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Abstract 

Understanding of the human body’s internal processes to maintain balance is fundamental to simulate postural 
control behaviour. The body uses multiple sensory systems’ information to obtain a reliable estimate about the cur-
rent body state. This information is used to control the reactive behaviour to maintain balance. To predict a certain 
motion behaviour with knowledge of the muscle forces, forward dynamic simulations of biomechanical human 
models can be utilized. We aim to use predictive postural control simulations to give therapy recommenda-
tions to patients suffering from postural disorders in the future. It is important to know which types of modelling 
approaches already exist to apply such predictive forward dynamic simulations. Current literature provides different 
models that aim to simulate human postural control. We conducted a systematic literature research to identify the dif-
ferent approaches of postural control models. The different approaches are discussed regarding their applied biome-
chanical models, sensory representation, sensory integration, and control methods in standing and gait simulations. 
We searched on Scopus, Web of Science and PubMed using a search string, scanned 1253 records, and found 102 
studies to be eligible for inclusion. The included studies use different ways for sensory representation and integration, 
although underlying neural processes still remain unclear. We found that for postural control optimal control meth-
ods like linear quadratic regulators and model predictive control methods are used less, when models’ level of details 
is increasing, and nonlinearities become more important. Considering musculoskeletal models, reflex-based and PD 
controllers are mainly applied and show promising results, as they aim to create human-like motion behaviour consid-
ering physiological processes.
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Introduction
Motivation
During standing and gait, the human body is an inher-
ently unstable biomechanical system. Keeping balance 
during standing and gait is a complex task controlled by 
the central nervous system (CNS), consisting of low-level 
controls generated in the spinal cord as well as higher-
level controls generated in the supraspinal cord. This 
process is called postural control. Simulating postural 
control behaviour requires a fundamental understanding 
of the human body’s internal processes that are responsi-
ble for balancing. We would like to use postural control 
simulations to give therapy recommendations to patients 
suffering from postural control disorders in the future, 
by suggesting targeted exercises for restoration of body 
functions or to estimate the influence of specific exer-
cises. This is possible when these simulations behave sim-
ilarly to real postural control. Current literature provides 
different models that aim to simulate the mechanisms of 
the body to keep balance when standing, during gait, or 
while performing other tasks. These control methods are 
applied to biomechanical human models to understand 
the interaction between the dynamics and the control 
of the model. Depending on the scope, biomechanical 
human models can be highly simplified to simulate the 
general motion behaviour or very detailed to focus on the 
internal processes during postural control as well. Cur-
rent approaches range from 1 degree of freedom (DoF) 
two-dimensional single inverted pendulum models [75], 
to more DoF in double [23] or triple inverted pendulum 
models [28], up to complex three-dimensional musculo-
skeletal models [86]. Depending on the model detail, the 
focus is on a general, specific, or extensive understand-
ing and simulation of motion behaviour. Such a simula-
tion should include the different sensory systems that the 
body uses to sense its internal states and body dynam-
ics. However, until today it is not fully understood how 
the human body processes this sensory information in 
the CNS to react adequately to maintain balance, in per-
turbed as well as in unperturbed situations [35, 44, 95].

To predict a certain motion behaviour, forward 
dynamic simulations can be used with joint moments 
or muscle forces as input. Forward dynamic simulations 
lead from specific joint torques or muscle activations to 
a motion synthesis without the need of further experi-
mental motion data. This allows for investigating cor-
relations between control inputs, model dynamics and 
performed tasks [108]. Such a simulation could aim a 
balancing task in standing scenarios, where the centre of 
mass (CoM) should maintain within the base of support, 
which is described by the area within the contact points 
of the feet with the ground. Such a simulation could also 
aim generating a stable gait in walking scenarios that is 

robust against external perturbations, by combining pre-
defined gait patterns combined with controlling, reactive 
elements. To apply predictive forward dynamic simu-
lations for our own purposes, it is important to know 
which modelling approaches already exist, when they are 
applied preferably, what the scope of their application 
in research is and how can this modelling approach can 
be implemented in a postural control model to generate 
human motion behaviour as naturally as possible. Fur-
thermore, it is important that sensory systems and con-
trol methods are represented accurately when using the 
simulations for therapy recommendations in the future.

Digital human models are also used for motion con-
trol in other fields, such as character animation. In Cruz 
Ruiz et  al. [16], for example, different simulation strate-
gies from this research area are compared. Therefore, 
we focus on the application area of biomechanics in the 
following.

In this paper, we give an overview about previously 
published models that are simulating the human’s pos-
tural control behaviour including sensory feedback of the 
body. We thereby answer the following research ques-
tions conducting a systematic literature research:

• RQ1: What kinds of biomechanical human mod-
els are used to simulate the body’s kinematics and 
dynamics?

• RQ2: How are the body’s sensory systems repre-
sented by existing models and how are their sen-
sory information integrated into the postural control 
model?

• RQ3: Which control methods can be used to imple-
ment postural control mechanisms in biomechanical 
human models?

Biological background
In the following section, the biological background for 
postural control simulations is described. There are many 
different terms to describe human behaviour or reactions 
to maintain an erect position during static or dynamic 
situations. The CNS regulates the sensory information 
from different receptors of the body to initiate adequate 
muscle reactions. Faster, lower-level controls, such as 
reflexes, are generated in the spinal cord, higher-level 
controls are generated in the supra-spinal cord. Postural 
control, balance control, or balance behaviour are terms 
used to describe this process to maintain balance. In the 
following we will use the phrase postural control.

To maintain balance, the human body uses the infor-
mation of several receptor types, like muscle length or 
the pressure distribution underneath the feet, to observe 
the internal states of the body kinematics and dynamics. 
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Relevant components in this respect are the somatosen-
sory, vestibular, and visual systems [15, 41]. The infor-
mation of all these sensory systems is interpreted in 
the CNS to initiate muscle excitations, which translates 
into adequate muscle forces to keep the body in bal-
ance. Figure 1 shows a general overview of the postural 
control processes. The somatosensory system consists 
of proprioception and cutaneous receptors. Through 
proprioception, the body gains information about the 
relative orientation and movements of body segments. 
Muscle lengths and velocities are sensed by muscle spin-
dles located in the skeletal muscles, joint angles by joint 
receptors located in the joint capsules. Tendon forces 
are sensed by Golgi tendon organs located at the inter-
face between muscles and tendons. Cutaneous recep-
tors on the plantar feet surface deliver information about 
pressure distribution. Additionally, from this delivered 
information the body can estimate the geometry of the 
support surface [41]. The vestibular system senses lin-
ear and angular motion and the orientation of the head 
with respect to gravity. This sensory system is located 
within the inner ear and consists of two otolith organs 
and the semi-circular canals. The otolith organs detect 
linear accelerations of the head, the semi-circular canals 
identify angular head accelerations [41]. Visual feedback 
is used to get information about the orientation and 
motion of the head and the whole body with respect to 

its environment. The CNS can use this information to 
interpret the direction and speed of body sway, for exam-
ple. It has to be mentioned that visual feedback alone can 
be interpreted ambiguously, either as self-motion of the 
head or body, or as motion of the surrounding objects 
[41].

Using the previously described different sensory sys-
tems, the body gains channel-specific information, 
depending on the particular sensory system, about the 
body kinematics and dynamics. Every single channel 
suffers from noise and delivered values can differ from 
each other. Therefore, it is necessary that the feedback 
information is integrated in the CNS to provide stable 
and accurate estimates about the body kinematics and 
dynamics. A reliable perception of current body states is 
important to generate suitable postural control reactions 
[41]. In order to adapt to changing environmental con-
ditions or a disturbance of a sensory system, the body is 
able to reweigh the relative contributions of the sensory 
channels [58, 67, 74].

The body applies different ways to keep balance using 
previously processed sensory information. It is necessary 
to maintain the CoM inside the base of support to ensure 
a stable posture. During standing, this can be achieved 
for example by correcting mechanisms in the ankle or 
hip [1, 37]. These correcting mechanisms shift the cen-
tre of pressure (CoP), and thereby control the movement 

Fig. 1 Simplified control system model. Body dynamics can be observed by several sensory systems of the body. This gained information has to be 
integrated to obtain an accurate body perception. The controller uses the current states and a specific control aim, like target states or equilibrium 
states, to determine the subsequent movements of the body
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of the CoM. When these corrections are no longer suf-
ficient, humans can apply further movements, like one 
or more recovery steps. During gait, more dynamic sta-
bility approaches are used, as the CoM is not necessarily 
always inside the base of support. Mechanisms like foot 
placement of the next stance leg and hip torque control 
of the current stance leg are important to stabilize the 
trunk during gait [85]. Additionally, in case of a pertur-
bation, recovery behaviour like adapted step length and 
step time can be identified [45].

These methods that are applied to maintain balance 
can be split into feedback and feedforward mechanisms. 
Feedback means that current sensory information is 
included to generate appropriate reactions, as the body 
does with postural control. Feedforward means that vol-
untary motor control is performed in a pre-defined way. 
The contribution of feedforward elements in human’s 
postural control are still being discussed in literature [19, 
29, 87].

The time delay represents another physiologically rele-
vant parameter for the resulting reaction time on pertur-
bations. An information transfer of sensory information 
through afferent and signals for muscle control through 
efferent pathways, as well as information processing on 
spinal and supra-spinal levels in the CNS, lead to time 
delays in postural control. This process is continuously 
present and therefore important for the standing as 
well as gait movements. Thus, time delay represents an 
important parameter for modelling as well and has an 
effect on both feedback and feedforward elements.

Methods
We followed a systematic protocol in order to identify 
significant literature regarding the previously mentioned 
research questions (Fig.  2). We applied a search string 
to ensure a transparent, reproducible procedure and 
screened the resulting records’ content manually after-
wards. The search string consisted of elements identify-
ing biomechanical human models that are describing 
postural control during standing and gait simulations:

[(musculoskel*) OR (musculo-skel*) OR (biomechani*) 
OR (multisegment*) OR (multi-segment*) OR (neuro-
muscul*) OR (multi-joint) OR (multijoint) OR ("inverted 
pendulum")]

AND [human*]
AND [(simulation*) OR (modulation*) OR (numeric) 

OR (model*)]
AND [(postur*) OR (balanc*) OR (stabili*) OR (reflex*) 

OR (reacti*) OR (equilibrium) OR (propriocept*) OR 
(sensor*) OR (feedback)]

W/2 [(control*) OR (behavio?r) OR (recover*)]
AND [(stance) OR (standing) OR (gait) OR (walking) 

OR (sway)]

The search was performed using three different data-
bases: Scopus, PubMed, and Web of Science. In Scopus, 
we applied the search for title, abstract and keywords and 
limited the outcomes to the document type article and 
subject areas engineering, computer science, mathematics, 
medicine, multidisciplinary, neuroscience and physics and 
astronomy. As available search criteria differ between 
Scopus, PubMed and Web of Science, we had to adapt 
the search in PubMed and Web of Science: In PubMed, 
we applied the search string to title/abstract and limited 
the outcomes to the publication type article as well, Eng-
lish language and the filter criterion humans. In Web of 
Science (Core collection), we applied the search string to 
title, abstract, keywords plus where we limited the results 
to English language and the document type articles. 
Applying the search string to PubMed and Web of Sci-
ence, we had to replace the operator W/2 by AND. We 
identified studies which fulfilled the following inclusion 
criteria: the studies contain a postural control model of 
the human that describes the sensory feedback dynamics 
to regulate the postural control; the model has to be new 
or a significant extension of an existing model; and the 
model should be usable for forward dynamic simulations. 
The focus of this review is on models used for standing 

Fig. 2 Systematic protocol of identification and scanning 
of literature. A search string was used to identify records from Scopus, 
PubMed, and Web of Science. After removing duplicates, records 
were screened and filtered by inclusion criteria. 102 studies have 
been included to be further analysed in this review
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or gait conditions, considering the upper and lower body 
(simplifications were accepted). The model has to simu-
late at least the dynamic and control behaviour during 
physiological motion of standing or gait. As this review 
aims to give an overview about models used for simula-
tions of human movement behaviour, applications with 
focus on humanoids, exoskeletons, or prosthetics are 
excluded.

The literature that we found with the search string was 
screened next considering the previously mentioned 
inclusion criteria, first by their titles and abstracts, then 
as full-texts. Since many different terms are used to 
describe the human’s postural control in literature, we are 
aware that a search string cannot find all matching publi-
cations. To compensate for that, we additionally included 
a backward search by scanning the references of the 
included studies regarding our inclusion and exclusion 
criteria.

The included studies were analysed and categorized in 
the following aspects:

• What kind of biomechanical model is considered to 
describe the body’s dynamics?

• How are the body’s sensory systems for postural con-
trol integrated into the models?

• What kind of control method is implemented to pro-
cess sensory information?

Including all publications up to April 28th, 2023, we 
identified 1253 publications with the search string. After 
screening according to our protocol, which is summa-
rized in Fig. 2, we included 102 studies.

Results
Biomechanical models
We identified several different approaches for model-
ling and simulating human postural control. In these 
approaches, the level of detail of the biomechanical 
human models varies, since this level is adjusted to the 
scope and research questions that are identified. In gen-
eral, applied models vary between non-musculoskele-
tal and musculoskeletal models and are used for either 
standing or gait simulations. Musculoskeletal models 
add complexity through a larger number of DoF and 
by including muscle dynamics, joints can be modelled 
closely to the anatomy [18]. Actuation of non-musculo-
skeletal models can be realized by joint torques, actua-
tion of musculoskeletal models by muscle excitations. In 
the following we give an overview about biomechanical 
human models used for postural control simulations. 
We clustered biomechanical human models into non-
musculoskeletal and musculoskeletal models, each dur-
ing standing and gait simulations. Tables  1 and 2 show 

non-musculoskeletal (Table 1) and musculoskeletal mod-
els (Table 2) during standing simulations, Tables 3 and 4 
non-musculoskeletal (Table 3) and musculoskeletal mod-
els (Table 4) during gait simulations.

66 of 102 papers describe standing simulations. 56 
times non-musculoskeletal, 10 times musculoskeletal 
standing models are used. We divided the standing mod-
els into groups depending on the number of joints as well 
as DoF. To ensure comparability, DoF are represented as 
internal DoF in this paper. Models may contain additional 
DoF to the global frame, like relative rotations or transla-
tions with respect to the ground. Non-musculoskeletal 
standing models are divided into 1-joint models [2, 100, 
102] up to 5-joint models [38], musculoskeletal stand-
ing models into 1-joint [107] up to 8-joint models [101]. 
Standing models focusing on the sagittal plane often 
merge left and right segments: 1-joint models describe 
the motion around the (merged) ankle joint and are com-
parable to single inverted pendulums [7, 74, 105]. Even if 
no foot is modelled, this joint can be considered as ankle 
joint during standing. 2-joint models describe the motion 
around the ankle and hip joint and are comparable to 
double inverted pendulums [53, 58, 62]. 3-joint models 
describe the motion around the ankle, knee and hip joint 
and are comparable to triple inverted pendulums [4, 28, 
97]. Included musculoskeletal models using more than 
3 joints consider left and right segments separately [42, 
90, 101]. More complex standing models include addi-
tional joints like a lumbar joint [42, 50], subtalar joints 
[101] or shoulder and elbow joints [38]. The number of 
DoF depends from the number of modelled joints and 
whether the model is implemented two-dimensionally or 
three-dimensionally.

36 of 102 papers describe gait simulations. Non-mus-
culoskeletal models are used 9 times, musculoskeletal 
models 27 times. Again, we divided the models into 
groups depending on the number of joints. Non-mus-
culoskeletal gait models are divided into 2-joint models 
[8, 49, 59] up to a 8-joint model [70], musculoskeletal 
models into 2-joint models [17] over 6-joint models [6, 
24, 29] up to 13-joint models [31, 32, 55]. When simu-
lating gait, models consider left and right segments sepa-
rately. 2-joint gait models describe the motion around 
the hip joints without considering a separate foot seg-
ment, 4-joint models describe motion around ankle 
and hip joints, while 6 joint-models also include motion 
around the knee joint. More complex gait models include 
additional joints like a lumbar joint [92] or shoulder and 
elbow joints [31, 55].

Sensory representation and integration methods
The implemented representation of the body’s sensory 
systems shows to be very diverse. The sensory input 
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Table 1 Classification of the included studies by the applied biomechanical human model during standing simulations: non-
musculoskeletal models during standing simulations

Models are classified by their number of represented joints as well as internal degrees of freedom (DoF)

*The motion of the model is considered three-dimensionally

1 Joint 2 Joints 3 Joints 4 Joints 5 Joints

1 DoF [3] [67] 2 DoF [10] 3 DoF [4] 1 DoF [9] 5 DoF [38]

[7] [68] [11] [28]

[12] [69] [23] [40]

[20] [71] [26] [60]

[25] [75] [33] [96]

[34] [74] [36] [97]

[39] [77] [35]

[48] [80] [44] 

[52] [82] [53]

[57] [98] [54]

[63] [102] [58]

[64] [104] [61]

[65] [110] [62]

[66] [76]*

[89]

2 DoF [2] [91]

[13]*

[14]* 4 DoF [21]*

[105]*

∑ = 31 ∑ = 17 ∑ = 6 ∑ = 1 ∑ = 1

Table 2 Classification of the included studies by the applied biomechanical human model during standing simulations: 
musculoskeletal models during standing simulations

Models are classified by their number of represented joints as well as internal degrees of freedom (DoF)

*The motion of the model is considered three-dimensionally

1 Joint 3 Joints 6 Joints 7 Joints 8 Joints

1 DoF [99] 3 DoF [46] 6 DoF [90] 7 DoF [42] 12 DoF [101]*

[100] [56] [43]

[107]

15 DoF [50]*

∑ = 3 ∑ = 1 ∑ = 2 ∑ = 3 ∑ = 1

Table 3 Classification of the included studies by the applied biomechanical human model during gait simulations: non-
musculoskeletal models during gait simulations

Models are classified by their number of represented joints as well as internal degrees of freedom (DoF)

*The motion of the model is considered three-dimensionally

2 Joints 4 Joints 6 Joints 8 Joints

2 DoF [85] 4 DoF [94] 6 DoF [22] 8 DoF [70]

[93] [106]

3 DoF [8]*

[59]*

4 DoF [49]*

∑ = 4 ∑ = 2 ∑ = 2 ∑ = 1
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that is fed into the control model varies depending on 
the used biomechanical model, its DoF and the research 
questions of the respective studies. Some authors do 
not specify which sensory systems they aimed to rep-
licate in their postural control models. Often, full-
state information from different segments, such as 
joint angles, angular velocities and sometimes angular 
accelerations are used [104]. Another frequently used 
parameter is the CoM [85, 101, 105]. If the research 
focuses on reproducing the body’s sensory systems and 
their measured information in a way similar to biology, 
the different senses of the postural control system are 
included.

Mostly, the somatosensory system and therefore pro-
prioceptive and cutaneous receptors’ information is 
implemented. Muscle spindles have been imitated by 
tracking joint angles and angular velocities in more 
abstract biomechanical models [80, 97] and muscle 
length and velocity feedback in musculoskeletal models 
[24, 43, 56]. Golgi tendon organs have been simulated by 
torque [46, 80], or muscle force feedback equivalently [24, 
56]. The information that the body receives from cutane-
ous receptors on the plantar feet surface can be modelled 
using the shift of the CoM’s gravitational vector [68] or 
by calculating the ground reaction forces. Cutaneous 

receptors provide information about the motion of the 
body with respect to the support surface [74].

Though most studies do not include a model of the bio-
logical sensing system, or only consider a model of the 
somatosensory system, vestibular feedback is sometimes 
taken into account as well. The semi-circular canals can 
be modelled using the rotational acceleration of the head 
in the world frame, while the otolith organs can be mod-
elled using the translational acceleration of the head in 
the world frame [43, 52, 97]. In more simplified models, 
global trunk angles and angular velocities are interpreted 
as vestibular information as well [25, 36].

Additionally, some studies include visual information. 
The visual system can be estimated using the global posi-
tion and velocity of the head [25, 74].

If sensory information from multiple different channels 
is used, this information must be fused and integrated 
to obtain a stable and reliable estimate of the actual 
body dynamics. The CNS provides this mechanism in 
the body. The benefit of this redundancy of information 
is that perturbed or erroneous sensory information can 
be detected and a more robust interpretation of the cur-
rent situation is possible. This redundancy leads to the 
ability of the body to compensate even for the absence 
of some sensory information to a certain degree and still 

Table 4 Classification of the included studies by the applied biomechanical human model during gait simulations: musculoskeletal 
models during gait simulations

Models are classified by their number of represented joints as well as internal degrees of freedom (DoF)

*The motion of the model is considered three-dimensionally

2 Joints 6 Joints 7 Joints 10 Joints 11 Joints 13 Joints

2 DoF [17] 6 DoF [6] 7 DoF [92] 10 DoF [27] 17 DoF [109]* 19 DoF [32]*

[5] [31]*

[19]

[24] 17 DoF [84]* 23 DoF [55]

[29]

[30]

[45]

[47]

[72]

[73]

[81]

[88]

[95]

8 DoF [51]*

[78]

[79]

[86]*

[87]*

[103]*

∑ = 1 ∑ = 19 ∑ = 2 ∑ = 1 ∑ = 1 ∑ = 3
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to be able to maintain balance. Sensory integration and 
reweighing mechanisms are applied trying to replicate 
the CNS’ processes in the different models. In this review 
we use the classification of Maurer et al. [67], who clus-
ter sensory integration methods into three types: models 
that simply add the different sensory information without 
taking dependencies into account, models that use opti-
mal estimator methods for adaptive sensory reweighing 
and models that allow interactions between the differ-
ent information paths. The first method is introduced as 
independent channel model [74]. A model that includes 
optimal estimators that reweigh the different sensory 
information is called optimal estimator model. Applying 
this method, Van Der Kooij et al. [97, 98]  use a Kalman 
filter for sensory reweighing. The third method is called 
intersensory interaction model. It is in general compara-
ble to the independent channel model, but additionally 
allows for interactions between the several sensory chan-
nels [68]. Table  5 gives an overview about the different 
sensory integration methods used by the studies included 
in this review. The studies listed in this table use multi-
ple sensory inputs for their postural control models. Only 
few studies considering multiple sensor types use muscu-
loskeletal models [43, 87, 107] or gait simulations [45, 51, 
87]. This processed sensory information serves as input 
for the applied control methods, which are addressed in 
Sect. “Postural control methods”.

Postural control methods
We classified the studies according to their different 
control methods applied to the postural control models. 
This classification gives an impression of the diversity of 
considered control methods in postural control models 
(Fig. 3) and which control methods is used in combina-
tion with which type of biomechanical human model 
(Fig.  4). The 102 included studies show a total of 108 
control approaches, 6 studies did apply a combination of 
two methods. We identified 6 different types of control 
methods: Proportional (P), proportional-derivative (PD), 
proportional-integral-derivative (PID) controllers, reflex-
based controllers, linear quadratic regulators (LQR) 
and model predictive control (MPC). Table  6 shows all 
included studies and their classification into the different 
control methods. Following we give an overview about 
the different identified control methods.

Frequently applied methods to describe postural con-
trol are P, PD and PID controllers. Depending on the con-
troller type, P-, D- or I-terms are applied to minimize an 
error signal e(t) (P-term), its derivative (D-term), or its 
integral (I-term) between a desired and an actual value of 
the kinematics or dynamics in a feedback loop. This way 
the control variable u(t) can be adjusted. Equation  (1) 
shows the general function of a PID controller:

where Kp,KD and KI are gain constants of the P-, D- and 
I-terms and specify the magnitude of the different com-
ponents [74]. When a PD controller is applied, the inte-
gral gain is zero, while for a P controller, both the integral 
and derivative gain are zero. In total, 69 times P, PD or 
PID controllers are applied to postural control models. 
P controllers are used 9 times, while PD controllers are 
considered 43 times, and PID controllers 17 times. Going 
more into detail, the distribution of the applied meth-
ods can be separated into models that simulate standing 
or gait. The P controller is used for 3 standing and 6 gait 
models. PD control is considered 30 times for standing 
simulations and 13 times for gait simulations. PID con-
trollers are applied to 15 standing models and 2 gait 
model. Controlled variables in these models are joint 
angles, angular velocities [25, 44], the CoM [14, 47], or 
muscle length or muscle force when those are included in 
the (musculoskeletal) model [46].

Another approach we call extended proportional 
(extended P) control which is introduced in literature 
as “reflex-based control” [24]. Here, a musculoskel-
etal model is controlled by muscle reflexes. This type 
of model is based on muscle force and length feed-
back and can generate human walking dynamics with-
out an additional feedforward mechanism. The main 

(1)u(t) = Kpe(t)+ KD
de(t)

dt
+ KI e(t)dt,

Table 5 Sensory integration methods

Included studies considering more than one sensory system of the body are 
classified by the different applied methods to integrate the different sensory 
information (using the classification of Maurer et al. [67])
m The study uses a musculoskeletal model

Independent channel 
models

Optimal estimator 
models

Intersensory 
interaction 
models

Standing models
[23] [58] [36]

[25] [97] [35]

[26] [98] [63]

[43]m [67]

[52] [68]

[64] [82]

[74]

[99]m

[107]m

Gait models
[45]m

[51]m

[78]m

[79]m

[87]m
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components of reflex control, the muscle force and 
length feedback, have an equation similar to a P con-
troller. Since we aim to create a comparable level to the 
other control methods, we call this approach extended 
P controller here. Additionally, the model contains a PD 

control term for trunk control as a modulation of ves-
tibular reflexes. Extended P controllers are applied 14 
times, 13 of which are based on the first introduction of 
the model by Geyer & Herr [24]. 2 of these models are 
focusing on standing, the other 12 (including Geyer & 

Fig. 3 Classification of postural control methods. Scanning the 102 included studies a total of 108 control methods is applied (6 studies did apply 
a combination of two methods). Proportional (P) controllers are used in 9, proportional-derivative (PD) control in 43, proportional-integral-derivative 
(PID) control in 17 models. Extended P controllers are considered 14 times. Authors of 9 studies applied linear quadratic regulators (LQRs), of 4 
studies model predictive control (MPC). In models of 12 studies other approaches are used

Fig. 4 Postural control models that have been used by the included studies. They are classified by the control method and within these categories 
separated by non-musculoskeletal (left column each) and musculoskeletal models (right column each), as well as by standing and gait applications
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Table 6 Classification of the included studies by the applied postural control methods, separated into standing and gait models

m The study uses a musculoskeletal model; ° The applied control method considers multiple controller types and is therefore listed in more than one category

P controller PD controller PID controller Extended P 
controller

Linear quadratic 
regulator (LQR)

Model predictive 
control (MPC)

Others

Standing models
[12]° [4] [13] [56]m [53] [3] [40]

[23] [7] [14] [90]m [60] [2] [52]°

[28] [9] [25] [58] [38] [71]

[10] [36] [61] [62] [101]m

[11] [39] [77] [104]

[12]° [44] [76] [105]

[20] [46]m [96] [107]m °

[21] [48] [97]

[26] [64]

[34] [67]

[33] [68]

[35] [75]

[42]m [74]

[43]m [80]

[50]m [82]

[52]°

[54]

[57]

[63]

[65]

[66]

[69]

[89]

[91]

[98]

[99]m

[100]m

[102]

[107]m °

[110]

∑ = 3 ∑ = 30 ∑ = 15 ∑ = 2 ∑ = 8 ∑ = 4 ∑ = 7

Gait models
[5]m ° [6]m [47]m [19]m [17]m ° [32]m

[8] [5]m ° [84]m [24]m [31]m

[17]m ° [22] [29]m [55]m

[72]m [27]m [30]m [59]

[85] [45]m [51]m [109]m

[95]m ° [49] [78]m

[70] [79]m

[73]m [81]m

[94] [88]m

[93] [86]m

[92]m [87]m

[95]m ° [103]m

[106]

∑ = 6 ∑ = 13 ∑ = 2 ∑ = 12 ∑ = 1 ∑ = 0 ∑ = 5
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Herr [24] are dealing with gait simulations. The mod-
elled reflexes differ between muscles and, when simu-
lating gait, between gait phases as well.

A linear quadratic regulator (LQR) can also be used 
to model the dynamic behaviour of human postural 
control. An LQR is a state-feedback controller where 
the feedback minimizes a quadratic cost function that 
penalizes control signals and state variables [53]. This 
controller requires linear mechanical system dynamics 
and a quadratic cost function [96]. Linear dynamics can 
be achieved for a human, who has nonlinear dynamics, 
during standing, when it is assumed that the range of 
motion is relatively small [96]. This kind of method is 
applied based on the hypothesis that the body tries to 
minimize a cost function [53]. A cost function can be 
achieved by assuming that the signals in the CNS are 
optimized through a quadratic function over the states 
and controls, which is valid since there is a redundant 
set of actuators and sensors in the human body which 
allows the CNS to pick an optimal combination of these 
[96]. An LQR is found in 9 postural control models 
that are contained in this review, 8 of them simulating 
human standing, 1 in combination with a P controller 
to simulate human gait [17].

Another method that can be applied to simulate pos-
tural control behaviour is model predictive control 
(MPC). This approach considers current input signals, 
output signals and predicted values and minimizes a cost 
function over a specific time horizon. It is an iterative 
process in discrete time which is repeated at each time 
step. MPC gives a numerical solution to an analytically 
unsolvable optimal control problem that works for non-
linear systems as well as linear systems [62]. This method 
is considered in 4 studies of this literature review, all of 
them focusing on standing.

Finally, 12 studies used methods that did not fit into the 
identified clusters. We found studies applying empirically 
derived equations for postural control feedback [31, 32, 
55, 71, 101, 109], full-state feedback methods with addi-
tional accelerative information next to P- and D-terms 
[52, 104, 107], solely passive mechanisms without any 
active feedback [59, 105], or fuzzy controllers [40].

Figure  4 shows which postural control methods are 
used in combination with which biomechanical model 
type, separated into musculoskeletal and non-muscu-
loskeletal human models as well as standing and gait 
simulations. In total 4 P, 13 PD and 3 PID controllers are 
applied to musculoskeletal models. Additionally, all 14 
extended P controllers, as well as 6 of 12 methods that 
did not fall into a specific cluster, used musculoskeletal 
models, while none but 1 musculoskeletal model, that 
combines P control and an LQR, is used with one of the 
optimal control methods (LQR and MPC).

A topic discussed in literature is the influence of feed-
forward mechanisms to postural control and gait genera-
tion [29]. Central pattern generators for example could 
be a solution to generate a cyclic gait behaviour. Some of 
the authors use a combination of feedback and such feed-
forward elements to generate gait movements [19, 72, 73, 
94]. However, a feedforward component is not necessary 
to create gait movements, as has been shown with the 
extended P controllers (e.g. Geyer & Herr [24]).

Another varying aspect within the different postural 
control models is the considered time delay describing 
afferences, efferences, processing time or parts of these. 
Included studies consider time delays that range from 
0 ms [38, 59] up to 200 ms [7].

Discussion
Resolving the research questions
The systematic review revealed the following answers to 
our research questions:

RQ1: Various biomechanical human models are used 
to simulate postural control. During standing simula-
tions mainly non-musculoskeletal models are applied 
and within these models mostly 1-joint models. When 
a musculoskeletal model is used during standing, there 
is no clear preferred model type. During gait simula-
tions, mainly musculoskeletal models are applied, mostly 
6-joint models considering left and right ankle, knee, and 
hip joints. When a non-musculoskeletal model is used for 
gait simulations, there is no clear preferred model type.

RQ2: The different human sensory systems are repre-
sented by tracking several types of information and inter-
nal states of the biomechanical human model, such as 
joint angles, global position, and orientation of specific 
segments in abstract biomechanical models, or muscle 
lengths, muscle velocities or muscle forces in musculo-
skeletal models. Additionally, ground reaction forces are 
considered as a representation of cutaneous receptors on 
the plantar surface of the feet. This way, different sensory 
systems of the body can be modelled for postural control. 
To fuse these different signals, sensory integration meth-
ods are implemented using summation of independent 
sensory channels, summation of sensory channels allow-
ing for intersensory interactions or optimal estimator 
methods for sensory reweighing like Kalman filters. The 
independent channel model and the intersensory interac-
tion model show to be the mainly applied methods when 
multiple sensory information is fused. Despite these dif-
ferent implementation methods, the underlying neural 
processes that exist in the human body are still unclear.

RQ3: Literature shows a variety of control methods 
to implement postural control mechanisms in biome-
chanical human models. Optimal control methods such 
as LQRs and MPCs are used as well as P, PD, PID and 
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extended P controllers. For more complex biomechanical 
human models, with more DoF, the latter ones seem to 
be preferred to simulate postural control behaviour. PD 
and extended P controllers show to be the preferred con-
troller types in musculoskeletal models. Whether other 
methods might provide promising results for physiolog-
ically-based simulations, meaning if it is possible to sta-
bilize complex biomechanical human models using these 
methods, still needs to be investigated.

Relation of biomechanical models and applied postural 
control methods
It is emerging that biomechanical human model types 
are related to postural control methods that are used and 
vice versa. PD controllers are used most often in general. 
However, for musculoskeletal models, especially for gait 
simulations of postural control, extended P controllers 
are predominant as well. In the 102 identified studies a 
total of 108 control approaches is applied that we clus-
tered into 6 different types of control methods. Over all 
analysed studies, the PD controller is applied most (43 
out of 108). All other approaches are distributed some-
what equally (9 P, 17 PID, 14 extended P, 9 LQR, 4 MPC, 
12 other). This is the same when considering only stand-
ing models, while P controllers and extended P control-
lers are used the least. When considering gait models (in 
total 39), P controllers (6 times) and extended P control-
lers (12 times) are often used, while PD controllers are 
still chosen most (13 times). Optimal control methods 
(LQR and MPC) are not used for gait simulations except 
for one combination of a P controller with an LQR [17]. 
When a musculoskeletal model is chosen as biomechani-
cal human model (in total 41 out of 108 times), PD (13 
times) and extended P controllers (14 times) are cho-
sen as control method most often, while they are never 
combined with LQRs or MPCs, neither for standing 
nor gait simulations except for one musculoskeletal gait 
model that combines a P controller with an LQR. PD 
(6 times) and extended P controllers (2 times) are pre-
dominant for musculoskeletal standing control (in total 
11 models), while the extended P controller is the prime 
control method for musculoskeletal gait control (12 out 
of 30). An explanation for this shift from dominant PD 
controllers in general (and an equal distribution of the 
other methods) to mainly PD and extended P controllers 
for musculoskeletal models could be, that both perform 
well for models with a large number of DoF. At the same 
time, extended P controllers are the most applied control 
method for musculoskeletal gait models. The extended 
P controller requires muscle dynamics to be included in 
the model. It aims to describe human-like motion dur-
ing postural control and implements reflexes with neu-
rophysiological evidence [24]. It has to be mentioned, 

that extended P controllers are able to generate walking 
based solely on muscle reflexes, which might not be the 
only effector in reality. Moreover, in the models that are 
included in this literature review, LQRs as well as MPCs 
are rarely used for simulating model dynamics that are 
more complex, either by having a large number of DoF or 
when muscle dynamics are considered. Only one model 
represents at least a combination of a P controller and an 
LQR. This rare application might be due to the complex-
ity of the models and the correspondingly large number 
of free parameters that have to be determined. Neverthe-
less, it is still reasonable that the human body considers 
an optimization problem to find a suitable reaction dur-
ing postural control.

Characteristics of sensory integration methods
As described in Sect.  "Sensory representation and inte-
gration methods", different approaches exist to imitate 
the body’s sensory perception. When multiple sensory 
systems of the body are included, it is necessary to fuse 
this information using integration methods. Since under-
lying neural processes, meaning the processing of recep-
tors’ information by the CNS, are still unknown [47, 107], 
studies describe different approaches for sensory inte-
gration. The several ways to simulate that process show 
to provide reasonable results for the specific applica-
tion cases when simulation data is compared to experi-
mental measurements. It is important to consider, even 
if simulation data are similar to experimental data, that 
the human’s processing could still be implemented differ-
ently in reality. Nevertheless, it is important that sensory 
systems are represented accurately when using postural 
control simulations for therapy recommendations in the 
future. Simpler methods, such as the summation of dif-
ferent receptors’ information (independent channel mod-
els) could show limitations in case of disturbances or 
absence of one or more sensor types. In these cases, the 
body had to reweigh the several input channels to ensure 
reliable estimates about its internal states [97, 98].

Characteristics of different postural control models
Limitations and potentials of postural control models are 
mainly related to the way how a model simulates reac-
tive behaviour of the biomechanical system. In the fol-
lowing, common characteristics as well as the different 
clusters identified in Sect. "Postural control methods" are 
discussed.

In general, most simulation data are compared to 
new or existing experimental measurement data to 
evaluate the simulation model. In each of the identi-
fied clusters for postural control methods simulation 
data often show human-like motion behaviour [3, 21, 
24, 74, 77, 109]. But different comparison methods, like 
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correlation of joint angles and joint movements [19, 
56], muscle activations [19, 109], cross-correlation val-
ues [21] or gait cycle parameters [52], render a direct 
comparison difficult. It also remains difficult to assess 
whether models showing comparable movements 
to experimental data are realistically representing 
human’s internal processes or just generating human-
like motion in a different way. For clinical applications, 
for example, it would be relevant not only to generate 
human-like motion behaviour, but to realistically rep-
resent the body’s internal processes. Additionally, many 
of the models have been linearized. This provides a sim-
pler mechanical model, an easier implementation, and 
less unknown parameters, which then enables faster 
calculations. In contrast to this, nonlinearities of the 
human body (and motion) are ignored, and some char-
acteristic dynamic behaviour will not be covered by 
these kinds of simulations, such as muscle behaviour.

Within the control methods, P, PD and PID controllers 
show different characteristics, but can all be implemented 
comparably easy [44]. They show several characteristics 
that can be utilized in human’s postural control simulations. 
The proportional gain of a P, PD or PID controller acts like 
a spring constant. When the gain is increased, the range 
of body sway decreases, and the frequency of body sway 
increases simultaneously in simulations of standing. By P 
control the reaction speed of a system can be controlled, but 
a P controller alone can lead to a steady difference between 
the desired and the actual value of the system output. That 
leads to a steady state error. At the same time the implemen-
tation is comparably simple as the proportional gain is the 
only parameter that has to be determined. The derivative 
gains of PD or PID controllers serve as damping constants. 
When these gains are increased the amplitude of body 
sway decreases, respectively [44]. For example, the cor-
rective torque of a joint would be proportional to the 
velocity of body sway. Some authors found that veloc-
ity of movements provides sufficient information about 
changes of the CoM [65]. At the same time, PD control 
seems to show disadvantages if time delay is considered 
in the feedback loop [7, 53]. The integral gain of a PID 
controller shows to be relevant to keep the body’s sway 
oscillating around a specific reference point of a bal-
anced position in simulations of standing. Otherwise 
the oscillation could occur around a deviated point 
[44]. Therefore the integral term controls the steady 
state error of the mechanical system [75]. Compar-
ing PID and PD controllers, the body would oscillate 
about a set point when using PD control during quiet 
standing, while applying PID control can eliminate this 
oscillation [66]. It should be mentioned that some sway 
around a stable position typically  appears in human 
standing.

In comparison to these kind of controllers, extended 
P controllers aim to create human-like motion consid-
ering some physiological processes like muscle reflexes. 
Haeufle et al. [30] found that a reflex-based model using 
muscle actuators requires less information compared to 
a torque-driven PD control model to generate the same 
movement, which seems plausible for human’s inter-
nal processes as well. Extended P controllers seem to be 
very promising using musculoskeletal models and gait 
simulations.

Models applying LQR can be implemented using few 
variables after simplification and linearization [60]. This 
way they represent a simple technique to design full-state 
feedback systems. By doing so, the number of gains has 
to be kept to a minimum [60]. Simulations can then be 
generated in a computationally efficient way. Model sim-
ulations deliver smooth and stable trajectories [96]. The 
linearization brings limitations due to necessary simpli-
fications and assumptions compared to the real biome-
chanical system [76], even though differences between 
such linearized and nonlinear systems have never been 
examined in the included literature of this review. As 
soon as the models get more complex and passive struc-
tures should be involved as well, for example, a nonlinear 
control system is needed [97].

The postural control models based on MPC are charac-
terized by a simple implementation and in the case of lin-
earized models by computational efficiency [3]. MPC has 
advantages over LQR, since the biomechanical system 
requires less energy for the same motion task [3]. They 
also show for nonlinear problems to be quickly solvable 
and accurate by discretizing time [62].

All control methods discussed here have in common, 
that free parameters like control gains have to be found. 
To determine these gains, different strategies could be 
identified in the included studies. Some of the authors 
use hand-tuned or literature-based parameters to 
describe the controller’s equations [24, 65], others apply 
different optimizing algorithms to find optimal values for 
control parameters [60, 88]. The choice of different opti-
mization methods can depend on the optimization goal. 
For example, it may be minimizing the deviation from an 
existing measurement [52] or predefined reference pose 
[38], or mimicking human physiological processes. In the 
latter case, an assumption can be the body’s optimization 
of its energy consumption [83].

Limitations of the study
In the context of postural control simulations, authors 
focus on many different fields that are part of this 
research topic. Some authors try to determine specific 
parameters from experimental data, other authors inves-
tigate the influence of special tasks on postural control 
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and others build models that can be used for forward 
dynamic simulations. Therefore, it is difficult to find a 
compromise between general and specific search strat-
egy when a systematic literature research is performed 
by applying a search string. The nomenclature of postural 
control is not consistent in literature too, as already men-
tioned in Sect.  "Biological background". That is why the 
search string served as a starting point and was combined 
with an additional backward search. Some studies do not 
describe the control models in detail, and instead focus 
on other areas of the simulation process. Therefore, these 
studies are not included in the classification. Many mod-
els are used to investigate the principles of postural con-
trol but are applied to robotic systems like humanoids or 
exoskeletons, to special motion tasks or to persons with 
specific diseases like post-stroke patients. These special 
cases are also not considered in this review, as we want to 
give an overview about human postural control models 
on a comparable level of healthy standing and gait.

Conclusion and outlook
We conducted a systematic literature review to get an 
overview of different approaches used to simulate pos-
tural control in biomechanical human models as we aim 
to use postural control simulations to give therapy rec-
ommendations to patients suffering from postural dis-
orders in the future. This review aims to give a general 
overview and impression about the various methods 
that have been published to simulate the human’s pos-
tural control behaviour. The process of postural control 
consists of the sensory perception of the internal states 
and dynamics of the body, the sensory integration of 
these different types of sensory information and a con-
trol mechanism that determines which reactions should 
be executed based on this considered information. In 
literature various models exist that include different sen-
sory systems observed by specific receptors, sensory inte-
gration methods and control strategies to describe and 
imitate human’s postural control behaviour. The choice 
of these depends on the level of detail in the model and 
the scope of the study. Many methods show movements 
comparable to human behaviour, but it is still unknown 
exactly which processes take place in the actual human’s 
CNS to process its sensory information. Nevertheless, 
it can be recognized that the more detailed the biome-
chanical human models are, and the more complex the 
observed motion, increasingly extended P controllers are 
applied to describe the human’s postural control.

Many models in this literature research focus on sim-
ple methods to simulate the general movement char-
acteristics (RQ1), others focus on sensory integration 

mechanisms and consider more than one sensory sys-
tem using a simplified biomechanical model (RQ2). 
Some authors use musculoskeletal models focusing on 
one sensory system. We found only few studies consid-
ering more than one human sensory system for pos-
tural control. These are first promising approaches 
to model the human’s postural control system with a 
detailed biomechanical human model including multi-
ple sensory systems. To control musculoskeletal mod-
els in general, mainly PD and extended P controllers 
are applied, while to control musculoskeletal models 
during gait simulations, mainly extended P controllers 
are applied (RQ3). Whether these are applied for more 
complex human models because other control meth-
ods could not be stabilized and whether other control 
models would still be promising to simulate postural 
control, is unclear and could be investigated in the 
future.

Different comparison methods of simulation out-
comes with experimental measurement data render a 
direct comparison of the accuracy of different postural 
control models difficult. Therefore, it would be inter-
esting for future research to directly compare different 
existing postural control models.

Another promising area of research and our purpose 
for this review is simulating postural control behaviour 
of humans, in standing and gait, both from healthy as 
well as people with motor impairments. Doing so, pos-
tural control of people, whose motor control is affected 
by disease, can be simulated and compared to healthy 
control behaviour. This approach can support therapy 
recommendations, for example to suggest targeted 
exercises to improve mobility, stability, and responsive-
ness. This review helps to assess which methods already 
exist and which of them show to be promising for simu-
lating postural control on a physiologically-based way.
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