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Abstract
Background Intact sensorimotor function of the upper extremity is essential for successfully performing activities 
of daily living. After a stroke, upper limb function is often compromised and requires rehabilitation. To develop 
appropriate rehabilitation interventions, sensitive and objective assessments are required. Current clinical measures 
often lack precision and technological devices (e.g. robotics) that are objective and sensitive to small changes in 
sensorimotor function are often unsuitable and impractical for performing home-based assessments. Here we 
developed a portable, tablet-based application capable of quantifying upper limb sensorimotor function after stroke. 
Our goal was to validate the developed application and accompanying data analysis against previously validated 
robotic measures of upper limb function in stroke.

Methods Twenty individuals with stroke, twenty age-matched older controls, and twenty younger controls 
completed an eight-target Visually Guided Reaching (VGR) task using a Kinarm Robotic Exoskeleton and a Samsung 
Galaxy Tablet. Participants completed eighty trials of the VGR task on each device, where each trial consisted of 
making a reaching movement to one of eight pseudorandomly appearing targets. We calculated several outcome 
parameters capturing various aspects of sensorimotor behavior (e.g., Reaction Time, Initial Direction Error, Max Speed, 
and Movement Time) from each reaching movement, and our analyses compared metric consistency between 
devices. We used the previously validated Kinarm Standard Analysis (KSA) and a custom in-house analysis to calculate 
each outcome parameter.

Results We observed strong correlations between the KSA and our custom analysis for all outcome parameters 
within each participant group, indicating our custom analysis accurately replicates the KSA. Minimal differences were 
observed for between-device comparisons (tablet vs. robot) in our outcome parameters. Additionally, we observed 
similar correlations for each device when comparing the Fugl-Meyer Assessment (FMA) scores of individuals with 
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Introduction
Each year, approximately 800,000 people in the United 
States experience a stroke, and it is thought that 30-66% 
of these individuals have persistent upper limb deficits 
that impact their ability to perform activities of daily 
living [1–8]. These impairments include hemiparesis, 
abnormal muscle tone, decreased somatosensation, and 
impaired coordination of their movements [1, 3, 9–11]. 
In general, clinical assessments are typically used to 
quantify these upper limb impairments. While many of 
these are used in research environments, assessments 
like the Fugl-Meyer Assessment (FMA) are rarely used in 
clinical evaluations. Additionally, these assessments rely 
on participative ratings for quantifying a patient’s impair-
ment, often using narrow ordinal or categorical scales 
[12]. For example, the FMA is commonly used to quantify 
upper limb function because it examines a wide range of 
behaviors such as reaching, grasping, and testing various 
ranges of motion at several joints [13]. Many behaviors 
examined in this assessment (e.g. extending metacarpals) 
are scored on a three-point scale whose categories are 
represented as; 0-Cannot complete behavior, 1-Behavior 
cannot be fully completed, and 2-Behavior can be main-
tained against relatively great resistance. These categories 
primarily attest to an individual’s overall motor function; 
however, specific kinematics of the behavior cannot be 
captured. These measures cannot reliably determine the 
speed at which the movement was completed, the time it 
took to respond to a visual cue, or precisely identify kine-
matic impairments attesting to the quality of the behav-
ior [14]. Knowing these outcomes can give clinicians an 
indication of the integrity of the sensorimotor system 
and guide treatments that specifically address the impair-
ment. Additionally, despite being widely used, clinical 
measures like the FMA can have low interrater reliabil-
ity and possess known ceiling effects [13–15]. Due to 
these factors, many clinical assessments are likely unable 
to capture small, meaningful improvements in function; 
which may negatively impact treatment efficacy.

The use of robotic technology to assess motor and sen-
sory domains of movement in individuals with stroke has 
become increasingly popular. Previous studies have vali-
dated the ability of robotics to quantify several aspects of 
upper limb behavior and demonstrate high interrater reli-
ability, high sensitivity, and objectivity [16–21]. Coderre 

et al. used the KINARM robotic exoskeleton (BKIN 
Technologies, Kingston, ON) to assess the sensorimotor 
function of individuals with stroke when completing an 
eight-target Visually Guided Reaching task (VGR) [16]. 
This study identified several outcomes from reaching 
behavior relating to postural control, reactions to visual 
stimuli, and the quality of movement. The authors reli-
ably identified impairments in 52 individuals with stroke, 
despite the Chedoke-McMaster Stroke Assessment Scale 
[22]—a clinical measure designed to assess upper limb 
impairments in stroke—categorizing several individu-
als as having no impairments. This suggests that robotic 
devices can identify upper limb impairments with more 
sensitivity than clinical measures by capturing precise 
kinematics that may indicate impairments in individuals 
with stroke. Other groups have utilized an end-effector 
robot to quantify sensorimotor impairments in several 
kinematic metrics (e.g. Reaction Time and Max Speed) 
that relate to movement quality. Often, these metrics 
are difficult or impossible to collect with standard clini-
cal assessments, demonstrating the increased utility of 
robotic devices and their ability to accurately identify 
upper limb deficits when compared to standard clinical 
assessments [23–25]. Despite several studies demonstrat-
ing the effectiveness of robotic-based assessments for 
quantifying upper limb impairments in individuals with 
stroke; these devices are often immobile, expensive, and 
require significant time and training to operate when 
used in clinical settings [26].

Tablet-based assessments have the potential to main-
tain the benefits of both clinical assessments (high mobil-
ity, inexpensive, minimal time to operate) and robotic 
devices (objective, precise kinematics, minimal training 
needed) while overcoming their limitations; however, the 
suitability and sensitivity of tablet devices for quantify-
ing upper limb impairments are not yet known [27]. In 
current stroke-based rehabilitation settings, tablets are 
primarily used for administrative purposes and assessing 
cognitive function [28–30]. Kizony et al. used the Dex-
teria iPad app (Binary Labs) to quantify an individual’s 
hand dexterity following a stroke [27]. The Dexteria app 
utilized a tapping task that involved anchoring a par-
ticipant’s thumb to a set position while using the other 
digits to tap one of four randomly appearing targets. 
The average success rate and time needed to complete 

stroke to tablet-derived metrics, demonstrating that the tablet can capture clinically-based elements of upper limb 
impairment.

Conclusions Tablet devices can accurately assess upper limb sensorimotor function in neurologically intact 
individuals and individuals with stroke. Our findings validate the use of tablets as a cost-effective and efficient 
assessment tool for upper-limb function after stroke.
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the task were used to quantify performance during two 
repetitions of the task; however, these measures cannot 
indicate overall upper limb integrity because the task 
exclusively focuses on finger extension. Previous stud-
ies have established the feasibility of using tablet-based 
assessments to quantify hand-motor function and resting 
tremor in individuals with Parkinson’s Disease [31–33]. 
To validate the ability of these assessments to quantify 
upper extremity behavior, studies have correlated perfor-
mance on these tasks with the Movement Disorder Soci-
ety-Unified Parkinson’s Disease Rating Scale (UPDRS) 
which suffers from the same limitations as previously 
mentioned clinical assessments (i.e., low sensitivity) 
[34–36]. Recent work has demonstrated the feasibil-
ity of tablet-based assessments to quantify impairments 
in hand-dexterity for a variety of clinical populations; 
however, these devices have not been compared against 
commonly used robotic devices whose accuracy and 
objectivity are validated for capturing upper limb impair-
ments [27, 37].

In this study, we developed a tablet-based application 
to assess the sensorimotor function of the upper limb by 
replicating an eight-target center-out reaching task that 
is commonly used as an upper limb assessment tool in 
robotic devices [16, 23]. We recruited individuals who 
have had a stroke and neurologically intact adults to 
complete a VGR task using both a Kinarm Robotic Exo-
skeleton and a Samsung Galaxy Tablet. We predicted 
that the kinematic parameters derived from a propri-
etary KSA and our custom analysis will be significantly 
correlated when both analyses are applied to the same 

datasets. This will indicate that our custom analysis is 
an accurate replication of the KSA and suitable for both 
robot and tablet devices. Furthermore, we predicted that 
the kinematic parameters derived from both devices will 
be significantly correlated and have no significant within-
group differences because the custom analysis will be 
applied to both devices. We believe that this will indicate 
consistency across devices and attest to the suitability of 
the tablet for remote testing of upper limb function in 
individuals with stroke.

Methods
Participant information
Twenty younger controls, twenty older controls, and 
twenty individuals with stroke participated in this cross-
sectional study (Table  1). Control participants were 
recruited from the immediate regions surrounding the 
University of Delaware while individuals with stroke 
were recruited through the University of Delaware Stroke 
Research Registry. All participants completed two ses-
sions of a Visually Guided Reaching task during a single 
study visit (details below). The following exclusion cri-
teria were applied to all participants: history of a sig-
nificant upper-body injury (e.g., shoulder replacement), 
neurological impairment other than stroke (e.g., Multiple 
Sclerosis, Parkinson’s Disease), disease that may impact 
limb sensation (e.g., Diabetic Neuropathy) or to main-
tain an upright seated posture for > 1 h. Control partici-
pants were required to have no previous history of stroke 
or other neurological injuries. Additionally, individuals 
with stroke were assessed using the Montreal Cognitive 
Assessment (MOCA), and if they had moderate to severe 
(score < 18) cognitive impairment, they were excluded 
[38]. This study was approved by the University of Dela-
ware Institutional Review Board, and all participants pro-
vided informed consent.

Experimental setup
Positional data were recorded using a KINARM Robotic 
Exoskeleton (Kinarm, Kingston, ON, Canada) and a Sam-
sung Galaxy Tablet S6 (Samsung Technologies, Suwon, 
Gyeonggi, South Korea) with a Samsung S6 digitizing 
pen. When completing the task in the robot, partici-
pants sat comfortably in the exoskeleton with both arms 
elevated and supported against gravity. Each segment of 
the arm was adjusted to raise both upper limbs to a hori-
zontal plane slightly below the shoulder (approximately 
80° abduction). An augmented reality system operated 
in conjunction with the exoskeleton to display targets in 
the same plane as the participant’s hands while occlud-
ing their upper limbs. When completing the task on 
the tablet, participants sat comfortably at a desk hold-
ing a digitizing pen with their elbows comfortably at a 
90° angle to the table. The tablet was placed on the desk 

Table 1 Participant Demographics
Younger 
Controls 
(n = 20)

Older 
Controls 
(n = 20)

Individuals 
with Stroke 
(n = 20)

Age 24.8 ± 3.56 62.12 ± 9.84 67.1 ± 10.35
Sex Male: 8

Female: 12
Male: 9
Female:11

Male: 14
Female: 6

Dominant Hand Left: 1
Right: 19

Left: 1
Right: 19

Left: 4
Right: 15
Ambidextrous: 
1

Months Post Stroke -- -- 68.46 ± 34.21
FIM - More Affected -- -- 124.05 ± 1.78
FMA - More Affected -- -- 53.5 ± 15.87
Field Cut -- -- 4
Hemisphere of Stroke -- -- Left: 9, Right: 11
MOCA -- -- 25.15 ± 3.44
BIT -- -- 142.5 ± 4.04
PPB - More Affected -- -- 6.55 ± 4.67
TLT [0,1,2,3]
More Affected

-- -- [19,1,0,0]

Abbreviations: FIM, Functional Independence Measure; FMA, Fugl-Meyer 
Assessment; MOCA, Montreal Cognitive Assessment; BIT, Behavioral Inattention 
Test; PPB, Purdue Peg Board; TLT, Thumb Localizing Test. Average ± SD
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approximately 5 cm from the table edge and perpendicu-
lar to the participant; however, participants could adjust 
the device at their discretion to a comfortable position. 
In general, participants did not request that the tablet 
be moved more than 2  cm in any direction. The tablet 
displayed visual targets and a cursor that could be con-
trolled by the participant dragging it across the screen 
with the digitizing pen. Assistive devices for grasping the 
digitizing pen were offered to individuals with stroke who 
had issues with grip strength and/or limitations in hand 
dexterity. These devices include a 7  cm long foam tube 
(2 cm in diameter and 0.5 cm thick) to increase the over-
all diameter of the pen, an adaptive utensil cuff that gave 
participants the option to hold the digitizing pen without 
using their fingers, and a strip of Dycem grip tape that 
was wrapped around the pen to reduce the chance of the 
pen slipping out of the participant’s hand. Two individu-
als with stroke used both foam tube and grip tape and 
two used all three adaptive devices. Two individuals with 
stroke came in with wrist orthotic devices. One chose to 
wear their orthotic for both tablet and robot tasks, while 

the other removed it for the entire experiment. Data from 
both tablet and robot were filtered with a low pass, 10 Hz 
cutoff Butterworth filter.

Visually guided reaching (VGR) task
Participants completed an eight-target VGR task [16] 
using two different devices: a Kinarm Robotic Exoskel-
eton and a Samsung Galaxy Tablet (Fig. 1). Participants 
completed the task twice during a single study visit, once 
on each device, and device testing order was counter-
balanced within each group to control for the effects of 
practice across devices. The VGR standard task included 
with the Kinarm Robotic Exoskeleton was used in this 
study [39]. We created a version of the task suitable for 
tablet devices with minor alterations due to differences 
in device capabilities. Notably, the workspace of the 
robot (200 cm diagonally) was much larger than that of 
the tablet (26.7  cm diagonally). Therefore, participants 
made 10 cm reaching movements in the robot and 6 cm 
movements on the tablet. Additionally, the cursor radius 
within the robot task was 0.4 cm, which was enlarged on 

Fig. 1 Experimental setups for tablet and robot devices
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the tablet to 0.6 cm to account for the pen and the par-
ticipant’s hand occluding the cursor.

Except for the minor differences noted above, out-
come measures and instructions for task performance 
were identical across devices. Participants viewed their 
fingertip as a cursor and were instructed to hold their 
finger (digitizing pen with tablet) at a central target for 
a randomized time (0.75–1.2 s) until one of eight periph-
eral targets appeared pseudorandomly. Participants were 
then instructed to move the cursor to the peripheral tar-
get as quickly and accurately as possible and hold their 
position for 1.2 s until the target disappeared; after which 
they were instructed to return to the central target. The 
task required individuals to make eight reaches to each 
target, with catch trials occurring pseudorandomly. Dur-
ing a Catch Trial, participants held the cursor in the 
central target for a randomized time (0.75–1.2 s) and no 
peripheral target would appear. The purpose of the catch 
trials was to ensure participants could not predict the 
timing between trials. Catch trials never occurred con-
secutively. From the participant’s perspective, they were 
unaware a catch trial occurred and stayed within the cen-
tral target until the next trial appeared. Participants per-
formed a total of 80 trials in the tablet and robot versions 
of the task, for a total of 160 trials performed within the 
study visit. Both the robot and tablet assessments took 
approximately ten minutes; however, the robot portion of 
the task required an additional ten to fifteen minutes of 
set up and calibration.

Clinical assessments
All individuals with stroke underwent a series of clini-
cal assessments by one of two study clinicians, a Physi-
cal Therapist and an Occupational Therapist who both 
have expertise in stroke. Assessments included the Fugl-
Meyer Assessment (FMA) to measure arm and hand 
motor function [13], the Functional Independence Mea-
sure (FIM) to measure functional ability [40], the Thumb 
Localizer Test (TLT) to measure position sense [41], the 
Behavioral Inattention Test (BIT) to assess for visuo-
spatial neglect [42], the Montreal Cognitive Assessment 
(MoCA) to assess cognitive function [43], the Purdue 
Pegboard (PPG) to assess manual dexterity [44], and the 
Edinburgh handedness Scale to determine handedness 
[45].

Kinematic data analysis
We used the previously validated proprietary Kinarm 
Standard Analysis (KSA) (BKIN Technologies, Kingston, 
ON) and created a custom analysis to evaluate several 
measurements of sensorimotor function [16, 21, 39, 46, 
47]. To determine each measure on a trial-by-trial basis, 
upper and lower hand speed thresholds were established 
to identify the onset and offset of movement, respectively. 

The upper threshold was based on the 95th percentile of 
hand speed within each trial during the 0.5 s before the 
appearance of a peripheral target. Movement onset was 
identified by finding the time interval between peripheral 
target illumination and when the cursor leaves the cen-
tral target. We found the last local minimum in the hand 
speed that is below the upper-speed threshold. If no local 
minimum was found, movement onset corresponded to 
the last observation of hand speed that dropped below 
the lower speed threshold. The lower speed threshold 
was based on the median hand speed across all trials dur-
ing the 0.5 s before the appearance of a peripheral target. 
Movement offset was identified by examining hand posi-
tion for the 1.2 s after the participant enters a peripheral 
target. The algorithm finds the first local minimum in the 
hand speed that is below the upper-speed threshold. If no 
local minimum is found, movement offset corresponded 
to the first instance hand speed dropped below the lower 
speed threshold. If the participant’s hand speed never 
dropped below the upper-speed threshold before periph-
eral target illumination or it took the participant longer 
than 2s to leave the central target, the trial was noted as 
a Start Failure and was omitted from the analysis. If the 
hand did not enter the peripheral target then that trial 
was noted as an End Failure and omitted from the analy-
sis. These parameters are akin to parameters evaluated by 
Coderre and colleagues (No Reaction Time, No Move-
ment End Count) [16].

The offset and onset of the movement were used to 
determine the following parameters:

1) Reaction Time (s) – the time between peripheral 
target illumination and the onset of movement. This 
quantifies an individual’s ability to elicit a movement 
in response to a visual stimulus.

2) Normalized Movement Time (s/cm) – the total time 
between movement onset and movement offset 
divided by the distance between the central and 
peripheral targets of each device (robot distance: 
10 cm, tablet distance: 6 cm).

3) Max Speed (cm/s) – the maximum speed achieved 
between movement onset and movement offset. 
This measures the overall movement from a spatial 
perspective.

4) Initial Direction Error (deg) – the angular deviation 
between a straight line between movement onset 
and a peripheral target, and a straight line between 
movement onset and hand position at the first local 
minimum post-Max Speed. This characterizes error 
in the initial phase of the movement.

Statistical analyses
Our analyses aimed to determine the validity of a tablet 
device for measuring upper limb kinematics by compar-
ing it to previously validated robotic measurements of 
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upper limb function. To accomplish this, the study had 
two major goals: (1) to compare the consistency of our 
calculations of kinematic parameters to the KSA [39] 
and (2) to compare performance of the VGR task on the 
tablet and robot using the same kinematic calculations. 
For analysis comparisons, paired permutation tests were 
used to determine within-group differences between 
outcome parameters obtained from the KSA and our 
custom analyses using the same robot data within par-
ticipant groups [48–50]. For device comparisons, paired 
permutation tests were used to determine differences 
between outcome parameters obtained from our cus-
tom analyses for each device within participant groups. 
For between-group comparisons, non-paired permuta-
tion tests were used. To perform the paired permuta-
tion tests, we took the difference between the paired 
samples of each participant, be it for analysis or device 
comparisons, and took the mean of these differences for 
our initial test statistic. These differences were then resa-
mpled – with replacement – for one million iterations, 
with each iteration calculating a new test statistic. The 
new test statistic from each iteration is used to create an 
approximate distribution of values. We counted several 
values as or more extreme than the positive and nega-
tive instances of our initial test statistic, and divided by 
the total number of iterations to determine our p-value. 
For non-paired permutation tests, each set of values used 
to calculate the initial test statistic is resampled – with-
out replacement – for one million iterations, with each 
iteration calculating a new test statistic. Spearman corre-
lations were used to determine the relationship between 
both sets of analyses and devices while measuring their 
level of agreeability. Additionally, Spearman correlations 
were used to compare tablet and robot measures to the 
FMA scores of our individuals with stroke. The follow-
ing categories were used to classify correlation strength 
(very weak: rho < 0.19; weak: 0.20 < rho < 0.39; moderate: 
0.40 < rho < 0.59; strong: 0.60 < rho < 0.79; very strong: 
0.80 < rho < 1.00) [51].

Results
Participant characteristics
Our study included three groups of participants, twenty 
young control, twenty older control, and twenty indi-
viduals with stroke. Details on demographic informa-
tion are in Table  1. As expected, there were significant 
differences in age between our younger controls (Mean: 
24.8 ± 3.56 years) and both the older controls (Mean: 
62.12 ± 9.84 years) (p < 0.001) and individuals with stroke 
(Mean: 67.1 ± 10.35) (p < 0.001); however, there were 
no age differences between the older controls and indi-
viduals with stroke (p = 0.14). Most participants were 
right-handed (YC = 19, OC = 19, IPS = 15) and one indi-
vidual with stroke was ambidextrous. All individuals 

with stroke were at chronic stages (mean Months Post 
Stroke = 68.46 ± 34.21) and the majority had right hemi-
sphere damage (n = 11). Notably, the average FMA score 
of this population was 53.4 ± 15.87, indicating a majority 
of the individuals with stroke had moderate to mild levels 
of upper limb impairment [52].

General characteristics of motor behavior
As expected, the hand paths of the exemplar young 
control for both robot and tablet (Fig. 2A, B) were rela-
tively straight with minimal corrective movements 
needed to reach the target (Robot: Avg. Initial Direction 
Error = 2.03°, Tablet: Avg. Initial Direction Error = 2.67°). 
Data obtained from the robot and tablet for the exem-
plar older control (Fig.  2C, D) exhibited similar reach-
ing characteristics as the young control (OC Robot: Avg. 
Max Speed = 19 cm/s, Tablet: Avg. Max Speed = 25 cm/s, 
YC Robot: Avg. Max Speed = 22 cm/s, Tablet: Avg. Max 
Speed = 20  cm/s). The exemplar individual with stroke 
moved slower and had similar performance between 
the robot and tablet (Fig.  2E, F) (Robot: Avg. Max 
Speed = 13 cm/s, Tablet: Avg. Max Speed = 8 cm/s). On a 
group level when comparing the performance of younger 
controls to old controls using non-paired permuta-
tion tests, younger controls had shorter Reaction Times 
(Robot, p = 0.01; Tablet, p = 0.005), faster Max Speeds 
(Robot, p = 0.029; Tablet, p < 0.001) and shorter Normal-
ized Movement Times (Tablet, p < 0.001). When com-
paring the performance of older controls to individuals 
with stroke using non-paired permutation tests, older 
controls had significantly shorter Reaction Times (Robot, 
p < 0.001; Tablet, p < 0.001), lower Initial Direction Errors 
(Robot, p < 0.001; Tablet, p < 0.001) and shorter Nor-
malized Movement Times (Robot, p < 0.001; Tablet, 
p < 0.001). Additionally, we found that 95% of control 
participants had one or fewer Start Failures when tested 
with the robot. We found that seven individuals with 
stroke were outside this range (11% total trials with Start 
Failures). Similarly, we found that 95% of control partici-
pants had two or fewer Start Failures when tested with 
the tablet. We found that ten individuals with stroke were 
outside this range (12% total trials with Start Failures). 
For End Failures, we found that 95% of control partici-
pants had zero End Failures when tested with the robot. 
We found that seven individuals with stroke were outside 
this range (3% total trials with End Failures). Similarly, we 
found that 95% of control participants had two or fewer 
End Failures when tested with the tablet. We found that 
six individuals with stroke were outside this range (3% 
total trials with End Failures).

Comparison of robotic analyses
To ensure the correct calculations of our outcome 
parameters, we used the custom analysis and the Kinarm 
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Fig. 2 Hand paths for 3 exemplar participants from each group using each device. The lines represent hand paths come from 80 trials of the VGR task with 
the Kinarm Robotic Exoskeleton (left column) and the Samsung Galaxy Tablet (right column). (A) Performance of a Young Control (YC) participant (24 
years old, Right, M) in the Kinarm Robotic Exoskeleton (average Reaction Time = 0.26 s, average Initial Direction Error = 2.03°, Max Speed = 22 cm/s, Move-
ment Time = 1.01 s). (B) Performance of the same YC participant in A, but with the VGR tablet task (Reaction Time = 0.28 s, Initial Direction Error = 2.67°, Max 
Speed = 20.40 cm/s, Movement Time = 0.68 s). (C) Performance of an Older Control (OC) participant (69 years old, Right, Female) in the Kinarm Robotic 
Exoskeleton (Reaction Time = 0.29 s, Initial Direction Error = 2.25°, Max Speed = 19.10 cm/s, Movement Time = 1.10 s). (D) Performance of the same OC 
participant in C, but with the VGR tablet task (Reaction Time = 0.29 s, Initial Direction Error = 2.15°, Max Speed = 25.20 cm/s, Movement Time = 0.48 s). (E) 
Performance of an Individual Post Stroke (IPS) participant (62 Years old, Right Hand Dominant, Male, Right hemisphere of stroke, FMA = 46) in the Kinarm 
Robotic Exoskeleton (Reaction Time = 0.65 s, Initial Direction Error = 6.62°, Max Speed = 13.36 cm/s, Movement Time = 2.52 s). (F) Performance of the same 
IPS participant in E, but with the VGR tablet task (Reaction Time = 0.30 s, Initial Direction Error = 7.10°, Max Speed = 8.33 cm/s, Movement Time = 1.79 s). 
Velocity profiles in the lower left corner of each axis represent hand speeds associated with reaches to the black target. The reported results in legend are 
from the custom VGR analysis
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Standard Analysis (KSA) to compute several kinematic 
parameters on the same datasets from the Kinarm 
Robotic Exoskeleton. We observed within-group differ-
ences between analyses for Reaction Time (YC: p < 0.001, 
OC: p < 0.001, IPS: p < 0.001), Initial Direction Error 
(YC: p < 0.001, OC: p = 0.02, IPS: p = 0.03), and Movement 
Time (YC: p < 0.001, OC: p < 0.001, IPS: p = 0.36) (Fig. 3A, 
E, G). While differences were observed within partici-
pant groups, each of our outcome parameters was signifi-
cantly correlated with and across all participants groups 
(Reaction Time YC: rho = 0.92, p < 0.001; OC rho = 0.94, 
p < 0.001; IPS rho = 0.91, p < 0.001. Initial Direction 
Error YC: rho = 1.0, p < 0.001; OC rho = 1.0, p < 0.001; IPS 
rho = 0.89, p < 0.001. Max Speed YC: rho = 0.95, p < 0.001; 
OC rho = 0.94, p < 0.001; IPS rho = 0.88, p < 0.001. Move-
ment Time YC: rho = 0.85, p < 0.001; OC rho = 0.87, 
p < 0.001; IPS rho = 0.85, p < 0.001) (Fig.  3B, D, F). This 
indicates that our custom analysis is similar to the KSA.

Comparison of robotic and tablet devices
After verifying that our custom analyses accurately 
quantified several aspects of sensorimotor performance, 
we applied it to data collected from both the tablet and 
the robot. Most parameters yielded no significant dif-
ferences within-group comparisons between robot 
and tablet devices, demonstrating that the tablet was 
able to capture upper limb movements similar to that 
of the robot (Reaction Time: YC p > 0.05, OC p > 0.05, 
IPS p > 0.05; Max Speed: YC p > 0.05, OC p = 0.05, IPS 
p > 0.05; Initial Direction Error: YC p > 0.05, OC p > 0.05, 
IPS p > 0.05; Movement Time: YC p = 0.02, OC p > 0.05, 
IPS p > 0.05). Overall, we observed a wide range of cor-
relations across parameters and between devices. For 
younger controls, we observed weak to strong cor-
relations across outcome parameters (Reaction Time 
rho = 0.39, p = 0.09; Max Speed rho = 0.23, p = 0.34; Initial 
Direction Error rho = 0.47, p = 0.04; Movement Time 
rho = 0.70, p < 0.001). For older controls, we observed 
relatively weak correlations across outcome parameters 
(Reaction Time r < 0.001, p = 0.97; Max Speed rho = 
-0.07, p = 0.77; Initial Direction Error rho = 0.22, p = 0.35; 
Movement Time rho = 0.21, p = 0.37). For the individu-
als with stroke, we observed weak to strong correlations 
across outcome parameters (Reaction Time rho = 0.39, 
p = 0.09; Max Speed rho = 0.23, p = 0.34; Initial Direction 
Error rho = 0.47, p = 0.04; Movement Time rho = 0.70, 
p < 0.001). Upon collapsing across groups (YC, OC, IPS) 
we observed moderate to strong correlations between 
devices for each of our outcome parameters (Reac-
tion Time: rho = 0.62, p < 0.001; Max Speed: rho = 0.49, 
p < 0.001; Initial Direction Error: rho = 0.49, p < 0.001; 
Movement Time: rho = 0.62, p < 0.001) (Fig.  4, Right 
Panel, All).

Comparison of devices to FMA scores
To examine the relationship of kinematic data collected 
from both devices to commonly used clinical mea-
sures for the upper limb, we compared data from indi-
viduals with stroke to their FMA scores. For Reaction 
Time, we observed a moderate negative correlation for 
robot measures (rho = -0.47, p = 0.04) and a weak nega-
tive correlation for the tablet measures (rho = -0.18, 
p = 0.44) (Fig.  5A). For both Initial Direction Error and 
Movement Time, we observed moderate negative cor-
relations for both robots (Initial Direction Error: rho = 
-0.70, p < 0.001; Movement Time: rho = -0.63, p < 0.001) 
and tablet (Initial Direction Error: rho = -0.45, p = 0.05; 
Movement Time: rho = -0.62, p < 0.001) devices (Fig. 5C, 
D). These negative correlations indicate that partici-
pants with low FMA scores tend to experience increased 
Reaction Times, Initial Direction Errors, and Movement 
Times, typically indicative of compromised movement. 
For Max Speed, we observed a weak positive correla-
tion for the robot measures (rho = 0.29, p = 0.21) and a 
moderate correlation for the tablet measures (rho = 0.48, 
p = 0.03) (Fig. 5B), indicating that individuals with lower 
FMA scores tend to have higher Movement Times.

Discussion
We determined that a tablet device is an accurate assess-
ment tool for quantifying upper limb sensorimotor func-
tion in neurologically intact adults and individuals with 
stroke. Here, we aimed to (1) test a custom kinematic 
analysis by comparing it to a VGR analysis that accom-
panies a suite of KSA [16, 39], and (2) to use this custom 
analysis to determine whether tablet devices are suitable 
for testing upper limb sensorimotor function by making 
direct comparisons with robotic performance using the 
Kinarm Exoskeleton. We found that (1) our custom anal-
ysis was highly comparable to the Kinarm Standard Anal-
ysis (KSA), and (2) that there were minimal differences 
in performance between the Kinarm VGR task and our 
tablet VGR task. Furthermore, we found that metrics cal-
culated from tablet-based data were significantly related 
to the FMA scores of our individuals with stroke, further 
supporting that tablet-based measurements of the upper 
limb are suitable for quantifying sensorimotor behavior 
in individuals with stroke.

Analysis comparisons between Kinarm Standard Analysis 
and in-house Custom Analysis
The present study demonstrates the effectiveness of our 
custom analysis for both robotic and tablet devices. Here, 
we observed considerable overlap between the KSA and 
our custom analysis when examining the same dataset 
despite observing significant differences for within-group 
comparisons in Reaction Time, Initial Direction Error, 
and Normalized Movement Time (Fig.  3, left panel). 
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Fig. 3 Differences and relationships between outcome measures obtained by the Kinarm Standard Analyses (KSA) and our custom analyses (Robot) for 
younger controls (YC), older controls (OC), and individuals post-stroke (IPS). The left column shows bar graphs and individual markers to represent both 
group and individual performance. Dashed lines between markers are used connect participants between devices. Differences between analyses were 
determined using Paired Permutation Tests. If differences between analyses are observed, p values are shown above the comparison. The right column 
shows correlations between both analyses’ outcome measures for each group. All in the figure legend represents collapsed groups. Markers represent an 
individual’s performance and solid lines represent fits using bootstrapped parameters obtained from performing Ordinary Least Squares on each group. 
(A) Average Reaction Time comparisons between the KSA and custom analysis for YC (KSA: 0.32 s, Robot: 0.28 s), OC (KSA: 0.35 s, Robot: 0.31 s), and IPS 
(KSA: 0.48 s, Robot: 0.39 s). (C) Average Max Speed comparisons between the KSA and custom analysis for YC (KSA: 22.17 cm/s, Robot: 22.18 cm/s), OC 
(KSA: 19.45 cm/s, Robot: 19.45 cm/s), and IPS (KSA: 18.89 cm/s, Robot: 18.18 cm/s). (E) Average Initial Direction Error comparisons between the KSA and 
custom analysis for YC (KSA: 2.38°, Robot: 2.26°), OC (KSA: 3.02°, Robot: 2.67°), and IPS (KSA: 7.89°, Robot: 4.74°). (G) Average Normalized Movement Time 
comparisons between the KSA and custom analysis for YC (KSA: 0.12 s/cm, Robot: 0.11 s/cm), OC (KSA: 0.12 s/cm, Robot: 0.11 s/cm), and IPS (KSA: 0.17 s/
cm, Robot: 0.16 s/cm)
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Fig. 4 The relationships between outcome measures of the Kinarm Robotic Exoskeleton (Robot) and a Samsung Galaxy Tablet (Tablet) for younger con-
trols (YC), older controls (OC), and individuals with stroke (IPS). The left column shows bar graphs and individual markers to represent both group and 
individual performance respectfully. Dashed lines between markers are used to track outcome measures calculated across devices. Differences between 
devices were determined using Paired Permutation Tests. If differences between devices were observed, p values are shown above the comparison. The 
right column shows correlations between both devices’ outcome measures for each group. All in the figure legend represents collapsed groups. Markers 
represent an individual’s performance and solid lines represent fits using bootstrapped parameters obtained from performing Ordinary Least Squares on 
each group. (A) Average Reaction Time comparisons between devices for YC (Robot: 0.28 s, Tablet: 0.27 s), OC (Robot: 0.31 s, Tablet: 0.31 s), and IPS (Robot: 
0.39 s, Tablet: 0.39 s). (C) Average Max Speed comparisons between devices for YC (Robot: 22.18 cm/s, Tablet: 25.16 cm/s), OC (Robot: 10.45 cm/s, Tablet: 
17.43 cm/s), and IPS (Robot: 18.18 cm/s, Tablet: 16.09). (E) Average Initial Direction Error comparisons between devices for YC (Robot: 2.26°, Tablet: 2.53°), 
OC (Robot: 2.68°, Tablet: 2.82°), and IPS (Robot: 4.74°, Tablet: 5.05°). (G) Average Normalized Movement Time comparisons between the KSA and custom 
analysis for YC (Robot: 0.11 s/cm, Tablet: 0.09 s/cm), OC (Robot: 0.11 s/cm, Tablet: 0.12 s/cm), and IPS (Robot: 0.16 s/cm, Tablet: 0.17 s/cm)
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These differences are likely due to (1) our interpretations 
of the ambiguous language used in the KSA documen-
tation and/or (2) there is little information describing 
updates leading to the current version of the KSA [16, 
39]. While both reasons stand to maintain the propri-
etary nature of the KSA, this provides room for error 
during replication. Notably, the KSA references Coderre 
et al. for instructions on how to calculate its outcome 

measures [16]. In the thirteen years since publication, 
these techniques may have been updated to better cap-
ture the kinematic information of individuals with stroke 
[16]. Despite these discrepancies and possible differences 
in techniques, our results are within normative ranges for 
each population and there is a strong correlation between 
the analyses in each outcome measure regardless of the 
participant group.

Fig. 5 The relationship between outcome parameters obtained from each device and FMA scores for our individuals with stroke. Markers represent 
individual performance from each device and solid lines represent fits using bootstrapped parameters obtained from performing Ordinary Least Squares 
on each group. Both the Spearman Correlation Coefficients and associated p values are reported for each device in the legend of the figure. While simi-
larities in device performance are further evidenced by the similar correlations of each FMA score comparison, the influence of the FMA’s ceiling effect 
is highlighted
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Device comparisons between Kinarm Robotic Exoskeleton 
and Samsung Galaxy Tablet
For device comparisons, both robot and tablet data are 
processed using our validated custom analysis to calcu-
late four measures of sensorimotor function. In addition 
to the strong correlations of the analyses outlined above, 
we also observed strong statistical overlap between 
devices for each within-group comparison. This indi-
cates that a Samsung Galaxy Tablet is a suitable alterna-
tive assessment tool for the Kinarm Robotic Exoskeleton. 
This is evidenced by the minimal within-group differ-
ences in our between-device comparisons of each param-
eter (Fig.  4, left panel). There were only two instances 
where significant differences were observed in our con-
trol groups: older controls had a higher Max Speed and 
younger controls had a higher Movement Time in the 
robot task. Though minor, these differences may be due 
to deviations in task execution as well as within-partici-
pant variability that may be the result of decreased accu-
racy (i.e., longer movements) in favor of successful task 
completion [53]. We were surprised to observe mini-
mal effects of age on reaching as many previous stud-
ies have examined this relationship. While some studies 
have found minimal effects of aging on reaching behav-
ior, most studies have observed decremental effects of 
aging when examining bimanual movements, reach and 
grasp behavior requiring coordination and stabilization, 
as well as movements requiring multi-joint coordination 
[54–57].

In the Kinarm Robotic Exoskeleton, a participant’s 
arms are restricted to movements within a 2D plane, 
limiting the number of strategies that could be utilized 
to complete the movement. Testing with the tablet was 
completed with the device resting on a desk with the 
participant seated directly in front of the tablet. Nota-
bly, the tablet itself does not offer gravitational support, 
and any gravitational support used by participants was 
provided by the table. Compared to the robot, when 
participants were tested with the tablet, they could use 
a variety of strategies to complete the task and were not 
instructed to hold their limb in a particular posture or 
engage in a particular reaching behavior beyond the basic 
task instructions. However, many participants, includ-
ing individuals with stroke, opted for reaches involv-
ing their entire limb during testing on the tablet. The 
fact that kinematic results did not change as a function 
of posture in the robot vs. posture when seated with the 
tablet demonstrates that our method can quantify upper 
limb function similarly to tablet assessments that exclu-
sively examine hand and finger dexterity [27, 28, 31, 
37]. Notably, we observed no significant differences for 
any outcome measures in our individuals with stroke. 
This indicates that possible differences in task execution 

had a non-significant effect on performance and tablets 
are suitable for upper limb assessments in this patient 
population.

The idea of using tablets for neurorehabilitation is not 
necessarily a new one; however, an important distinc-
tion should be made. Many studies to date examining the 
use and implementation of tablets for rehabilitation after 
stroke have ignored the devices utility in this population. 
The few studies that have examined the utility of tablets 
for assessing motor impairment in stroke have mostly 
focused on manual dexterity or have tested upper limb 
function within a variable group of neurologic diagnoses 
that make it difficult to know whether tablets are indeed 
effective for upper limb assessment in individuals with 
stroke [27, 37, 58]. We believe our results are the first to 
demonstrate that tablets can accurately assess upper limb 
kinematics in individuals with stroke.

Clinical comparisons
Upon comparing the performance of individuals with 
stroke on both devices with their FMA scores, we found 
similar correlations between devices. Additionally, many 
of our individuals with stroke had a perfect score on the 
FMA (66). This highlights the well-known ceiling effect 
that exists with the FMA [13]. Unfortunately, when com-
paring continuous variables (kinematics) vs. ordinal vari-
ables (clinical measures), ceiling effects like those seen 
with the FMA can impact data analyses, particularly 
correlations between clinical and kinematic measures. 
For our Reaction Time measure, we observed a moder-
ate correlation for the robot and no correlation for the 
tablet. Additionally, one factor that may influence the 
correlation values of the tablet to FMA scores is that 
due to limited screen size, the participants’ limbs occa-
sionally obstructed a target in the bottom corner of the 
screen depending on which hand was used for the task. 
In these situations, we noted that participants searched 
for the target, which could potentially lead to an increase 
in Reaction Time for that trial or they assumed no target 
appeared.

Limitations
Several limitations of this study have been previously 
stated. The first of which is the proprietary nature of the 
Kinarm Standard Analysis (KSA). Since we were unable 
to obtain a complete description of the KSA, we assumed 
the KSA used common calculations found in the lit-
erature. Second, each device allowed unique reaching 
strategies to complete the task. A significant advantage 
of using the Kinarm Exoskeleton in clinical populations 
is the ability to assess movement in a gravity-supported 
environment. This experimental setup is ideal for cer-
tain study approaches, but it does not reflect real-world 
limb movement in the day-to-day life of individuals with 
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stroke. While we did not observe kinematic differences 
between the tablet and robot for individuals with stroke, 
we must note that previous work has observed differ-
ences in supported vs. unsupported limb movements in 
individuals with chronic stroke [59]. We must note that 
a few individuals with stroke who completed the robot 
portion of the study were fully excluded because they 
could not complete the tablet portion without full gravi-
tational support (N = 3). This suggests a limitation to 
the use of tablets as assessment tools, as they may only 
be suitable for individuals with mild or moderate upper 
limb impairment. Third, we believe that the ceiling effect 
of the FMA influences the interpretation of our clini-
cal function (FMA) vs. device (tablet) comparisons. As 
a result, interpretations focusing on the direct relation-
ship between clinical measures and each device are made 
with caution due to the potential influence of the ceiling 
effect that exists for the FMA. Fourth, it is possible that 
limb kinematics are impacted by the spatial differences 
(6 cm vs. 10 cm reaches) of the task on each device; lon-
ger movements typically require greater movement time, 
execution, and a greater number of corrective move-
ments; particularly in those with stroke. Future studies 
should aim to control for the influence of task-based spa-
tial differences between devices by ensuring identical task 
designs. Lastly, the eight-target visually guided reaching 
task was not designed with tablet use in mind. As pre-
viously stated, some participants had difficulty viewing a 
target that would appear beneath their hand. Future stud-
ies examining upper limb function with a tablet should 
account for this issue by implementing designs that are 
user-friendly and consider the influence and limitations 
of limb posture in the task design.

Conclusion
We successfully developed a tablet-based assessment 
that accurately quantifies upper limb sensorimotor func-
tion. Both the analysis and task used in the tablet were 
validated against a common robotic-based assessment 
where we observed non-significant differences in several 
outcome measures attesting to various aspects of senso-
rimotor function. Collectively, our results confirm the 
potential of tablets as cost-effective and efficient assess-
ment tools for upper-limb function for individuals who 
have had a stroke. We build on the existing literature of 
tablet-based assessments for upper limb function in two 
ways. First, by demonstrating that tablets can capture 
improved metrics of upper limb function when com-
pared to similar studies examining the use of tablets as 
assessment devices [27, 37]. Second, to our knowledge, 
no studies have compared the accuracy of tablets for 
assessing upper limb kinematics against commonly used 
precision lab-based robotic devices (e.g., Kinarm Exo-
skeleton and InMotion). Here, we find that for simple 

motor assessment of the upper limb, the kinematics cap-
tured by the tablet are highly similar to robotics, which 
suggests that tablets are an excellent candidate for inex-
pensive and accessible assessments after stroke.
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