in accuracy in case of lower muscle activations, e.g., 
for users with sensorimotor hand impairments.

Arm configuration analysis
Analysing the contribution of individual arm configura-
tions to the overall classification performance, we found 
that the dynamic movement 9, i.e., the one horizontally 
on table level, contributed the highest. Including dynamic 
movements provides data with a higher variability in the 
training set, which in turn can make a model more suit-
able for testing in scenarios which also include such vari-
abilities, such as eating or other activities of daily living. 
The three highest contributing static positions 6, 7, and 
2 required the participants to extend the elbow straight 
to the left humeral plane (Positions 6 and 2) or to mouth 
level on the sagittal plane close to the body with a flexed 
elbow. Including these three static positions on differ-
ent vertical levels yielded in a significant improvement 
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in classification accuracy compared to only using one 
dynamic movement on table level, matching the sugges-
tion by Radmand et al. [27] to include positions in both, 
straight and bent elbow configurations. Introducing the 
second dynamic movement, 8, resulted in a further sig-
nificant increase for classification “RHO closed”. This 
observation matches our expectation, since adding this 
movement not only introduced dynamic, and thus highly 
variable data, but also, for the first time, introduces data 
from the right humeral plane. Accordingly, the data 
from static positions 5, 1 and 4, which all lie in the same 
plane as movement 8 might be partially redundant and 
therefore don’t contribute to further significant improve-
ments. However, surprisingly, introducing the dynamic 
movement 8 led to a decrease in accuracy for classifica-
tion “RHO open”. Yet, as the decrease was not significant 
and the achieved accuracy is still relatively high ( > 95% ) 
we assume that in this case the additionally introduced 
variability in data was not required since a plateau was 
already achieved earlier.

For this work, no data collection time constraints (i.e., 
large number of repetitions and arm configurations) 
were considered for the sake of achieving a large train-
ing set for the investigations. However, in real-life appli-
cations, such a long training time is critical as the users 
may lose motivation and experience fatigue during pro-
longed training. These findings lead to the conclusion 
that the static positions 4, 1, and 5 (in that order) could 
be removed in a future training data collection without 
notably decreasing the classification accuracy, reducing 
the overall training time and therefore the burden on the 
participants.

Limitations and future work
While this study provided valuable novel insights and 
a first indication towards the feasibility of using FMG 
to control a RHO, important aspects need to be taken 
into account when transferring these findings to prac-
tical applications. In a first step, the feasibility should 
also be investigated for online control. Previous works 
using EMG have found significantly worse performance 
in online classification compared to offline [39]. Fur-
ther, all study participants were neurologically-intact, 
male, and represented a relatively low variability in age 
and forearm circumference. Unfortunately, there is only 
very limited data available on FMG signals collected 
from people with neurological hand impairments. For 
grasping detection of one grasp type, Sadarangani et  al. 
[40] found that, compared to neurologically-intact indi-
viduals, individuals after stroke achieved inferior, but still 
acceptable ( > 90% ) classification accuracies. For people 
with hand impairments due to spinal cord injury, no such 
data is available. However, in this population, the residual 

muscle activity (and therefore the volumetric change) 
in the forearm depends on the type and level of lesion 
which could impact the distinctness of measurable FMG 
signals. For both these reasons, we expect that the clas-
sification accuracy in online control for people with neu-
rological hand impairment would be lower than what was 
reported in this study. In order to improve online classi-
fication accuracy to be suitable for this population, some 
improvements on the hardware and the data collection 
are needed. On the hardware side, fusing data from mul-
tiple sensor types could be considered. Previous works 
have shown superior performance when using EMG and 
FMG data simultaneously compared to only EMG or only 
FMG [13, 41]. Further, the inclusion of inertial meas-
urement units could identify dynamic motions in order 
to avoid misclassifications when transitioning between 
different hand positions during activities of daily living 
[42]. From an application point of view, different ges-
tures could be used to trigger the desired actions. While 
the gestures used in this study were selected to resem-
ble the targeted action (e.g., “trying to close” in order to 
close the hand), other less intuitive gestures such as, e.g., 
a simple co-contraction of the forearm, might be easier 
to perform for the participants and produce better dis-
tinguishable FMG signals [43]. Further, with data from 
a larger number of participants, more sophisticated sig-
nal analysis such as transfer learning could further allow 
for improved classification accuracies while keeping the 
required amount of training in an acceptable range [44].

Conclusions
This work, for the first time, assessed the feasibility of 
classifying opening and closing based on FMG data from 
the forearm while wearing a robotic hand orthosis on 
the ipsilateral hand in neurologically-intact participants. 
In an offline analysis, we found that using FMG could 
be a viable intention detection strategy for such assis-
tive devices, yet for a more conclusive statement, further 
investigations involving people with hand impairments 
are required. Additionally, this work identified trade-
offs between gesture recognition accuracy and the bur-
den on the user during collection of training data and 
determined methods to optimize the training procedure 
and time without reducing gesture classification perfor-
mance. Based on these findings, methods were identi-
fied which could potentially overcome challenges arising 
when transferring such technologies to their intended 
context of use, i.e., assisting people with sensorimotor 
hand impairments during activities of daily living.
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