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Abstract 

Background Walking impairments are a common consequence of neurological disorders and are assessed with clini‑
cal scores that suffer from several limitations. Robot‑assisted locomotor training is becoming an established clinical 
practice. Besides training, these devices could be used for assessing walking ability in a controlled environment. 
Here, we propose an adaptive assist‑as‑needed (AAN) control for a treadmill‑based robotic exoskeleton, the Lokomat, 
that reduces the support of the device (body weight support and impedance of the robotic joints) based on the abil‑
ity of the patient to follow a gait pattern displayed on screen. We hypothesize that the converged values of robotic 
support provide valid and reliable information about individuals’ walking ability.

Methods Fifteen participants with spinal cord injury and twelve controls used the AAN software in the Lokomat 
twice within a week and were assessed using clinical scores (10MWT, TUG). We used a regression method to identify 
the robotic measure that could provide the most relevant information about walking ability and determined the test–
retest reliability. We also checked whether this result could be extrapolated to non‑ambulatory and to unimpaired 
subjects.

Results The AAN controller could be used in patients with different injury severity levels. A linear model based 
on one variable (robotic knee stiffness at terminal swing) could explain 74% of the variance in the 10MWT and 61% 
in the TUG in ambulatory patients and showed good relative reliability but poor absolute reliability. Adding the vari‑
able ‘maximum hip flexor torque’ to the model increased the explained variance above 85%. This did not extend 
to non‑ambulatory nor to able‑bodied individuals, where variables related to stance phase and to push‑off phase 
seem more relevant.

Conclusions The novel AAN software for the Lokomat can be used to quantify the support required by a patient 
while performing robotic gait training. The adaptive software might enable more challenging training conditions 
tuned to the ability of the individuals. While the current implementation is not ready for assessment in clinical prac‑
tice, we could demonstrate that this approach is safe, and it could be integrated as assist‑as‑needed training, rather 
than as assessment.

Trial registration ClinicalTrials.gov Identifier: NCT02425332.
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Background
Walking impairments affect around three quarters of 
stroke survivors [1] and the vast majority of people 
with a spinal cord injury (SCI) [2, 3]. Gait disorders are 
among the most frequent symptoms in neurology with 
more than 60% of neurological patients showing visible 
disturbances of gait [4]. In this work, we focus mainly 
on the SCI population. In 2016, there were 0.93 million 
new cases of SCI worldwide, and the prevalence of SCI 
patients currently living with the condition was 27.04 
million [3]. More than half of SCI survivors present an 
incomplete lesion and have chances of recovering some 
walking function [2, 5]. Limitations in walking function 
affect independence, quality of life and lead to several 
secondary complications due to immobility, such as joint 
contractures, osteoporosis and spasticity [6, 7]. Walking 
recovery is among the highly desired goals of the reha-
bilitation for patients after stroke and spinal cord injury 
[6, 8, 9].

Patients with incomplete SCI who can walk present 
several kinematic abnormalities with respect to able-
bodied control subjects, due to impaired proprioception, 
decreased voluntary muscular control, increased muscle 
tone and altered neural drive [10]. These individuals usu-
ally show slower walking speed and longer double sup-
port duration, limited hip and knee flexion during swing 
and insufficient hip extension during stance [10, 11].

Assessing and evaluating walking-related functions and 
activity is needed to monitor and adapt the therapy, to 
motivate patients and families and to provide evidence 
to health insurance companies. Research on new drugs 
and treatments requires sensitive assessments to cap-
ture the effects of therapeutic interventions. Nowadays, 
the assessment of walking and walking-related func-
tions in clinical practice rely mainly on ordinal-based 
scores which suffer from several limitations, and there is 
no single outcome measure that can be used to monitor 
changes in lower extremity function regardless of sever-
ity and level of injury [12]. Time-based assessments, such 
as the 10-meter-walking-test (10MWT), provide use-
ful information on overall performance, but they cannot 
capture the use of compensatory strategies, the quality of 
the gait pattern and they cannot be administered in peo-
ple who have some residual function, but cannot walk 
yet. More sensitive assessments, such as camera-based 
gait analysis, require also more time for administering, 
thereby taking away time from therapy, and they are not 
often performed [13].

Since the early 2000s, robotic gait trainers have 
become valuable aids for the rehabilitation of walking 
after a neurological injury [14, 15]. Robotic gait train-
ers can provide intensive training with a high num-
ber of repetitions to patients with mild to severe gait 
impairments. Severely affected patients, who would 
not be able to train otherwise, can start earlier with the 
rehabilitation [16] thanks to the robotic support. Exo-
skeleton-type gait trainers (e.g. Lokomat [14], Walkbot 
[17]) control each of the leg segments (thigh and shank) 
independently and are programmed to generate a phys-
iological hip and knee angular motion, i.e. similar to 
the gait pattern of an able-bodied individual. Because 
of the assistance that the robotic gait trainer provides, 
assessments can be administered even if the patient is 
not able to perform the movement without support.

The programmable logic of robotic devices can pro-
vide standard conditions for the assessments and the 
information from sensors can be used to calculate objec-
tive measures [18]. However, if the robot provides too 
much support, it is difficult to infer the capabilities of the 
patient and what he/she could do without the support 
of the device. On the other side, reducing the support to 
much would allow more deviation from the predefined 
gait pattern and could lead to potentially unsafe situa-
tions. For these reasons, manual tuning of guidance and 
support to be applied is challenging and subjective. To 
address this issue, we developed an adaptive controller in 
a treadmill-based robotic exoskeleton, the Lokomat [19]. 
The controller applies and assist-as-needed (AAN) logic 
[20]. The algorithm reduces the robotic support where 
possible, which encourages the patient to move actively, 
while maintaining a safe environment for training. Our 
hypothesis is that the converged level of robotic sup-
port (a combination of robotic joint impedance and body 
weight support) determined by the AAN algorithm is 
proportional to the patient’s level of walking impairment.

Our work aims at developing a quantitative and 
objective evaluation of walking ability that (i) can be 
used during training and (ii) enables objective, valid, 
reliable and sensitive measurements. This should be 
applicable to patients with mild to severe gait impair-
ments. Thus, even if an individual is not ambulatory, 
robotic devices could offer insights into walking-related 
functions, which is currently not possible with standard 
clinical assessments (Fig. 1).

The adaptive software was first tested in able-
bodied subjects [19]. We also evaluated the system’s 
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performance in assessing different types of typical walk-
ing impairments on a biomimetic robotic test bench 
[21]. This technical validation confirmed that the 
method can capture different levels of impairment and 
that the outcome measures are affected by speed. It also 
showed that the impairment is only visible in some gait 
phases.

In this paper, we tested the adaptive robotic control-
ler in individuals with SCI and able-bodied subjects. 
Our aim was to study how the parameters of the con-
troller adapted to the individuals’ motor impairment—
from no impairment (able-bodied subjects) to severe 
walking impairment (individuals who were unable to 
walk)—and how they relate to ‘walking ability’ outside 
the robotic device. In our study, ‘walking ability’ is esti-
mated with standard clinical scores related to walking 
speed (10MWT), speed and balance (timed-up-and-go—
TUG) and isometric muscle force (L-FORCE). The sub-
jects ‘walked’ in the Lokomat with the experimental AAN 
software. The robotic support values determined by the 
algorithm in several gait phases were used as measures to 
assess the individual’s walking ability.

In this exploratory study, we tested five hypotheses 
related to different aspects: (i) the assessment protocol 
is feasible in patients with different levels of gait impair-
ment; (ii) the outcome measures captured by the AAN 
controller are able to provide relevant information about 

walking ability in ambulatory individuals with SCI; (iii) 
isometric muscle force measures could contribute to the 
prediction of walking ability; (iv) the Lokomat assess-
ment is reliable; v) the extrapolation of these results 
applies also to non-ambulatory subjects and to unim-
paired subjects.

General methods
Device and assist‑as‑needed controller
The robotic gait trainer used in this study was the 
 Lokomat®Pro V5 (Hocoma AG, Switzerland). The Loko-
mat is a treadmill-based robotic exoskeleton with actu-
ated hip and knee joints and a dynamic body weight 
support system that supports the patient through a har-
ness. The orthosis is programmed to follow a prede-
fined gait pattern with an impedance control strategy 
based on a reference trajectory. In the commercial ver-
sion of the device, the gait pattern (reference trajectory), 
the mechanical impedance of the trajectory controller 
(known as ‘guidance force’) and the body weight sup-
port can be manually adjusted by the therapist through 
a user interface. High impedance values prevent patho-
logical deviations from the reference hip and knee trajec-
tories, but at the same time do not support the patient 
‘as needed’ and do not allow therapists to observe active 
patient’s contribution to the movement.

To overcome these limitations, we modified the soft-
ware of the commercial device and implemented an 
experimental adaptive controller [19, 22]. This adaptive 
(or “assist-as-needed” [20]) controller adjusts simultane-
ously (i) the mechanical impedance of the robot’s hip and 
knee joints throughout the different gait phases, based on 
the patient’s ability to follow a physiological gait pattern 
displayed on a screen (Fig.  3) and (ii) the body weight 
support (BWS).

In our study, the impedance of the joints starts from 
a default, high impedance in the machine (stiffness 
 Kh = 1200 Nm/rad and damping  Bh = 55 Nms/rad for the 
hip joint; stiffness  Kk = 900 Nm/rad and damping  Bk = 36 
Nms/rad for the knee; this is equivalent to 100% GF). 
These robotic joint impedances are adapted indepen-
dently at every step (at the end of each swing phase). The 
lower limit of the damping is coupled to the stiffness to 
guarantee stability. To optimally support each gait phase, 
30 windows per step are implemented and the impedance 
is adapted separately in each window. The three windows 
during the stance phase are longer than the windows in 
the swing phase for stability reasons. For each window w 
and for each step s the joint impedance was defined by 
one set of parameters, Ks,w and Bs,w, which was adapted 
according to the weighted kinematic error performed 
in each window and every step. Further details on the 

Fig. 1 Robot‑aided gait assessment (RAGA): existing outcome 
measures assessing gait score with “0” people that cannot yet walk, 
regardless of the underlying residual function (e.g. WISCI II, 
10MWT). Moreover, many assessments are categorical (e.g. WISCI 
II). The long‑term goal of this project is to develop an assessment 
of walking (Robot‑aided Gait Assessment—RAGA) which can provide 
an objective, continuous score suitable to monitor the patient’s 
walking ability in all stages of rehabilitation. The Y axis shows 
a generic “outcome measure” value. The X axis represents patient’s 
walking ability, divided roughly in non‑ambulatory, ambulatory 
with assistance and walking independently. Silhouettes are adapted 
with permission from [12]
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implementation of the controller and on the parameters 
used can be found in Additional file 3.

A set of gains γ1, γ2, g1, g2 were defined in order to have 
the impedance decrease slowly in the presence of physi-
ological deviations and to react fast enough in case of 
large errors (Additional file 3). The impedance profile is 
smoothed before being applied to avoid abrupt changes 
in joint torques. The estimation of the subject’s perfor-
mance is based on the kinematic deviation between the 
actual trajectory and the reference. However, individ-
ual trajectories can vary from the reference trajectory 
provided by the Lokomat, due to normal inter-subject 
variability [23, 24]. To cope with this problem, we imple-
mented a mechanism to deal with physiological devia-
tions that should not be considered as errors. Thresholds 
of maximum allowed deviations (lower thlo and higher 
thhi ) are determined around the reference angular trajec-
tory qref (i) , where i refers to a sample (typically at 1 kHz 
in the Lokomat). The thresholds are fixed for all subjects 
and are displayed in Additional file  3: Fig. A.3.1). The 
error weighting function f1(e)s,w consists of a hyperbolic 
tangent function of the kinematic error e (Eq. 3) defined 
for each window w and every gait step s (Eq. 4) [25]. The 
hyperbolic tangent function provides a smooth transition 
of the weighted error from 0 to 1 when qact(i) reaches the 
thresholds. The parameter A determines the slope of this 
transition. The function f1(e)s,w (Eq. 4) is then retained as 
error metric for the adaptation algorithm.

For each time point of the gait cycle, the subject’s hip 
and knee are allowed to deviate from the reference tra-
jectory within the deadbands defined for each joint, 
independently from each other. Suitable deadbands in 
joint-space can be defined based on normal ranges for 
hip and knee joint angles (e.g. taking normative data 
from [24, 26, 27] or from able-bodied people walking in 
the device). In our case, we defined deadbands ad-hoc to 
ensure safety in critical phases of the gait cycle (e.g. ter-
minal swing for correct foot placement) and at the same 
time allow physiological variability. The same approach is 
applied to deviations in velocity. The thresholds for lower 
and higher velocity error are symmetric with respect to 0.

(1)K s+1,w = γ1·K s,w + g1 · f1(es)w .

(2)Bs+1,w = γ2·Bs,w + g2·f 2(ės)w .

(3)ei = qref (i)− qact(i) .

(4)f1(e)s,w =
1

I
·
∑

i∈w

(

1+
1

2
· [tanh(A · (ei − thhi))− tanh(A · (ei + thlo))]

)

.

The unloading of the body weight is adapted with a 
similar algorithm (Eq. 7). In this case the error metric is 
based on the difference �y between the actual (yact) and 
the reference (yref  ) heights of the hip center of rotation 
(CoR) during left and right single stance, similar to the 
approach presented in [28]. The height of the hip CoR 
(reference and actual) is estimated from the joint angles 
(qhip : hip angle, qknee : knee angle) and the subject’s seg-
ment lengths (Eq.  5, the same equation can be used to 
calculate yact , using the actual angles). The rationale 
behind the choice of this metric is that the actual center 
of rotation of the hip will be lower than the reference 
height if the subject is not able to fully support his/her 
body weight during the stance phase.

A threshold thBWS is determined taking into account 
the segment lengths and the mean stiffness K on the leg l 
(Eq. 9). The threshold is higher for longer legs and lower 
stiffness values, since we expect higher displacements of 
the hip CoR in these conditions. If �yl is higher than the 
threshold, the error is multiplied by the body weight BW 
of the patient, to ensure an increase in BWS proportional 
to the patient’s body weight. The values of the parameters 

used is reported in Additional file 3.
The initial BWS was set to 70% of the patient’s body 

weight, it could increase up to 80% and decreased until 
5 kg.

An example of the adapting impedance profile for a 
sample subject during 50 steps is shown in Fig. 2.

In this work, the adaptation was applied only at one 
leg at a time, while the other one was fully guided by the 
Lokomat. This choice was due to the fact that the visual 
feedback can only be provided on one leg at a time; more-
over, we noticed in pilot tests that adapting the support 
of both legs at the same time is too physically demanding 
for patients [19].

(5)
yref = l1 · cos(qhip,ref )+ l2 · cos(qknee,ref − qhip,ref ).

(6)�yl = yref ,l − yact,l.

(7)
BWSs+1,l = γ3 · BWSs,l + g3 · f3

(

�yl
)

; l ∈
{

left, right
}

.

(8)

f3
(

�yl
)

=

{
(

�yl − thBWS

)

· BW if�yl ≥ thBWS

0 if�yl < thBWS .

(9)thBWS = (l1 + l2) ·
(

p1 ·
(

1− K
)4

+ p2

)

.
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Population
The study was carried out at Balgrist Campus, Zurich, 
Switzerland between May and November 2016 and was 
approved by the Kantonale Ethikkommission Zürich 
(KEK-ZH-Nr. 2015-0020) and by Swissmedic (2014-MD-
0035). A total of 27 subjects participated in this study: fif-
teen participants with a complete or incomplete SCI (age 
54 ± 12, eleven males) and twelve unimpaired controls 
(age 43 ± 15, seven males) (Table 1). The inclusion criteria 
were: > 1 year post Spinal Cord Injury or persons without 
history of walking impairments. The exclusion criteria 
were: presence of contraindications to Lokomat training 
(a complete list can be found at https:// www. hocoma. 
com/ legal- notes/); inability or unwillingness to provide 
written informed consent or follow study procedures.

Experimental protocol
The study protocol consisted of three visits within 7 days 
(Table  2). During the first visit, a set of clinical assess-
ments was carried out, followed by a familiarization 
phase with the AAN algorithm. The assessments focused 
on: gait speed, balance, assistance required for walking, 
muscle force, functional status (Table 3).

In the able-bodied (AB) control group, only the 
10MWT, TUG and L-FORCE were conducted. During 
the Lokomat familiarization phase, the subjects were set 
up in the Lokomat for a practice session. The settings 

were adjusted until the most suitable gait pattern for the 
subject was found, based on the manufacturer guide-
lines.1 Moreover, we used the patient’s actual foot trajec-
tory and the robot-imposed trajectory displayed on the 
screen (Fig. 3) as guidance, trying to match them as much 
as possible (the reference trajectories applied in the study 
for all participants are displayed in Additional file 3: Fig. 
A.3.2). The Lokomat settings obtained in the first ses-
sion (cuff size, leg length, hip and knee offset and range 
of motion) were retained and used on the next two ses-
sions. An isometric joint torque assessment (L-FORCE) 
[31] was performed in the Lokomat before the subjects 
started to walk. L-FORCE assesses the isometric torque 
generated by the patient in a static position for flexor and 
extensor muscle groups in the hip and knee joints. The 
patient is lifted completely above the treadmill (no foot 
contact) and the Lokomat moves the patient’s legs in a 
predefined position (30° hip flexion and 45° knee flex-
ion). The therapist can then sequentially start the meas-
urement for each joint and each direction (e.g. knee 
flexion, knee extension and so on). The patient is asked 
to exert the maximum joint torque during the assess-
ment, which is executed once per joint and direction. 

Fig. 2 Adaptation of robotic support: robotic stiffness of hip and knee joint and normalized BWS during the adaptive task for subject P22. On the z 
axis, the sum of hip and knee stiffness is shown, while it decreases from step 1 to step 50 (y axis). For every step, the stiffness profile along the gait 
cycle is shown on the x axis. Stance phase lasts ca. from 0 to 60% of the whole gait cycle. The color is proportional to the BWS normalized by body 
weight

1 https:// knowl edge. hocoma. com/ postt raini ng/ safe- walk/? produ ct_ name= 
lokom at.

https://www.hocoma.com/legal-notes/
https://www.hocoma.com/legal-notes/
https://knowledge.hocoma.com/posttraining/safe-walk/?product_name=lokomat
https://knowledge.hocoma.com/posttraining/safe-walk/?product_name=lokomat
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The torque generated by the patient is displayed in real-
time on the screen. The subjects walked in the Lokomat 
with a speed of 1.9  km/h with full robotic support (40 
steps) and then using the adaptive controller (50 steps) 

(Table 4). The subjects received instructions on the task: 
they were requested to follow the blue trajectory in space 
and in time (the blue dot indicated the desired position 
at every instant) (Fig. 3). Subjects were not permitted to 
use the handrails. The adaptive task was limited to one 
leg at a time, to ensure a proper display of the refer-
ence and actual trajectory and reduce the cognitive and 
motor demand on the patients performing the task. The 
foot trajectory performed in the last step was shown in 
orange. After each run with the adaptive controller, the 
Lokomat support was set back to the initial conditions 
(100% guidance force (GF) and 70% BWS).

During the second and third visit the adaptive algo-
rithm was used and data was recorded. Next, the adap-
tive software (all tasks in Table  4) was executed first at 
1.6, then at 1.9 and finally at 2.2 km/h. Only the middle 
speed was analyzed in this study. Left leg and right leg 
were tested separately, according to the sequence shown 
in Table 4. The leg tested first in every subject was ran-
domly chosen between left and right.

At the end of each visit, the subjects were asked to fill 
out the NASA Task Load Index (TLX) questionnaire, 
which is a subjective assessment tool that rates perceived 
workload in performing a task that foresees a human–
machine interaction. It rates performance across six 
dimensions (mental, physical and temporal demand, per-
ceived effort, performance and frustration), to determine 
an overall workload rating [34].

Data preparation
Data analyses and statistics were done with Matlab 
R2016b. Steps were divided and segmented in 6 gait 
phases (Fig. 4) using the heel strike and toe-off instants as 
described in [35]. The swing phase was divided in three 
sub-phases according to gait literature [36].

The impedance of the robotic joints and the BWS 
decrease following an exponential decay, until a point 
where the error prevents a further decrease. For each gait 
phase, the robotic impedance of hip and knee joint (K 
hip, K knee, B hip, B knee) was averaged and modeled as 
exponential decay to filter out inter-step noise. The aver-
age over the last 5 modeled steps of each adaptive task 
(left and right leg adaptation) was calculated, and after-
wards averaged over the left and right task. The modeled 
BWS averaged on the last 5 steps of each adaptive task 
was also calculated and normalized by the individual’s 
body weight. The residual impedance was used as an 
indicator of the support required for walking in the dif-
ferent gait phases. The stiffness K was adapted based on 
spatial deviation from the predefined trajectory. Thus, K 
reflects the additional support required to follow the ref-
erence trajectory in space. The damping B was adapted 
based on errors in velocity and reflects, therefore, the 

Table 2 Experimental protocol: assessments performed on 
each visit

Visit 1 Visit 2 Visit 3

Clinical assessments
L‑FORCE
Familiarization

AAN‑based assessment
TLX Questionnaire

AAN‑based assessment
TLX Questionnaire

Table 3 Other clinical assessments included in the 
experimental protocol

All the assessments were performed during the first visit. We recorded the 
fastest walking speed during the 10MWT, since we think that fastest walking 
speed would reflect better patients’ walking capacity (what an individual can do 
in a ‘standardised’ environment—in the ICF terminology) and their potential to 
participate in a community challenge [2]

Domain Test Abbreviation 
and reference

Gait speed 10 meter walking test (fastest speed)
Time up‑and‑go test

10MWT [29]
TUG [29]

Balance Berg Balance Scale
Time up‑and‑go test

BBS [30]
TUG [29]

Muscle strength L‑FORCE—Lokomat isometric joint 
torque assessment (hip/knee, flex‑
ion/extension)
Manual muscle test

LF [31]
MMT [32]

Assistance 
required 
for walking

Walking index for spinal cord injury
Functional ambulation category

WISCI II [29]
FAC [30]

Functional status ASIA impairment scale AIS [33]

Fig. 3 Visual feedback provided to the subjects. The reference 
trajectory and reference position are shown in blue, while the actual 
trajectory is shown in orange. The actual position is indicated 
by a green dot when the error is in a physiological range, 
changing to red when the error is outside the deadbands defined 
in the adaptive controller
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additional support required to follow the trajectory with 
an adequate speed. We did not consider the damping B 
in the first double support phase (DS1) and single stance 
(SS) since the speed error is less relevant for these phases 
(the speed of the treadmill determines the speed of the 
foot). The residual BWS indicates the support required 
during stance phase. The BWS was then averaged among 
left and right task. For each subject, a dataset for the sec-
ond visit and a dataset for the third visit were considered.

The L-FORCE results for each joint and each direction 
were averaged over left and right leg and normalized by 
body weight. For each joint and direction, the maximum 
value among all the subjects was found and used to nor-
malize all the other subjects’ values.

Presentation of results
Given the exploratory nature of this first study in individ-
ual with SCI, and to improve readability, the remaining of 
the paper is organized in sections, each reporting a ques-
tion of interest, methodologies and results.

Is the AAN controller feasible for Individuals 
with SCI?
Our first aim of this study was to evaluate the feasibil-
ity, and the mental and physical demand of the assess-
ment protocol. To evaluate these aspects, we conducted 
a NASA-TLX questionnaire. The correlation between the 
NASA-TLX results and the clinical scores was studied 
using the Spearman correlation coefficient.

Results
All subjects (both individuals with complete and incom-
plete SCI) were able to perform the assessment proto-
col with the AAN controller, without the occurrence 
of any adverse event. The NASA-TLX questionnaire 
(Fig.  5) showed perceived mean mental and physical 
demand below 25% both for patients and able-bodied 
subjects. Patients rated the task more mentally rather 
than physically demanding. In ambulatory patients, the 
perceived physical demand correlated strongly with the 
clinical scores (10MWT: ρ = −  0.93, TUG: ρ = −  0.80; 
WISCI: ρ = −  0.79) (see Additional file  2). Performance 
was rated as high (above 75%) by all subjects. Effort was 
rated around 30% of the maximum scale by patients dur-
ing the first session and it decreased of a half during the 

second session. Frustration was not reported in either 
population.

What are the most representative robotic variables 
that explain walking ability?
Our second aim was to identify the most representa-
tive variables determined by the AAN controller in the 
Lokomat that relate to ‘walking ability’ (as measured by 
the 10MWT and TUG) in individuals with SCI. Linear 
regression was used as an exploratory technique to iden-
tify the best predictor(s) of walking speed, rather than 
to determine an accurate prediction model [37]. Only 
ambulatory patients, i.e. patients that had a speed higher 
than 0 m/s in the 10MWT, were included in this analysis 
(n = 11).

We included all the variables listed in Fig.  4 and the 
BWS and we used Lasso (Least Absolute Shrinkage and 
Selection Operator) as a variable selection algorithm [38] 
(details can be found in Table 5). Lasso is a least-square 
regression method that adds a penalty term equal to 
the sum of the absolute values of the coefficients, multi-
plied by a parameter δ. The addition of the penalty term 
forces the coefficients of the linear model to shrink and 
sets some coefficients to 0. We used the function lasso in 
Matlab R2016b with a fivefold cross-validation to deter-
mine the parameter δ.

We included two observations per patient (data from 
visit 2 and visit 3) and we implemented a bootstrap-
ping procedure to study if the predictors selected via 
Lasso were consistent (Bolasso) [39, 40]. We reported 
the results from 1000 bootstrap replications in the Addi-
tional file  1. At every replication, we selected at ran-
dom n −  3 subjects without replacement, choosing for 
each randomly selected subject at every run either the 
observation from visit 2 or the observation from visit 3. 
By selecting for each subject only one observation, we 
tried to limit the effect of having two dependent obser-
vations in the same pool. We obtained 1000 vectors of 
coefficients. We selected only the predictor(s) whose 
coefficient was different from 0 in at least 60% of the 
replications.

We then generated unregularized linear models 
using the fitlm function within a second bootstrap 
loop to determine the adjusted  R2, the Confidence 
Interval (CI) of the coefficients and the regression line 
and the Prediction Interval (PI) for new observations. 

Table 4 Experimental protocol sequence

GF guidance force, BWS body weight support

# Steps 40 50 40 50

Task Max support (100% GF and 70% 
BWS)

Adaptive impedance leg 
1 + Adaptive BWS

Max support (100% GF and 70% 
BWS)

Adaptive impedance leg 
2 + Adaptive BWS
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Fig. 4 Strides were divided in 6 gait phases: first double support (DS1), single stance (SS), second double support (DS2), initial swing (IS), mid swing 
(MS) and terminal swing (TS). For every gait phase the stiffness K and the damping B (except in DS1 and SS) are calculated as the average 
between left and right leg

Fig. 5 Mean and interquartile range of the answers to the NASA TLX questionnaire, grouped by visit and participant group

Table 5 Steps for the selection of predictor(s) and evaluation of the model

β vector of model coefficients, CI confidence interval, PI prediction interval

Steps for selecting the predictor(s)
1.  Run Lasso on 1000 bootstrap samples (Bolasso)
     1.1.  Select n-3 subjects without replacement at every run
     1.2.  For every subject, select randomly either observation from visit 2 or observation from visit 3
     1.3.  Run Lasso on the selected sample and save the vector of coefficients β
2.  Select all the variables with coefficient ≠ 0 in ≥ 60% of the cases
Steps for bootstrap evaluation of the model
3.  Run fitlm on 1000 bootstrap samples
     3.1.  Select n-3 subjects without replacement at every run
     3.2.  For every subject, select randomly either observation from visit 2 or observation from visit 3
     3.3.  Run fitlm on the selected sample and save β, Adj.  R2 and residuals
4.  Calculate the average model coefficients β and their CI, the CI of the mean and the PI for new observations
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At every bootstrap replication, n  −  3 subjects were 
selected without replacement as explained above, 
including randomly either the observation from visit 
2 or from visit 3. We reported the values of the coef-
ficients of the model to give an idea of the association 
between the selected predictor(s) and the predicted 
variables.

We repeated the same procedure described above 
for predicting the TUG. The data from the TUG were 
reciprocated, to have them in a similar form to the 
data of the 10MWT, which are expressed as speed 
(m/s). This allows the TUG data of patients who could 
not perform the test to be expressed as numeric value 
(0  s−1).

Results
Robotic variables that explain walking ability as measured 
by 10MWT
In 1000 bootstrap replications of Lasso, the variable K 
knee TS (knee stiffness at terminal swing) was selected 
87.3% of the time (see Additional file 1: Fig. A.1.1 for 
percentage of selection of all the variables). We used 
only this predictor to generate the unregularized linear 
model to predict the 10MWT in ambulatory patients, 
as no other variable was selected in more than 60% 
of the replications. K knee TS was a significant pre-
dictor of speed in the 10MWT (β = −  7.933, Confi-
dence Interval (CI) = [−  11.072, −  6.189], p < 0.001). 
The coefficient in the model was negative, meaning 
that the higher the support required from the knee 

at terminal swing, the lower was the speed measured 
in the 10MWT. The adjusted  R2 for the model gener-
ated from all the observations was 0.738 (CI = [0.420, 
0.936]) and the average Prediction Interval (PI) was 
1.410 m/s (Fig. 6).

Robotic variables that explain walking ability as measured 
by TUG 
During bootstrapping for the prediction of TUG, K 
knee TS was again selected most frequently, but less 
often than for the prediction of the 10MWT (75.9% of 
the times in 1000 bootstrap runs—see Additional file 1: 
Fig: A.1.2). The coefficient of K knee TS was negative, as 
for the 10MWT (− 0.763, CI: [− 1.098, − 0.517]). In the 
unregularized model, K knee TS was a significant predic-
tor (p < 0.001), with an adjusted  R2 of 0.606 (CI = [0.420, 
0.936]) and an average PI of 0.166  s−1 (Fig. 7).

Do force measures contribute to the prediction 
of walking ability?
Our third aim is to check if muscle strength contributes 
to the prediction of walking ability (as measured by the 
10MWT and TUG). Muscle strength of the lower limbs 
is highly related to walking speed [41, 42]. Therefore, we 
investigated if measures of isometric forces (L-FORCE) 
improve the prediction of walking speed as measured 
in the 10MWT and TUG and if they are better predic-
tors than the AAN outcome measures, i.e. will L-FORCE 
measures be chosen in the Bolasso procedure together or 
even instead of the AAN outcome measures?

Fig. 6 Left: actual vs predicted 10MWT: the unregularized linear model is created with the variable selected with Bolasso, K knee TS. The error 
bars show the confidence interval of the predicted observations. In blue, the identity line is shown. Right: The predictor K knee TS vs the predicted 
10MWT (black line). CI (continuous red line) and PI (dashed red line) are calculated from the second round of bootstrapping
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To check this, we added the maximum voluntary iso-
metric torque values (Hip Flexion (LF_HF), Hip Exten-
sion (LF_HE), Knee Flexion (LF_KF), Knee Extension 
(LF_KE)) to the dataset described in the previous section. 
For every joint and direction, we took the average torque 
among left and right leg and we z-normalized each vari-
able. We then applied the same method described in 
Table  5 to select the best predictor(s) of walking speed 
among the AAN outcome measures and the isometric 
force data. Also in this case, only ambulatory patients 
were included. The same procedure was applied to 

predict the TUG. The correlations between the different 
L-FORCE measures were studied using the Spearman 
correlation coefficient.

Results
Force measures that explain walking ability as measured 
by 10MWT
After adding the maximum voluntary isometric torque 
values to the AAN data, in 1000 bootstrap replications of 
Lasso, the variable K knee TS was again selected in most 
of the cases (81.4%—see Additional file  1: Fig. A.1.3). 
The second most selected variable was hip force LF_HF 
(66.1%). When both variables were used to generate an 
unregularized linear model to predict the 10MWT, the 
Adjusted  R2 was 0.857 (CI = [0.661, 0.980]).

The coefficient of LF_HF was positive (β = 1.405, 
CI = [0.336, 2.295], p < 0.001), since, as expected, higher 
isometric force at the hip leads to higher speed in 
the 10MWT. The average PI decreased to 1.147  m/s 
(− 0.263 m/s) compared to the model with a single pre-
dictor (Fig. 8).

Force measures that explain walking ability as measured 
by TUG 
In the prediction of the TUG, instead, LF_KF was 
selected 75.9% of the times in 1000 bootstrap replica-
tions, while K knee at terminal swing was only selected 
62.8% of the times (see Additional file  1: Fig. A.1.4). 
When looking at the percentage of selection of the other 
L-FORCE measures, we found that LF_HF was selected 
50% of the times. Maximum knee flexion torque was 

Fig. 7 Left: actual vs predicted TUG: the unregularized linear model is created with the variable selected with Bolasso, K knee TS. The error bars 
show the confidence interval of the predicted observations. In blue, the identity line is shown. Right: the predictor K knee TS vs the predicted TUG 
(black line). CI (continuous red line) and PI (dashed red line) are calculated from the second round of bootstrapping. The reciprocal of the TUG data 
in seconds are used for the model, to make it consistent with the 10MWT data, which are expressed in m/s

Fig. 8 Prediction of 10MWT based on force and AAN data: 
Unregularized linear model for predicting the 10MWT with 2 
predictors (K knee TS and LF HF). In blue, the identity line is shown
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highly correlated with maximum hip flexion (ρ = 0.92). 
It may be, therefore, that this other L-FORCE variable 
could be used to predict the TUG with a similar accuracy. 
While Lasso is suggested as technique to handle datasets 
with multicollinearity [43], it cannot completely solve 
this issue. We removed LF_KF from the analysis and we 
ran again the Bolasso procedure to check if other force 
measures were picked over the AAN outcome measures: 
the hip flexion LF_HF was selected 82.9% of the times, 
while K knee TS only 60.7%.

We created, therefore, one model using LF_KF and K 
knee TS as predictors and one using LF_HF and K knee 
TS. Compared with the model using only the K knee TS 
(Fig.  7), both models perform better (LF_KF: average 

PI = 0.106  s−1, Adj.  R2 = 0.854 (CI = [0.622, 0.976]); LF_HF: 
average PI = 0.134  s−1, Adj.  R2 = 0.796 (CI = [0.590, 0.954])). 
The coefficients of LF_KF and LF_HF were positive 
(LF_KF: β = 0.146, CI = [0.053, 0.203]; LF_HF: β = 0.185, 
CI = [0.032, 0.288]) and statistically significant (p < 0.001), 
meaning that higher force leads to better performance in 
the TUG (since we predicted TUG −1). We chose the model 
with LF_KF due to its smaller PI and higher Adj.  R2 (Fig. 9).

Are the Lokomat AAN outcome measures reliable?
We studied the reliability of the AAN outcome meas-
ure selected in "Do force measures contribute to 
the prediction of walking ability?" by comparing the 
results collected in two sessions executed within 
7  days. The sessions were performed by the same 
examiner (intra-rater reliability). It is essential to 
determine the consistency of the measures in different 
sessions to determine whether the measurement error 
is acceptable for practical applications. We exam-
ined both the relative reliability and the absolute reli-
ability of the measure. Relative reliability refers to the 
degree to which individuals maintain their position in 
a sample over repeated measurements [13] and it can 
be measured with the Spearman correlation coeffi-
cient [44]. Absolute reliability refers to the degree to 
which repeated measurements vary for individuals, 
irrespective of their ranks in a sample [44], and it can 
be measured with the Bland–Altman plot and the 95% 
Limits of Agreement (LOAs) [44, 45]. The Bland–Alt-
man plot shows the mean of the two measures plotted 
against their difference and it can be used to examine 
the presence of systematic bias and the magnitude of 
the error compared to the mean value of the meas-
ure. The presence of systematic bias is tested with a 
t-test. The LOAs indicate the range where, for a new 

Fig. 9 Prediction of TUG based on force and AAN data: unregularized 
linear model for predicting TUG. Data are taken from subjects 
that could perform the TUG (n = 11). Predictors: LK_KF and K knee TS. 
In blue, the identity line is shown

Fig. 10 Test–retest reliability: correlation and Bland–Altman plot for K knee TS in ambulatory patients. Rho: Spearman’s coefficient, LOA: Limits 
of Agreement
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individual from the studied population, the difference 
between any two tests will lie within a 95% probability 
[44]. If the test is administered to the same individual 
to detect changes between sessions, these changes 
are considered significant only if they fall outside 
the LOAs. Therefore, the LOAs are strictly related to 
the minimal detectable change (MDC) of a test [13]. 
We examined the Bland–Altman plot for the predic-
tor selected during the Bolasso procedure (K knee 
TS) using the free package BlandAltman in Matlab 
[46]. Only ambulatory patients were included in the 
analysis.

Results
Relative and absolute reliability of K knee TS
The relative reliability of K knee TS in ambulatory 
patients was good (ρ = 0.809), and the LOAs (absolute 
reliability) indicate that any change smaller than 0.091 
cannot be considered significant (Fig.  10). To give an 
idea of what this value means in terms of prediction, we 
calculated the interval created by such LOAs when K 
knee TS was used in the models to predict the 10MWT 
and TUG. The LOAs of the K knee TS resulted in an 

interval of ± 0.722 m/s in the 10MWT and to an interval 
of ± 0.069   s−1 in the TUG −1 (corresponding to 14.395 s). 
Note that this estimation did not consider the uncer-
tainty in the model coefficients. The t-test for systematic 
bias indicated that the observations of K knee TS from 
the second measurement (Visit 3) were slightly but signif-
icantly lower than the observations from the first meas-
urement (Δ = − 0.035, p = 0.03).

Can the prediction of walking ability be 
extrapolated to non‑ambulatory and to able‑body 
individuals?
After identifying the Lokomat variables able to pro-
vide more information on the walking function of the 
ambulatory subjects (K knee TS and LF_HF) in "are the 
Lokomat AAN outcome measures reliable?", we stud-
ied if walking speed in the 10MWT could be predicted 
by the same model also in non-ambulatory subjects and 
in unimpaired subjects. In the case of the four subjects 
who could not perform the test, we wanted to check if we 
could obtain a ‘virtual 10MWT’, which could represent an 
indication of how close they are to regain some walking 

Fig. 11 Prediction of "virtual 10MWT" of (i) non‑ambulatory subjects (red markers, “NA”), (ii) 10MWT of ambulatory patients (black markers, “A”), 
and (iii) able‑bodied control subjects (blue markers, “AB”). Each subject has one single value of Actual 10MWT (only one test was conducted) 
corresponding to two values of predicted 10MWT, as they are based on the Lokomat data from the first observation (circle) or the second 
observation (triangle). The identity line is shown in blue. The model used has 2 predictors (K knee term swing and LF HF) and it was generated 
from the data of ambulatory patients in "Relative and absolute reliability of K knee TS"
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function. We applied, therefore, the model generated 
from ambulatory subjects to predict the 10MWT, using 
K knee TS and LF_HF as predictors, to all the subjects 
included in the study (ambulatory and non-ambulatory 
patients, able-bodied control subjects).

Furthermore, exploratively, we identified among all the 
AAN outcome measures those which clearly distinguish 
ambulatory from non-ambulatory patients. We created 
boxplots for the ambulatory subjects’ data. We then cal-
culated the median of all the outcome measures in the 
non-ambulatory subjects. We selected the variables in 
which the non-ambulatory subjects had a median higher 
than q3 + 1.5 · (q3 − q1)—with  q1 and  q3 first and third 
quartile—of the distribution generated from the ambula-
tory subjects’ data. Having only 4 non-ambulatory sub-
jects, we limited our analysis to the observation of how 
their data differ from those of the patients that could 
walk overground.

We then used the same method described in Table  5 
to identify which predictors explain better the 10MWT 
in able-bodied subjects, including both AAN outcome 
measures and L-FORCE measures as possible predictors.

6.1. Results
Can the prediction of walking ability be extrapolated 
to non‑ambulatory and able‑bodied individuals?
The prediction of 10MWT based on the variables K knee 
TS and LF_HF for all the subjects participating in the 
study is shown in Fig. 11 (see Additional file 1: Fig. A.1.6. 
for the predicted TUG).

In the case of non-ambulatory patients, it seems that 
the model missed some important information to cor-
rectly assign to the non-ambulatory patients a speed 
close to 0 (or virtually lower than 0), as we had expected: 
P37, in particular, shows a predicted speed in the range of 
the less severely impaired patients and of healthy walk-
ing. K knee TS and LF_HF were not sufficient to describe 
the level of function in non-ambulatory patients.

Are there other variables that may help to distinguish 
between ambulatory and non‑ambulatory patients?
We looked, therefore, at the other AAN outcome meas-
ures to identify in which ones these patients showed a 
marked difference from the ambulatory subjects (Fig. 12). 
Two main phases showed a clear separation between the 
groups: the single stance phase (BWS, K hip SS) and the 
second double support phase (B hip DS2).

Fig. 12 AAN data in all subjects with SCI: boxplots for each variable (BWS: Body Weight Support; K: Stiffness; B: Damping) show the distribution 
for each variable in ambulatory (A) subjects (boxplots). Observations from the four non‑ambulatory (NA) subjects are shown in different shades 
of red. The highlighted variables are those in which the median of the data of the non‑ambulatory patients was higher than the q3 + 3/2 IQR 
of the data of the ambulatory subjects
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The non-ambulatory patients needed a BWS higher 
than 64% of their body weight (BWS was normalized by 
the maximum achievable BWS, equal to 80% of the body 
weight). For the other variables mentioned above, the 
non-ambulatory patients showed a residual support in 
a higher range of values compared to the other patients. 
However, given the very few observations collected, it is 
not possible to show in this study if these variables would 
be able to correctly assess the level of function within the 
non-ambulatory subjects.

Can the model predict walking speed in able‑bodied 
subjects?
The models created from patients’ data with one predic-
tor (K knee TS) and two predictors (K knee TS and LF_
HF) performed very poorly in predicting the 10MWT in 
able-bodied subjects (Fig.  11). Consequently, to explore 
which variable can predict gait speed in unimpaired sub-
jects, the same procedure (Table 5) was applied to these 
data. L-FORCE at Hip Flexion was chosen 63.5% of the 
times (see Additional file 1: Fig. A.1.5.) and it was found 
to be a significant predictor of walking speed in able-
bodied subjects (β = 1.612 (CI = [1.169, 1.888]), p = 0.002, 
Adj.  R2 = 0.567 (CI = [0.225, 0.826])). The model average 
PI is 0.834  m/s. Bolasso selected as first most frequent 
predictors the four L-FORCE measures (Fig. 13).

Discussion
The AAN controller in a robotic gait trainer is feasible for 
individuals with SCI

We investigated the use of a robotic trainer (Lokomat) 
as a tool to assess ‘walking ability’ in individuals with 
Spinal Cord Injury (SCI). We showed the relationship 

between data measured with a robotic assist-as-needed 
(AAN) control and clinical scores related to walking abil-
ity: 10-Meter Walking Test (10MWT) and Timed Up and 
Go (TUG). We also examined how measures of isomet-
ric joint torques relate to the walking assessments. The 
AAN-based protocol tested in this study could be per-
formed by ambulatory and non-ambulatory individuals 
with complete and incomplete spinal cord injury (SCI) 
during training. The isometric joint torques could be 
measured with the same device. The task, as shown by 
the NASA-TLX results ("what are the most representa-
tive robotic variables that explain walking ability?"), did 
not frustrate nor required excessive effort from the sub-
jects, who showed a rather high perceived performance 
and low mental and physical demand. Therefore, we can 
conclude that the approach is feasible to be implemented 
in clinical practice.

One of the concerns that many clinicians have about 
robotic gait trainers is that the environment where the 
people train is too artificial and different from over-
ground walking, and the support provided by the device 
may mask what the patient can actively do; consequently, 
the assessments performed in a robotic gait trainer lack 
face validity according to their view. We showed, instead, 
that it is possible to measure in a robotic gait trainer 
functions that are related to overground performance in 
walking tests such as the 10MWT and TUG.

The support required at terminal swing (K knee TS) is 
the most representative robotic variable that explains 
walking ability

In "Do force measures contribute to the prediction of 
walking ability?", we identified an informative predic-
tor of overground walking speed in ambulatory patients, 

Fig. 13 Prediction of 10MWT in able‑bodied subjects: prediction of 10MWT in AB subjects using LF_HF as only predictor
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when training in the Lokomat: the support (stiffness of 
the impedance controller) required from the robotic exo-
skeleton at the knee during terminal swing (K knee TS). 
This predictor was consistently selected during the boot-
strap procedure and, alone, it could be used to generate a 
model able to explain 74% of the variance in the 10MWT 
data and 61% in the TUG data.

The relevance of terminal swing was already suggested 
from the technical validation experiment that we per-
formed in a previous study [21]. There, we simulated dif-
ferent levels of weakness on a robotic test bench, and we 
studied how the AAN controller would react to them. We 
observed that the stiffness increased proportionally to 
the level of simulated weakness, but only in two phases of 
the gait cycle: on the transition between stance and swing 
and at terminal swing. With human subjects, while walk-
ing in the Lokomat, only the support required at terminal 
swing seems to be related to the level of impairment of 
the patient. In gait literature, the importance of terminal 
swing is highlighted by the fact that a smooth transition 
from swing to stance and an adequate step length are 
considered two requirements of functional gait [27, 47, 
48]. In EMG studies, it was shown that a burst of mus-
cle activity at the quadriceps is required to complete knee 
extension before heel strike [26, 27]. The AAN algorithm 
implemented a deadband around the reference trajectory 
to allow for some deviations (Additional file 3: Fig. A.3.1); 
the patient had, therefore, the possibility and the neces-
sity to control foot placement and step length at termi-
nal swing. The increased support required in this phase 
was likely needed to extend adequately the knee before 
foot contact. It is possible, however, that other predic-
tors would be chosen if a different patient population was 
tested (e.g. more severely impaired patients).Isometric 
force measures contribute to the prediction of walking 
ability.

The assessment of isometric joint torque ("are the 
Lokomat AAN outcome measures reliable?") added 
an important predictor to the model and improved 
the accuracy of prediction of speed of both tests (ΔR2 
10MWT = 0.119, ΔR2 TUG = 0.248), especially in the 
TUG, where either the maximum isometric knee flex-
ion torque or the maximum isometric hip flexion torque 
seemed to be even more important than the predictor 
K knee TS. The TUG includes standing up from a chair, 
turning and sitting down. Despite being highly correlated 
with the 10MWT [29], the TUG requires other factors to 
be completed successfully, such as balance and force [49, 
50]. It is reasonable, therefore, that information related to 
muscle force highly improved the prediction of the TUG. 
In literature, lower limb muscle strength was associated 
with longer sit-to-walk duration in the TUG in elderly 
subjects (knee extensors [50]) and in stroke patients 

(affected ankle plantar flexors [51]), however in those 
studies the hip and knee flexors were not tested.

The ability to walk is a composite, multifactorial con-
struct consisting of factors such as motor control and 
coordination, muscle strength, balance and posture, 
range of motion, proprioception and muscle tone [41]. In 
the 10MWT prediction, the first variable of muscle force 
chosen by the regression procedure was the maximum 
hip flexion isometric torque. This is in line with literature, 
where the strength of the hip flexors at the less affected 
side has been found to correlate well with gait speed as 
measured by the 10MWT [42]. A study using neuro-
musculoskeletal model of gait also found that gait per-
formance is most affected by weakness at the hip flexors 
(together with ankle plantar flexors and hip abductors) 
[52].

It can be hypothesized that the performance measured 
in the AAN-based assessment is mainly due to the abil-
ity of modulating motion and force, rather than to the 
ability of applying high forces. The task of following a 
reference trajectory with the ankle requires a timely and 
accurate coordination of the hip and knee joints and the 
ability to process the visual information displayed on the 
screen while providing the correct motor commands. In 
order to walk, we need, however, more than being able to 
control motion—force modulation is undoubtedly one of 
the other main components of walking function [41]. The 
isometric torque assessment seemed, thus, a good com-
plementary assessment to the AAN-based assessment.

The support required at terminal swing (K knee TS) has 
good relative reliability but poor absolute reliability

The Limits of Agreement ("Can the prediction of walk-
ing ability be extrapolated to non-ambulatory and able-
bodied individuals?", Fig. 10) indicate that a change in the 
measurement can be considered true only if it falls out-
side these limits [44]. Therefore, a difference of 0.091 in 
normalized K knee TS will be necessary to show a sig-
nificant improvement in the test. Considering that the 
maximum normalized stiffness is 1, this difference cor-
responds to 9.1% change in stiffness. From literature, we 
know that the Minimal Detectable Change in SCI in the 
10MWT is 0.13  m/s and in the TUG is 10.8  s [2]. Our 
intervals determined from the reliability of the predictor 
K knee TS are higher (10MWT: 0.72 m/s, TUG: 14.4 s). 
However, the aim of our study is not to replace the stand-
ard timed tests, but rather to use the timed tests as a ref-
erence to identify the variables measured in the Lokomat 
that can provide more information on the patient’s walk-
ing ability. The significant difference between the two vis-
its may indicate the presence of a learning effect from the 
first to the second measurement. Interestingly, the Spear-
man correlation between the AAN outcome measured in 
Visit 2 and 3 was rather high (ρ = 0.809), confirming how 
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the high inter-subject variability masked the intra-subject 
error [53] and showing once more how important it is to 
consider both the relative and absolute reliability when 
validating a new measurement tool.

With regards to the reliability of L-FORCE, we refer 
to the work of Bolliger et  al. [31], where the L-FORCE 
showed a fair to good reliability (intra-rater reliabil-
ity for LF_HF and LF_KF ranged from 0.50 to 0.91; the 
SEM ranged between 6.5 Nm and 11.6 Nm for single 
measures).

The prediction of walking speed in the 10MWT based on 
K knee TS cannot be extrapolated to non-ambulatory nor 
to able-bodied individuals

In Sect.  "discussion", we applied the models generated 
in Sect.  "Are the Lokomat AAN outcome measures reli-
able?" to predict a ‘virtual 10MWT’ in non-ambulatory 
patients. This value could represent an indication of how 
close they are to regain some walking function. However, 
this model was not able to correctly predict function in 
people that cannot walk overground. Since the model 
does not consider variables related to the stance phase, 
it overestimates the ‘virtual walking ability’ of the sub-
jects given their residual function measured during swing 
phase in the Lokomat. The variable K knee TS reflects 
the guidance at terminal swing required in the Lokomat 
to extend the knee right before foot placement. While 
examining case by case the four non-ambulatory patients, 
we can see that P37 had a high knee extension isometric 
torque (LF_KE) and MMT = 5 for both knee extensors: 
he was therefore able to extend the knee actively at the 
end of swing phase and required low robotic support. 
For this reason, this patient scored high on the ‘virtual 
10MWT’. The prediction of 10MWT for the other sub-
jects was in the range of the wheelchair-dependent walk-
ers (P44), supervised/indoor walkers (P45) and walkers 
with aids (P49) [54]. P44 and P45 would be classified as 
unable to walk independently in the community (accord-
ing to the cutoff speed of 0.59 m/s determined in [55]). 
Indeed, P45 had a complete lesion at T10 and no motor 
function below the lesion level. P44, despite being clas-
sified as ASIA D, was at an advanced stage of Multiple 
Sclerosis and he/she was not able to stand or walk. P49, 
despite not being able to exert force at the knee joint, 
had some residual motor function at the hip flexors level 
(MMT hip flexors = 3), therefore scoring relatively high 
on the ‘virtual 10MWT’, which was predicted based also 
on the maximum hip flexor torque.

Variables related to stance phase and to push‑off phase 
may help distinguish ambulatory from non‑ambulatory 
subjects
There are likely other important predictors for gait-
related functions in the non-ambulatory population and 

some of them could be measured in a robotic gait trainer, 
as suggested in Fig.  12. Measures relative to the stance 
phase (and therefore to the ability of support the body 
weight) and push-off phase could be good candidates to 
investigate, as they may also help differentiating between 
non-ambulatory patients with different level of function. 
The support of the body is one of the main determinants 
of gait [26, 27]. If this condition is not met, the impor-
tance of other functions, such as the ability to place the 
foot correctly at the end of swing, is negligible. At push-
off most of the power during gait cycle is generated [26, 
27]. The conditions at push-off, especially the rate of knee 
flexion, determine the knee flexion peak during swing 
phase and the consequent ability to clear the ground dur-
ing swing [56]. The main muscles that influence knee 
flexion velocity during the double support phase are 
the gastrocnemius (ankle plantarflexor) and iliopsoas 
(hip flexor) [57]. However, due to the use of foot-lifters 
in the Lokomat, the activation of the gastrocnemius is 
partly reduced [58–60]. This requires, as compensation, 
to produce an increased hip flexion rate and quadriceps 
EMG activity at the end of stance phase to lift the foot 
above the treadmill [59, 61]. While the less impaired 
patients were able to cope with this demand, the more 
severely affected patients could not reach the knee flex-
ion velocity required by the Lokomat during the double 
support phase, as suggested by the high residual damping 
required at DS2. This phase was already highlighted in 
our previous study performed with a robotic test bench: 
the higher the simulated impairment, the higher the sup-
port required during the preparation of swing phase [21].

We believe that, if more data from non-ambulatory 
subjects with different level of function were collected, it 
would be possible to generate a model (possibly adding 
one or two other predictors) that explains continuously 
the ‘walking ability’. In non-ambulatory patients, this 
assessment would show how close they are to recover 
walking. However, it would be challenging to validate 
this assessment, since we would need a way to measure 
how close non-ambulatory subjects are to regain some 
walking function. Possibly, a study in acute and sub-acute 
patients, rather than chronic, will help address this ques-
tion. One could follow the same patients longitudinally 
and see if improvements in functional and impairment 
scales are paralleled by improvements in the AAN out-
come measures.

Among the Lokomat data, isometric force is the best 
predictor of walking speed in able‑bodied subjects
It is also not possible to explain the 10MWT of able-
bodied subjects with the AAN outcome measures pro-
posed here. The fact that unimpaired subjects did not 
conform to the model suited for the ambulatory patients 
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confirms that the AAN-based assessment is affected by 
the underlying impairment of the subjects, and it is not 
capturing individual speed variations in unimpaired 
individuals. Moreover, able-bodied subjects often try to 
impose their own foot trajectory while walking in the 
Lokomat, thereby deviating from the reference trajec-
tory programmed within the device. While the deadband 
implemented in this adaptive algorithm tried to address 
this problem, it may be insufficient to accommodate 
completely the physiological variability in gait pattern 
expressed by able-bodied subjects. The same is true for 
patients with a mild impairment in walking ability, whose 
walking speed is close or equal to normal; the AAN-
based assessment is likely not suitable for them.

The main predictor selected in the SCI population (K 
knee TS) was specific for the impairment, while the iso-
metric torque at hip flexion seemed to be an important 
predictor of speed both in the ambulatory SCI and able-
bodied populations. There is evidence in literature that 
maximum isometric hip joint torque is a significant pre-
dictor of gait speed in people after stroke [62] and SCI 
[42]. In able-bodied subjects, there is some evidence that 
lower limb muscle strength correlates with gait speed 
[63–65].

Limitations and challenges
Despite being able to identify two good predictors 
of walking speed (robotic stiffness required at termi-
nal swing and isometric hip flexor force), we cannot 
state, with the available data, that the robotic assist-as-
needed control as we implemented it in the Lokomat is 
valid and reliable enough to be used as assessment of 
‘walking ability’ in the clinic. Further work is needed to 
translate these techniques into clinical practice.

The intra-rater reliability between two sessions needs 
to be improved before the test can be used in therapy. 
Several factors may have affected the reliability of the 
measures. First, a learning effect between sessions was 
still present despite having included in the protocol a 
first session of familiarization. Second, even if we tried 
to install the subject in the Lokomat always in the same 
way and to use always the same hardware and software 
settings across sessions, it is challenging to have perfectly 
reproducible conditions. Third, the AAN-based assess-
ment relied on subjective attention and concentration 
during the task, resulting in a perceived higher men-
tal rather than physical demand in the NASA-TLX. It is 
likely that cognitive and visual aspects had an influence 
on the outcomes, as already noticed in literature [66]. 
Lastly, the reference gait trajectory used in the study was 
subjectively adapted to the subject’s individual gait pat-
tern in the first visit, according to the experience of the 
examiner who performed the test. It may be that the 

additional challenge of following a gait pattern different 
from one’s own resulted in a more variable performance 
that negatively impacted the validity and the reliability 
of the assessment. Based on these considerations, more 
practice should be allowed before performing the assess-
ment and a personalized reference gait trajectory should 
be determined with objective methods. The trajectory 
could be defined based on anthropometric measures [67] 
or on database-driven methods, taking a pool of physi-
ological trajectories as templates [68]. Alternatively, the 
error metric for the adaptation of the impedance, which 
is now based on the kinematic deviation between refer-
ence and actual trajectory, could be based, for example, 
on the success in different sub-tasks of walking (e.g. sta-
bility in stance, foot placement) [69]. Clinicians should 
also be aware that adapting the reference trajectory from 
session to session is also likely to negatively affect the 
reliability of the assessment.

The choice of unequal thresholds’ width may have 
impacted differently the performance of the participants 
in the different gait phases: as shown in the Additional 
file 3, thresholds width varied throughout the gait cycle 
as it was narrower in correspondence of critical gait tasks 
(e.g. terminal swing for foot placement). Narrow thresh-
olds require a more precise tracking of the reference tra-
jectory and may have increased the challenge of the task 
in those gait phases, potentially leading to a higher likeli-
hood of the corresponding AAN parameters to be chosen 
as predictors of walking ability, as it may have happened 
for the knee stiffness at terminal swing.

The adaptation algorithm theoretically adapted the GF 
in a range between 0 and 100%. However, we saw that, 
depending on the weight of the patient’s limbs, on the 
severity of impairment and on the BWS value, a value of 
GF much lower than the maximum is sufficient to walk in 
the Lokomat. The highest hip and knee GF required by a 
subject in our study, average during the whole gait cycle, 
was 20% (with a BWS equal to 80% of the body weight). 
This means that the actual range where the subjects can 
show the impairment is limited and meaningful informa-
tion can only be seen after the GF has reached this low 
value (after 15 steps).

We could not develop a model to predict the walking-
related functions of the patients continuously from the 
non-ambulatory to the ambulatory phase. More data 
from non-ambulatory subjects with different level of 
severity needs to be collected to see if the variables iden-
tified in Fig. 12 are meaningful predictors of function in 
severely and moderately affected patients. A longitudinal 
study in patients with acute or sub-acute lesions should 
be carried out to understand how the AAN outcome 
measures change over time in the same patients. Study-
ing the recovery within the same patients will show if 



Page 19 of 22Maggioni et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:121  

individual changes can be measured by the AAN-based 
assessment. Other populations with neurological impair-
ments need to be tested to check if the predictors of 
walking speed identified for SCI are applicable also to 
other pathologies.

One important question that this study raises is how 
to validate novel objective assessments. We faced the 
conundrum of trying to validate an assessment that 
claims it can be more objective than existing assess-
ments, by comparing it against the same standard assess-
ments that we were trying to improve. The 10MWT and 
TUG had a clear floor effect that prevented to assess 
people that could not walk. The other scores (WISCI 
II, BBS, FAC, MMT, AIS) were ordinal-based and too 
coarse-grained to be directly compared with the Loko-
mat measures. We followed standard practice for clinical 
validation studies, but we believe future studies should 
incorporate complementary validation techniques. For 
example, one should either include in the validation study 
more sophisticated assessments of gait (e.g. motion cap-
ture gait analysis) or, as we demonstrate in [21], develop a 
controlled environment to systematically simulate known 
neuromotor impairments and study if the novel assess-
ment can correctly measure them.

Lastly, the model used to predict the walking tests is a 
simple linear regression: it may be that a generalized lin-
ear model with another link function would lead to better 
predictions. The simulation we performed in [21] showed 
that there are factors (such as increased joint stiffness) 
that cause a non-linear relationship between impairment 
and AAN-determined level of support. Also, the interac-
tion between different variables, especially between the 
BWS and the other AAN outcome measures needs to be 
better explored.

Implications for walking training paradigms
The identification of certain predictors for speed of walk-
ing overground leads to the question: can individuals 
improve their walking speed by training the functions 
underlined by the predictor variables (i.e. foot placement 
at terminal swing and hip force)? This question deserves 
further investigation, but it is beyond the scope of this 
study. Functions such as foot placement at terminal 
swing or support during stance phase could be trained 
with the help of robots that allow setting different levels 
of support throughout the gait cycle and visualizing on 
the screen the performance for proper feedback to the 
patient and therapist. At the same time, these functions 
can be assessed with such robotic controllers and their 
relationship with walking ability overground explored. 
We can also hypothesize that, during walking reha-
bilitation, a certain sequence in the required improve-
ment of walking-related functions exists: severe patients 

might need to focus first on support during stance, while 
the more they progress, tasks requiring motor control 
and precise placement of the foot might become more 
important.

Robotic gait trainers allow the therapists to adapt the 
support parameters (e.g. limb guidance and body weight 
support) manually to challenge the patient in an optimal 
way. However, these functions are not often used in clini-
cal practice because clear guidelines on the progression 
of these parameters are lacking and the consequences of 
the changes on the therapeutic outcomes are not clear. 
Adaptive algorithms, such as the one developed for this 
study, can be used safely for determining the optimal 
level of assistance for every patient. Positive experiences 
with adaptive controllers for walking training of neuro-
logical patients have been shown also in other groups 
[70, 71]. Fricke et al. [70], in particular, compared manual 
tuning of robotic assistance with automatic tuning and 
found out that automatic tuning is faster in reaching sta-
ble levels of robotic assistance and provides lower level 
of assistance, which in turn could lead to increase patient 
challenge and to better training outcomes [72]. Although 
there are many challenges in translating these techniques 
into commercial devices [73], we have demonstrated that 
our approach, as implemented in this study, was safe at 
all times, and all the individuals with SCI could use it and 
reported a high perceived performance (Sect. "What are 
the most representative robotic variables that explain 
walking ability?") and no frustration. Therefore, this 
approach has been integrated as assist-as-needed training 
modality, rather than as assessment, in the  Lokomat®Pro 
as of 2020 [74]. Adequate challenge of the patient and 
improved training outcomes would need to be investi-
gated in future studies.

Conclusion
We showed in this study that a single variable result-
ing from the proposed adaptive controller, that was 
measured during training in the Lokomat (the support 
required by the knee at terminal swing—K knee TS) 
can explain most of the variance of the timed walk-
ing tests. The additional consideration of an isometric 
force measure collected in a specific test available in the 
Lokomat (L-FORCE) makes the explained variance of 
the models increase above 85%. While our study con-
cludes that the current implementation is not ready 
for assessment in clinical practice, these results are 
very promising because they show that walking ability 
can be measured in a robotic gait trainer in a safe and 
efficient way, and individuals with Spinal Cord Injury 
have a good acceptance of the approach, which demon-
strated its feasibility also as a training modality. Further 
efforts should improve the model to predict the clinical 
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scores from the AAN outcome measures, extending 
this also to patients that cannot walk yet, and increase 
the reliability of the measures. We hope that our results 
and recommendations will help reaching the long-term 
goal of developing a valid and reliable assessment that, 
with a standardized protocol and few measures, can 
assess walking ability in patients will all levels of sever-
ity and be quickly and easily administered during train-
ing. Accessible assessments mean personalized therapy, 
possibility of demonstrating improvements to insur-
ances and increased patient’s motivation with positive 
effects on his/her recovery.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12984‑ 023‑ 01226‑4.

Additional file 1. Selection of predictors in Bolasso.

Additional file 2. Corralations between NASA Task Load Index (TLX) ques‑
tionnaire responses and clinical scores (10MWT, TUG, WISCI).

Additional file 3. Implementation and parameters used in the Assist‑as‑
Needed controller.

Acknowledgements
We thank all the persons who participated as subject in this study. We thank 
Hocoma AG, the Spinal Injury Center at Balgrist University Hospital, the SMS 
Lab at ETH Zurich for the important support received during the years of the 
project and the Swiss Center for Clinical Movement Analysis, Balgrist Campus 
AG, Zurich for providing the infrastructure necessary for the study.

Author contributions
SM implemented the robotic controller described in this work, co‑designed 
the study with co‑authors, performed the experiments, analyzed the data 
and wrote the manuscript. LL significantly contributed to the conception of 
the software and advised on its implementation, significantly contributed to 
the design of the experiment, contributed to data interpretation and to the 
manuscript draft. RR contributed to the conception of the study, supported 
data interpretation and discussion of the results. AC supported patients’ 
recruitment and contributed to the clinical interpretation of the results. MB 
significantly contributed to the study design, significantly supported patients’ 
recruitment and the conduction of the experiments, data interpretation 
and discussion of the results. AMC conceived the controller, significantly 
supported the implementation of the controller, the design of the study, the 
conduction of the experiments, the analysis and interpretation of the data, 
and contributed significantly to the writing of the manuscript. All authors 
contributed to manuscript revision, read and approved the submitted version.

Funding
SM at the time of writing of this work was employed within the Industrial 
Academic Initial Training Network “Moving Beyond” (www. moving‑ beyond. 
eu) that received funding from the People Programme (Marie Curie Actions) of 
the European Union’s Seventh Framework Programme (FP7/2007‑2013) under 
REA grant agreement n° 316639.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Kantonale Ethikkommission Zürich (KEK‑ZH‑
Nr. 2015‑0020) and by Swissmedic (2014‑MD‑0035). All experiments were 

conducted in accordance with the Declaration of Helsinki, and all participants 
provided written consent to the study.

Consent for publication
Not applicable.

Competing interests
SM is currently employed by Hocoma. LL was employed by Hocoma at the 
time of the study.

Author details
1 Hocoma AG, Volketswil, Switzerland. 2 ETH Transfer, ETH Zurich, Zurich, Swit‑
zerland. 3 Sensory‑Motor Systems (SMS) Lab, ETH Zurich, Zurich, Switzerland. 
4 Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland. 
5 School of Electrical Engineering and Computer Science, The University 
of Queensland, Brisbane, Australia. 6 School of Health and Rehabilitation Sci‑
ences, The University of Queensland, Brisbane, Australia. 7 Jamieson Trauma 
Institute, Metro North Health, Brisbane, Australia. 

Received: 6 May 2022   Accepted: 27 July 2023

References
 1. Li S, Francisco GE, Zhou P. Post‑stroke hemiplegic gait: new perspective 

and insights. Front Physiol. 2018;9:1–8.
 2. Lam T, Noonan VK, Eng JJ, SCIRE Research Team A. Systematic review of 

functional ambulation outcome measures in spinal cord injury. Spinal 
Cord. 2008;46:246–54. https:// doi. org/ 10. 1038/ sj. sc. 31021 34.

 3. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. 
Global, regional, and national burden of traumatic brain injury and spinal 
cord injury, 1990–2016: a systematic analysis for the Global Burden of 
Disease Study 2016. Lancet Neurol. 2019;18:56–87.

 4. Stolze H, Klebe S, Baecker C, Zechlin C, Friege L, Pohle S, et al. Prevalence 
of gait disorders in hospitalized neurological patients. Mov Disord. 
2005;20:89–94. https:// doi. org/ 10. 1002/ mds. 20266.

 5. Burns SP, Gelding DG, Rolle WA, Graziani V, Ditunno JF. Recovery of 
ambulation in motor‑incomplete tetraplegia. Arch Phys Med Rehabil. 
1997;78:1169–72.

 6. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. 
Guidelines for adult stroke rehabilitation and recovery: a guideline for 
healthcare professionals from the American Heart Association/American 
Stroke Association. Stroke. 2016;47:e98‑169.

 7. Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. 
World J Orthop. 2015;6:24–33.

 8. Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of 
walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.

 9. Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Pref‑
erences for recovery after SCI: a longitudinal and cross‑sectional study. 
Spinal Cord. 2008;46:500–6. https:// doi. org/ 10. 1038/ sj. sc. 31021 72.

 10. Wirz M, van Hedel HJA. Balance, gait, and falls in spinal cord injury. In: Day 
BL, Lord SR, editors. Handbook of clinical neurology. Amsterdam: Elsevier 
B.V; 2018.

 11. Awai L, Curt A. Comprehensive assessment of walking function after 
human spinal cord injury. 1st ed. Amsterdam: Elsevier B.V; 2015. https:// 
doi. org/ 10. 1016/ bs. pbr. 2014. 12. 004.

 12. Bolliger M, Blight AR, Field‑Fote EC, Musselman K, Rossignol S, Barthélemy 
D, et al. Lower extremity outcome measures: considerations for clinical 
trials in spinal cord injury. Spinal Cord. 2018;56:628–42. https:// doi. org/ 10. 
1038/ s41393‑ 018‑ 0097‑8.

 13. Maggioni S, Melendez‑Calderon A, van Asseldonk E, Klamroth‑Marganska 
V, Lünenburger L, Riener R, et al. Robot‑aided assessment of lower 
extremity functions: a review. J Neuroeng Rehabil. 2016;13:72. https:// doi. 
org/ 10. 1186/ s12984‑ 016‑ 0180‑3.

 14. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of 
locomotor training in paraplegic patients. Spinal Cord. 2001;252–5.

 15. Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B, Mehrholz J, et al. 
Electromechanical‑assisted training for walking a er stroke (Review). 
Cochrane Database Syst Rev. 2020.

https://doi.org/10.1186/s12984-023-01226-4
https://doi.org/10.1186/s12984-023-01226-4
http://www.moving-beyond.eu
http://www.moving-beyond.eu
https://doi.org/10.1038/sj.sc.3102134
https://doi.org/10.1002/mds.20266
https://doi.org/10.1038/sj.sc.3102172
https://doi.org/10.1016/bs.pbr.2014.12.004
https://doi.org/10.1016/bs.pbr.2014.12.004
https://doi.org/10.1038/s41393-018-0097-8
https://doi.org/10.1038/s41393-018-0097-8
https://doi.org/10.1186/s12984-016-0180-3
https://doi.org/10.1186/s12984-016-0180-3


Page 21 of 22Maggioni et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:121  

 16. Reinkensmeyer DJ, Dietz V. Neurorehabilitation technology. Cham: 
Springer International Publishing; 2016.

 17. Hwang J, Shin Y, Park J‑H, Cha YJ, You JSH. Effects of Walkbot gait train‑
ing on kinematics, kinetics, and clinical gait function in paraplegia and 
quadriplegia. NeuroRehabilitation. 2018;42:481–9.

 18. Lambercy O, Maggioni S, Lünenburger L, Gassert R, Bolliger M. Robotic 
and wearable sensor technologies for measurements/clinical assess‑
ments. In: Dietz V, Reinkensmeyer DJ, editors. Neurorehabilitation 
technology. 2nd ed. Cham: Springer International; 2016.

 19. Maggioni S, Lünenburger L, Riener R, Melendez‑Calderon A. Robot‑
aided assessment of walking function based on an adaptive algorithm. 
In: 2015 IEEE 14th International Conference on Rehabilitation Robotics. 
Singapore; 2015. pp. 804–9.

 20. Emken JL, Bobrow JE, Reinkensmeyer DJ. Robotic movement training 
as an optimization problem: designing a controller that assists only as 
needed. In: Proceedings of the 2005 IEEE 9th International Conference 
on Rehabilitation Robotics. Chicago, IL, USA; 2005. pp. 307–12. https:// 
doi. org/ 10. 1109/ ICORR. 2005. 15011 08.

 21. Maggioni S, Stucki S, Lünenburger L, Riener R, Melendez‑Calderon A. 
A bio‑inspired robotic test bench for repeatable and safe testing of 
rehabilitation robots. In: Proceedings of the IEEE RAS and EMBS Inter‑
national Conference on Biomedical Robotics and Biomechatronics. 
Singapore; 2016. pp. 894–9.

 22. Maggioni S, Reinert N, Lünenburger L, Melendez‑Calderon A. An adap‑
tive and hybrid end‑point/joint impedance controller for lower limb 
exoskeletons. Front Robot AI. 2018;5.

 23. Jezernick S, Colombo G, Morari M. Rehabilitation with a 4‑DOF robotic 
orthosis. IEEE Trans Robot Autom. 2004;20:574–82.

 24. Stoquart G, Detrembleur C, Lejeune T. Effect of speed on kinematic, 
kinetic, electromyographic and energetic reference values during 
treadmill walking. Neurophysiol Clin. 2008;38:105–16.

 25. Emken JL, Benitez R, Reinkensmeyer DJ. Human‑robot cooperative 
movement training: learning a novel sensory motor transformation 
during walking with robotic assistance‑as‑needed. J Neuroeng Rehabil. 
2007;4. https:// doi. org/ 10. 1186/ 1743‑ 0003‑4‑8.

 26. Perry J. Gait analysis. Normal and pathological function. Thorofare, NJ, 
USA: SLACK Incorporated; 1992.

 27. Winter DA. Biomechanics and motor control of human gait: normal, 
elderly and pathological. 2nd edn. Waterloo, Canada: Waterloo Biome‑
chanics; 1991.

 28. Duschau‑Wicke A, Felsenstein S, Riener R. Adaptive body weight sup‑
port controls human activity during robot‑aided gait training. In: 2009 
IEEE 11th International Conference on Rehabilitation Robotics. Kyoto; 
2009. pp. 413–8.

 29. Van HHJ, Wirz M, Dietz V. Assessing walking ability in subjects with 
spinal cord injury: validity and reliability of 3 walking tests. Arch Phys 
Med Rehabil. 2005;86:190–6.

 30. Wirz M, Muller R, Bastiaenen C. Falls in persons with spinal cord injury: 
validity and reliability of the Berg Balance Scale. Neurorehabil Neural 
Repair. 2010;24:70–7.

 31. Bolliger M, Banz R, Dietz V, Lünenburger L. Standardized voluntary force 
measurement in a lower extremity rehabilitation robot. J Neuroeng 
Rehabil. 2008;5:23. https:// doi. org/ 10. 1186/ 1743‑ 0003‑5‑ 23.

 32. Tindall B, Council MR. Aids to the investigation of the peripheral nerv‑
ous system. Med Res Counc. 1986.

 33. Marino RJ, Jones L, Kirshblum S, Tal J, Dasgupta A. Reliability and 
repeatability of the motor and sensory examination of the interna‑
tional standards for neurological classification of spinal cord injury. J 
Spinal Cord Med. 2008;31:166–70.

 34. NASA TLX. https:// human syste ms. arc. nasa. gov/ groups/ TLX/. Accessed 
7 Mar 2022.

 35. Bernhardt M, Frey M, Colombo G, Riener R. Hybrid force‑position con‑
trol yields cooperative behaviour of the rehabilitation robot LOKOMAT. 
In: Proc ICORR 2005—IEEE Int Conf Rehabil Robot. 2005;:536–9.

 36. Baker R. Measuring walking: a handbook of clinical gait analysis. 1st ed. 
London: Mac Keith Press; 2013.

 37. Olney SJ, Griffin MP, McBride ID. Temporal, kinematic, and kinetic variables 
related to gait speed in subjects with hemiplegia: a regression approach. 
Phys Ther. 1994;74:872–85.

 38. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat 
Soc Ser B. 1996;58:267–88.

 39. Bach FR, Project‑team IW. Bolasso: Model Consistent Lasso Estimation 
through the Bootstrap. In: ICML ’08 Proceedings of the 25th international 
conference on Machine learning. Helsinki, Finland; 2008.

 40. Sauerbrei W. The use of resampling methods to simplify regression mod‑
els in medical statistics. J R Stat Soc Ser C Appl Stat. 1999;48:313–29.

 41. Barbeau H, Nadeau S, Garneau C. Physical determinants, emerging 
concepts, and training approaches in gait of individuals with spinal cord 
injury. J Neurotrauma. 2006;23:571–85.

 42. Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity 
in persons with incomplete spinal cord injury: relationship with muscle 
strength. Spiinal Cord. 2004;42:156–62.

 43. Gold D. Dealing with multicollinearity: a brief overview and introduc‑
tion to tolerant methods. Water Programming: A Collaborative Research 
Blog. 2017. https:// water progr amming. wordp ress. com/ 2017/ 02/ 22/ deali 
ng‑ with‑ multi colli neari ty‑a‑ brief‑ overv iew‑ and‑ intro ducti on‑ to‑ toler ant‑ 
metho ds/. Accessed 6 Aug 2019.

 44. Atkinson G, Nevill A. Statistical methods for assessing measurement 
error (reliability) in variables relevant to sports medicine. Sport Med. 
1998;26:217–38.

 45. Altman DG, Bland JM. Measurement in medicine: the analysis of method 
comparison studies. Stat. 1981;1983(32):307–17.

 46. Ran Klein. Bland‑Altman and Correlation Plot. MATLAB Central File 
Exchange. 2019. http:// www. mathw orks. com/ matla bcent ral/ filee xchan 
ge/ 45049‑ bland‑ altman‑ and‑ corre lation‑ plot. Accessed 18 Aug 2019.

 47. Baker R. Why we walk the way we do 1 (framework). 2013. https:// www. 
youtu be. com/ watch?v= iG6Kf zoqWyg. Accessed 5 Aug 2019.

 48. Gage JR. Gait analysis in cerebral palsy. Oxford: Cambridge University 
Press; 1991.

 49. Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional 
mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.

 50. Chen T, Chou LS. Effects of muscle strength and balance control on sit‑
to‑walk and turn durations in the timed up and go test. Arch Phys Med 
Rehabil. 2017;98:2471–6.

 51. Ng S, Hui‑Chan C. The timed up & go test: its reliability and association 
with lower‑limb impairments and locomotor capacities in people with 
chronic stroke. Arch Phys Med Rehabil. 2005;86:1641–7.

 52. Labruyère R, Van HHJA. Strength training versus robot‑assisted gait 
training after incomplete spinal cord injury: a randomized pilot study 
in patients depending on walking assistance. J Neuroeng Rehabil. 
2014;11:1–12.

 53. Weir JP. Quantifying test–retest reliability using the intraclass correlation 
coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.

 54. van Hedel H. Gait speed in relation to categories of functional ambula‑
tion after spinal cord injury. Neurorehabil Neural Repair. 2009;23:343–50.

 55. Van Silfhout L, Hosman AJF, Bartels RHMA, Edwards MJR, Abel R, Curt 
A, et al. Ten meters walking speed in spinal cord‑injured patients: does 
speed predict who walks and who rolls? Neurorehabil Neural Repair. 
2017;31:842–50.

 56. Goldberg SR, Sylvia O, Arnold AS, Gage JR, Delp SL. Kinematic and kinetic 
factors that correlate with improved knee flexion following treatment for 
stiff‑knee gait. J Biomech. 2006;39:689–98.

 57. Goldberg S, Anderson F, Pandy M, Delp S. Muscles that influence knee 
flexion velocity in double support: implications for stiff‑knee gait. J 
Biomech. 2004;37:1189–96.

 58. Van Kammen K, Boonstra AM, Van Der Woude LHV, Reinders‑Messelink 
HA, Den Otter R. Differences in muscle activity and temporal step param‑
eters between Lokomat guided walking and treadmill walking in post‑
stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil. 
2017;14:1–11.

 59. Hidler JM, Wall AE. Alterations in muscle activation patterns during 
robotic‑assisted walking. Clin Biomech. 2005;20:184–93. https:// doi. org/ 
10. 1016/j. clinb iomech. 2004. 09. 016.

 60. Coenen P, van Werven G, van Nunen MPM, Van Dieën JH, Gerrits KHL, 
Janssen TWJ. Robot‑assisted walking vs overground walking in stroke 
patients: an evaluation of muscle activity. J Rehabil Med. 2012;44:331–7. 
https:// doi. org/ 10. 2340/ 16501 977‑ 0954.

 61. Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking 
within the Lokomat robotic gait‑orthosis. Clin Biomech (Bristol, Avon). 
2008;23:1251–9. https:// doi. org/ 10. 1016/j. clinb iomech. 2008. 08. 004.

https://doi.org/10.1109/ICORR.2005.1501108
https://doi.org/10.1109/ICORR.2005.1501108
https://doi.org/10.1186/1743-0003-4-8
https://doi.org/10.1186/1743-0003-5-23
https://humansystems.arc.nasa.gov/groups/TLX/
https://waterprogramming.wordpress.com/2017/02/22/dealing-with-multicollinearity-a-brief-overview-and-introduction-to-tolerant-methods/
https://waterprogramming.wordpress.com/2017/02/22/dealing-with-multicollinearity-a-brief-overview-and-introduction-to-tolerant-methods/
https://waterprogramming.wordpress.com/2017/02/22/dealing-with-multicollinearity-a-brief-overview-and-introduction-to-tolerant-methods/
http://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
http://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
https://www.youtube.com/watch?v=iG6KfzoqWyg
https://www.youtube.com/watch?v=iG6KfzoqWyg
https://doi.org/10.1016/j.clinbiomech.2004.09.016
https://doi.org/10.1016/j.clinbiomech.2004.09.016
https://doi.org/10.2340/16501977-0954
https://doi.org/10.1016/j.clinbiomech.2008.08.004


Page 22 of 22Maggioni et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:121 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 62. Nadeau S, Arsenault AB, Gravel D, Bourbonnais D. Analysis of the clinical 
factors determining natural and maximal gait speeds in adults with a 
stroke. Am J Phys Med Rehabil. 1999;78.

 63. Kwon IS, Oldaker S, Schrager M, Talbot LA, Fozard JL, Metter EJ. Rela‑
tionship between muscle strength and the time taken to complete 
a standardized walk‑turn‑walk test. J Gerontol Ser A Biol Sci Med Sci. 
2001;56:B398‑404.

 64. Bohannon RW. Comfortable and maximum walking speed of adults 
aged 20–79 years: reference values and determinants. Age Ageing. 
2016;26:15–9.

 65. Willén C, Stibrant Sunnerhagen K, Ekman C, Grimby G. How is walking 
speed related to muscle strength? A study of healthy persons and per‑
sons with late effects of polio. Arch Phys Med Rehabil. 2004;85:1923–8.

 66. Plummer P, Eskes G, Wallace S, Giuffrida C, Fraas M, Campbell G, et al. 
Cognitive‑motor interference during functional mobility after stroke: 
state of the science and implications for future research. Arch Phys Med 
Rehabil. 2013;94:2565–74.

 67. Koopman B, van Asseldonk EH, van der Kooij H. Selective control of gait 
subtasks in robotic gait training: foot clearance support in stroke survi‑
vors with a powered exoskeleton. J Neuroeng Rehabil. 2013;10:3. https:// 
doi. org/ 10. 1186/ 1743‑ 0003‑ 10‑3.

 68. Haufe FL, Maggioni S, Melendez‑Calderon A. Reference Trajectory 
Adaptation to Improve Human‑Robot Interaction: A Database‑
Driven Approach. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 
2018;2018–July:1727–30.

 69. Bayón C, Fricke SS, Rocon E, Van Der Kooij H, Van Asseldonk EHF. 
Performance‑based adaptive assistance for diverse subtasks of walking 
in a robotic gait trainer: description of a new controller and preliminary 
results. In: Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics. 
2018;2018–Augus: 414–9.

 70. Fricke SS, Bayón C, Der Kooij H, Van EEH. Automatic versus manual tuning 
of robot‑assisted gait training in people with neurological disorders. J 
Neuroeng Rehabil. 2020;17:1–15.

 71. Emken JL, Harkema SJ, Beres‑jones JA, Ferreira CK, Reinkensmeyer DJ. 
Feasibility of manual teach‑and‑replay and continuous impedance shap‑
ing for robotic locomotor training following spinal cord injury. IEEE Trans 
Biomed Eng. 2008;55:322–34.

 72. Park IJ, Park JH, Seong HY, You JSH, Kim SJ, Min JH, et al. Comparative 
effects of different assistance force during robot‑assisted gait training on 
locomotor functions in patients with subacute stroke: an assessor‑blind, 
randomized controlled trial. Am J Phys Med Rehabil. 2019;98:58–64.

 73. Melendez‑Calderon A, Maggioni S. Challenges in adaptive robot‑assisted 
gait training: the balancing act of minimizing assistance while preserving 
safety. In: Torricelli D, Akay M, Pons JL, editors. Converging clinical and 
engineering research on neurorehabilitation II. Springer; 2022. p. 39–43.

 74. Laszlo C, Munari D, Maggioni S, Knechtle D, Wolf P, De Bon D. Feasibility 
of an intelligent algorithm based on an assist‑as‑needed controller for 
a robot‑aided gait trainer (Lokomat) in neurological disorders: a longitudi‑
nal pilot study. Brain Sci. 2023;13:612. https:// doi. org/ 10. 3390/ brain sci13 
040612.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/1743-0003-10-3
https://doi.org/10.1186/1743-0003-10-3
https://doi.org/10.3390/brainsci13040612
https://doi.org/10.3390/brainsci13040612

	Assessing walking ability using a robotic gait trainer: opportunities and limitations of assist-as-needed control in spinal cord injury
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 
	Trial registration 

	Background
	General methods
	Device and assist-as-needed controller
	Population
	Experimental protocol
	Data preparation
	Presentation of results

	Is the AAN controller feasible for Individuals with SCI?
	Results

	What are the most representative robotic variables that explain walking ability?
	Results
	Robotic variables that explain walking ability as measured by 10MWT
	Robotic variables that explain walking ability as measured by TUG


	Do force measures contribute to the prediction of walking ability?
	Results
	Force measures that explain walking ability as measured by 10MWT
	Force measures that explain walking ability as measured by TUG


	Are the Lokomat AAN outcome measures reliable?
	Results
	Relative and absolute reliability of K knee TS


	Can the prediction of walking ability be extrapolated to non-ambulatory and to able-body individuals?
	6.1. Results
	Can the prediction of walking ability be extrapolated to non-ambulatory and able-bodied individuals?
	Are there other variables that may help to distinguish between ambulatory and non-ambulatory patients?
	Can the model predict walking speed in able-bodied subjects?


	Discussion
	Variables related to stance phase and to push-off phase may help distinguish ambulatory from non-ambulatory subjects
	Among the Lokomat data, isometric force is the best predictor of walking speed in able-bodied subjects
	Limitations and challenges
	Implications for walking training paradigms

	Conclusion
	Anchor 39
	Acknowledgements
	References


