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Abstract 

Background The identification of the electrical stimulation parameters for neuromodulation is a subject-specific 
and time-consuming procedure that presently mostly relies on the expertise of the user (e.g., clinician, experimenter, 
bioengineer). Since the parameters of stimulation change over time (due to displacement of electrodes, skin sta-
tus, etc.), patients undergo recurrent, long calibration sessions, along with visits to the clinics, which are inefficient 
and expensive. To address this issue, we developed an automatized calibration system based on reinforcement learn-
ing (RL) allowing for accurate and efficient identification of the peripheral nerve stimulation parameters for soma-
tosensory neuroprostheses.

Methods We developed an RL algorithm to automatically select neurostimulation parameters for restoring sensory 
feedback with transcutaneous electrical nerve stimulation (TENS). First, the algorithm was trained offline on a dataset 
comprising 49 subjects. Then, the neurostimulation was then integrated with a graphical user interface (GUI) to create 
an intuitive AI-based mapping platform enabling the user to autonomously perform the sensation characterization 
procedure. We assessed the algorithm against the performance of both experienced and naïve and of a brute force 
algorithm (BFA), on 15 nerves from five subjects. Then, we validated the AI-based platform on six neuropathic nerves 
affected by distal sensory loss.

Results Our automatized approach demonstrated the ability to find the optimal values of neurostimulation achiev-
ing reliable and comfortable elicited sensations. When compared to alternatives, RL outperformed the naïve and BFA, 
significantly decreasing the time for mapping and the number of delivered stimulation trains, while improving 
the overall quality. Furthermore, the RL algorithm showed performance comparable to trained experimenters. Finally, 
we exploited it successfully for eliciting sensory feedback in neuropathic patients.

Conclusions Our findings demonstrated that the AI-based platform based on a RL algorithm can automatically 
and efficiently calibrate parameters for somatosensory nerve stimulation. This holds promise to avoid experts’ employ-
ment in similar scenarios, thanks to the merging between AI and neurotech. Our RL algorithm has the potential to be 
used in other neuromodulation fields requiring a mapping process of the stimulation parameters.
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Background
Electrical stimulation has been extensively adopted to 
excite nervous tissue enabling to restore a lost function 
or to treat disabling pathological conditions affecting 
the human nervous system. It is widely used in electro-
physiological research and clinical applications with very 
promising results. As a remarkable example, functional 
electrical stimulation (FES) has been used to induce mus-
cle contractions for restoring functional movements [1], 
such as gait [2–4] and grasping functions [5, 6]. Another 
widespread approach, adopted also in clinical practice, 
is Deep Brain Stimulation (DBS) exploited to relieve the 
symptoms of Parkinson’s disease [7] and to treat epilepsy 
[8]. More recently, the innovative use of electrical nerve 
stimulation to artificially restore sensory feedback after 
limb amputation has shown promising results [9, 10]. 
The technique exploiting invasive neural interfaces (i.e., 
implantable electrodes) [11–14] and non-invasive trans-
cutaneous stimulation (i.e., TENS) [15–18] has been suc-
cessfully tested in upper and lower limb amputees. In 
addition, TENS preliminary showed good results with 
pain treatment in people with peripheral neuropathy 
[19] and affected by reduced peripheral sensitivity with 
impact on the motor control during movements (e.g., 
locomotion) [20].

Despite these successful trials, one of the main barri-
ers for clinical adoption of these neurotechnologies is the 
required calibration (named also mapping or characteri-
zation) of the neurostimulation parameters to obtain a 
desired and effective outcome. The calibration procedure 
of a sensory neuroprostheses consists of a trial-and-error 
process, where the neurostimulation parameters are 
manually changed by a user (e.g., therapist, clinicians, or 
technicians) according to the produced outcome (e.g., in 
case of sensory restoration the patient’s answer), with the 
help of custom-made platforms [21]. This is in contrast 
with some of other neurotechnologies, as FES, where 
external (kinematic or EMG) sensors can used in an auto-
mated protocol [22, 23]. Indeed, the relationship between 
the electrical neurostimulation and the desired output is 
subject-specific, due to the anatomical, perceptual and 
physiological conditions, requiring a personalized choice 
of the parameters [22, 24, 25]. The whole process there-
fore relies mainly on the technical/clinical knowledge and 
expertise of the experimenter. Furthermore, the neuro-
stimulation parameters may vary over time due to adap-
tation to stimulation [26] and thus, the patient is forced 
to go back to the clinic to perform further re-calibration 
procedures. As a result, patients may undergo inefficient 
and long recalibrating session as well as unnecessary 
visits [24, 27]. The multidimensional space of possible 
parameters (e.g., pulse amplitude, pulse width, train fre-
quency), the changes of the parameters over time, and 

the need of an expert user, make the characterization a 
time-consuming, complex and expensive procedure [28].

In the recent past, multiple research groups have tried 
to automatize the procedure of identifying neurostimu-
lation parameters by exploiting sophisticated algorithms 
based on artificial intelligence (AI). Feng et al. [29] pro-
posed a closed-loop global optimization technique based 
on genetic algorithm (GA) to identify novel DBS wave-
forms that diminish rhythmic, burst-like activity char-
acterizing the Parkinsonian basal ganglia. Lorenz et  al. 
[30] proposed to use non-parametric Bayesian optimi-
zation based on relative judgements to search through a 
large tACS (transcranial alternating current stimulation) 
parameter space with the aim of identifying frequency-
phase combinations that elicit the strongest phosphene 
perception in subjects. Laferrière et  al. [31] showed the 
use of Gaussian Processes (GPs) based on a hierarchical 
approach to define optimal inputs for a given EMG target 
output in the case of multi-electrode stimulation during 
the motor cortex stimulation.

Nowadays, reinforcement learning (RL) has been 
successfully applied in multiple fields making its way 
between the supervised and unsupervised machine learn-
ing algorithms. In RL, a software agent makes observa-
tions and takes actions within an environment receiving 
rewards in return. The agent learns, thanks to a positive 
or negative reward, which are the best actions to under-
take in order to achieve a specific goal [32]. Considering 
neurostimulation, it has been already proposed as the 
algorithm to identify the optimal stimulation parameters 
for seizure control in DBS [33] as well as in the optimi-
zation of FES parameters for controlling arm movements 
[23] and cycling [22].

The common for all mentioned uses of AI in neuro-
modulation is a presence of clearly measurable outcome 
(e.g., Movement/EMG), therefore in RL context, we can 
easily assess the state of environment. Instead, if we aim 
to apply a similar approach in somatosensory prosthetics, 
technical solutions are to be designed in order to reliably 
assess the status of it. Indeed, in somatosensory prosthet-
ics, the subject is required to report in detail the electri-
cally-evoked sensation [21, 34, 35]. The resulting quality 
of the perceived sensation can be captured in a reward 
that the RL agent can use to optimize the neurostimula-
tion parameters based on the subjects’ feedback in order 
to evoke a more effective and reliable artificial sensa-
tion. RL, acquiring the knowledge by directly interacting 
with the environment through a trial-and-error process, 
holds potential for applications that rely on the subject’s 
answers, such as the sensory feedback restoration using 
electrical neurostimulation. The goal of this work is to 
develop a closed-loop system based on RL that allows 
an automatic, accurate and efficient identification of 
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neurostimulation parameters for sensory neuroprosthet-
ics applications. To this aim, we designed a RL algorithm 
that selects TENS parameters for sensory restoration 
based on the induced sensations reported by the subjects. 
After an offline validation on 49 subjects, the algorithm 
was integrated with a customized GUI creating an AI-
based mapping platform allowing the subject to intui-
tively interact with the calibrating system. The platform 
was tested on 15 nerves from five healthy subjects (i.e., 
peroneal, tibial and sural for each participant), compar-
ing the RL performance with trained and users, as well as 
with a simplified not AI-based algorithm (i.e., brute force 
algorithm, BFA). Finally, the RL algorithm was validated 
in a realistic application on six nerves from two sub-
jects affected by peripheral neuropathy and sensory loss 
treated through TENS on their lower limbs.

Methods
Study design
The aim of the study was to evaluate the AI-based map-
ping platform (Fig.  1) in terms of speed, accuracy, and 
efficiency in performing the sensory mapping. The RL 
algorithm was firstly tested offline using a dataset collect-
ing 888 trials from 49 independent subjects with TENS 
neurostimulation parameters. These data were used to 

create a data-driven machine learning environment to 
simulate the perceived sensation of a subject. Offline test-
ing was a key step to test the accuracy and reliability of 
the RL before moving to online use. Then, the mapping 
platform was developed for the online testing, integrat-
ing the two trained RL agents (Fig. 1A), the neurostimu-
lation system (Fig. 1B) and a user interface (Fig. 1C). In 
the online implementation, the AI-based mapping plat-
form was tested on 15 nerves of five healthy subjects and 
later on six nerves of two subjects affected by peripheral 
neuropathy. Each subject incurred the mapping of three 
nerves (peroneal, tibial and sural). The purpose of the 
online testing was to evaluate the mapping performance 
of the platform by varying contextual factors such as 
stimulation location and nerve integrity.

AI‑based mapping platform
Sensation characterization procedure
The mapping procedure with TENS was performed deliv-
ering train of biphasic current pulses with a selected 
frequency, pulse width and amplitude through superfi-
cial electrodes placed on the ankle of the subject in cor-
respondence of the specific nerve. Typically, the pulse 
amplitude and pulse width values are modulated keep-
ing the frequency value fixed at 50 Hz, based on previous 

Fig. 1 AI-based mapping platform for optimizing the neurostimulation parameters. The subject is interacting with the user interface, 
simultaneously perceiving neurostimulation selected by the RL algorithm, that is eliciting the electro-touch. The system consists of three parts: 
the AI brain (A), the neurostimulation unit (B) and a user interface (C). A The AI model is an iterative RL machine which initializes and updates 
the neurostimulation parameters sent to the stimulator. B The stimulator receives the parameters and stimulates each of 3 channels accordingly, 
through a pair of superficial electrodes placed on the skin of the subject in correspondence of the specific nerve. C When the stimulation ends, 
the subject can describe the perceived sensation through comprehensive questionnaires, which include the perceived intensity, type and location 
of sensation and the intensity of the sensation perceived under the electrodes. The subject’s answers are sent to the AI which: can either finish 
the characterization, if the desired sensation has been reached or update the neurostimulation parameters and repeat described steps to optimize 
the sensation
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studies [11, 13, 66]. The user selects a reasonable pulse 
width, and a pulse amplitude ramp is performed until the 
minimum value that makes the sensation somatotopic is 
identified. Once the pulse amplitude value is defined, a 
pulse width ramp is performed to find the minimum and 
maximum non-painful perceived sensation. In our work, 
three different nerves of the foot were targeted: pero-
neal, tibial and sural. Each pair of superficial electrodes 
were connected to a channel of an electrical stimulator. 
The device used to release the electric currents was the 
RehaMove3 (Hasomed GmBh, Germany), a CE-approved 
non-invasive four channels surface stimulator. RehaM-
ove3 has a 0.5mA amplitude resolution in PA and 1us 
width resolution in pulse width. Therefore, changing first 
PA provides bigger steps for faster convergence, while the 
following PW ramp allows a finer and resolute modula-
tion. When the stimulation ended, the subject described 
the evoked sensation in terms of intensity, type, location 
and intensity under the electrodes. Two different levels of 
perceived intensity were identified: just perceivable inten-
sity (or low-level) and strong sensation (or high-level), 
also defined as the level 2 and level 8 in a scale from 0 
(no sensation) to 10 (pain), respectively. The stimulation 
parameters corresponding to these two levels were cho-
sen in order to have a somatotopic (i.e., perceived distally 
in the extremity of the foot), natural and minimized in-
loco (i.e., under the electrodes) sensation.

Closed‑loop system
Since the application required to elicit two perceived 
intensity levels (low and high), two different RL agents 
have been trained to learn the two individual tasks. The 
combination of these two agents, named RL algorithm, 
is therefore the brain of our AI-based mapping platform. 
The mapping platform was developed for the online test-
ing, integrating the two trained RL agents, the TENS 
stimulator and user interface. The user interface was 
developed in Unity, a game engine employed to create 
two or three-dimensional, augmented reality and virtual 
reality setups. VR, with purposely-designed scenarios 
and highly-controlled environments, is a widely used tool 
for neurotechnologies applications [18, 36–39]. There-
fore, integrating the stimulation calibration in an AI/
VR platform, could be user friendly and intuitive, espe-
cially in sight of soon developments of novel light wear 
and easy to use smart glasses for virtual reality [40, 41]. 
This platform allowed subjects to directly interact with 
the algorithm, giving feedback about the evoked sensa-
tion (Additional file 2: Movie S1). The VR scenario con-
sisted of an open space environment in which the avatar 
was seated on a wooden bridge matching the patient’s 
position in the real world. Within this scenario, the 
patient observed the panels through which he/she could 

complete the questionnaires describing the sensations 
evoked by the neurostimulation. The patient’s answer was 
then collected by the corresponding RL agent and used 
to optimize the neurostimulation parameters (i.e., stimu-
lation amplitude and pulse width) accordingly. A smart 
parameter initialization was also integrated into the plat-
form (Fig. 1A). The initial low-level parameters, indeed, 
were chosen from the dataset (Table 1), based on the sub-
ject’s gender and targeted nerve, to ensure higher safety 
and less discomfort. Thereafter, the following steps were 
performed:

1. The subject was stimulated by the TENS device 
(Fig. 1B).

2. The subject described the evoked sensation via the 
VR environment (Fig. 1C).

3. The patient’s answer was provided to the low-level 
RL agent which adapted the neurostimulation 
parameters (Fig. 1A).

4. The previous 1) 2) 3) steps were repeated until the 
optimal low-level stimulation parameters were 
obtained.

Once the low-level search for the stimulation param-
eters was completed, the high-level search started. In 
order to speed up the characterization process, the col-
lected dataset (Table 1) has been exploited for initializa-
tion. If the same low-level parameters were found within 
the dataset (i.e., previous subjects reported similar per-
ceptual thresholds), the corresponding high-level param-
eters were chosen to initiate the high-level optimization. 
However, if no match was detected, the low-level param-
eters were used as the starting point for the high-level 
search.

Reinforcement learning (RL)
The AI-based algorithm of the platform is based on the 
reinforcement learning. This algorithm is formalized 
through a Markov’s decision-making process (MDP) 
(S, A, p, r). The state transition function p: S × A × S → 
[0, ∞) gives the distribution of the next state, St+1 based 
on the current state  St and action At [42]. At each time 
step the agent and the environment interact: the agent 

Table 1 Offline dataset overview divided by subject’s gender 
and targeted nerve

Gender Number Nerve Number

Men 27 Peroneal 552

Women 22 Tibial 108

Sural 228

Total 49 Total 888
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receives a representation of the environment’s state, St ∈ 
S, selects an action At ∈ A(s), receives a numerical reward 
Rt ∈ R ⊂ Ɍ, and moves the environment in a new state 
St+1. The action is chosen following a policy (i.e., a map-
ping from states to probabilities of selecting each possible 
action). The goal is to find the optimal policy π* which 
maximizes the return (i.e., the expected sum of rewards), 
denoted Gt, and defined as:

 where γ is a parameter, 0 ≤ γ ≤1, called the discount rate. 
In our work, we used a Deep Q-Network (DQN) method, 
a combination of Q-learning, a popular reinforcement 
learning algorithm, and artificial neural network (ANN), 
to learn and approximate the optimal state-action func-
tion (Q-function). It was firstly proposed by DeepMind 
to solve a wide range of Atari games [43]. The Q-function 
estimates the expected cumulative rewards for taking a 
specific action in a given state. It is a model-free, online, 
off-policy reinforcement learning method. A DQN agent 
is a value-based reinforcement learning agent that trains 
a critic to estimate the return or future rewards [32]. 
During training, the agent [65] (Additional file 1: Fig. S5):

1. Updates the critic properties at each time step.
2. Explores the action space using ε – greedy policy.
3. Stores past experiences using a circular experience 

buffer.
4. Updates the critic based on a mini batch of experi-

ences randomly sampled from the buffer (batch 
updating).

The agent explores the action space using an ε-greedy 
policy to balance exploration (it chooses random actions 
with probability ε) and exploitation (selects the action 
with the highest estimated reward with probability 1 - ε). 
The agent learns by minimizing the difference between 
its predicted rewards and the actual rewards it receives. 
It does this by updating the neural network’s parameters 
using a technique called batch updating. By repeatedly 
updating the neural network based on its experiences, 
the DQN agent improves its ability to make better deci-
sions and maximize rewards in the environment.

RL implementation
The two RL agents (for low and high levels) were trained 
using the MATLABR Reinforcement Learning ToolboxTM. 
For each agent, the key RL elements (Fig.  2A) were 
defined as follows:

Task: Biphasic and charge-balanced pulse trains at the 
frequency of 50 Hz (as in previous studies [11, 13, 66]) 

Gt =

∝

k=0

γ
kRt+k+1

with a duration of two seconds were used for neurostim-
ulation. The task of the agents was to identify the values 
of pulse amplitude (PA) and pulse width (PW) to induce 
a somatotopic and reliable perceivable sensation, while 
minimizing in-loco sensation. The perceived threshold is 
indeed proportional to the injected charge, which follows 
Q = PA * PW. However, as described by the strength-
duration curve, it is important to take into account the 
rheobase (i.e., the threshold current required to excite 
a neural tissue when the pulse width tends to infinity) 
and the chronaxie  (i.e., the minimum time required for 
an  electric current  two times the  rheobase  to stimulate 
the neural tissue). However, the rheobase currents and 
the chronaxie change with the diameter of the sensory 
fibers [44], distance from the nerve, age [45], and patho-
logical conditions (e.g., significant higher rheobase for 
polyneuropathy with respect to healthy [46]) among oth-
ers, making impossible to fix a-priori stimulus current 
for all tested subjects and pathologies. Therefore, both 
parameters (PA and PW) affect the stimulation of a neu-
ral tissue and have therefore been modulated to create 
personalized stimulation patterns.

Environment: A simulated environment is a necessary 
step in developing a RL model. Besides allowing to train 
the model efficiently without demanding extended train-
ing sessions with the patients, simulated environment 
enables to test different scenarios, conditions, param-
eters, and models to find the optimal solution. In our real 
application, the RL environment is the subject himself, 
that after receiving a new stimulation, changes his/her 
states (i.e., perceived sensation) accordingly. In the offline 
training, the environment has to be able to behave as a 
simulated subject, mapping the relationships between 
stimulation and perceived sensation. For this purpose, we 
created a data-driven machine learning environment that 
learned this relationship from a dataset built from previ-
ous neurostimulation experiments carried out on 49 sub-
jects (Table 1). After receiving specific neurostimulation 
parameters (PW and PA) as inputs, our simulated envi-
ronment returns as outputs the level of perceived inten-
sity, the type and the location of the elicited sensation 
similarly to a real subject. Specifically, the environment 
comprised three different models (Fig. 2B) trained using 
the MATLAB Classification and Regression Learner tool-
boxes (See Additional file 1: Sec 1.3): (1) a linear regres-
sion interaction model to predict the four levels which 
describe the perceived intensity (Not perceived/low 
level/high level/too-high level); (2) an ensemble of a sub-
set of KNN classifiers to predict the two classes in which 
the type of sensation has been divided (uncomfortable/
comfortable); (3) a Gaussian Process Exponential Regres-
sion (GPR) to classify the two classes characterizing the 
sensation location (Somatotopic/Not Somatotopic). 
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Specifically, the GPR builds a probabilistic model for the 
continuous relationship input-output. Then, to perform 
binary classification with the GPR, a threshold is cho-
sen to determine the decision boundary; if the predicted 
probability class exceeds the threshold, the data point is 
classified as "Somatotopic"; otherwise, it is classified as 
"Not Somatotopic.". In the online implementation, the 
environment has been replaced by the recruited subject.

States and reward: States are representations of the 
environment, and consequently of the patient feedback. 
Our state is represented by three components which 
include the information about the perceived intensity, 
type and location of the electrically-evoked sensation. 
The combination of their values gives a finite number 
of possible states theoretically equal to 16. However, 
the perceived intensity level not perceived was consid-
ered as a single state because the patient would not be 
able to describe the type and location of a not-perceived 
sensation.

Overall, the final number of states was equal to 13 
(Fig.  2C). The reward is linked to the state reached fol-
lowing the action chosen by the agent. We tested 

different reward functions (Additional file 1: Fig S1). Spe-
cifically, a discrete nonlinear custom reward showed bet-
ter performance during training. To define the reward, 
the states were ordered prioritizing (1) intensity (2) loca-
tion (3) type of the sensation. Since the target level of per-
ceived intensity was different between low and high level, 
the states and the corresponding reward have therefore 
been ordered differently for the two conditions (Addi-
tional file 1: Fig. S3A, S3B). Specifically, in order to push 
the agent to learn actions which result in the best evoked 
somatotopic sensation and, more importantly, to avoid 
actions which provoked patient’s discomfort we attrib-
uted an increasing negative reward for the uncomfort-
able states and increasing positive reward for the desired 
ones. A zero reward was instead assigned to the not per-
ceived state. During the offline training, a phase of fine-
tuning of the reward function was carried out, proving 
that the selected one led to the best results (Additional 
file 1: Fig. S1E).

Agent: The trained agents were two Deep Q-Networks, 
each of them designed with 3 neurons in the input layer, 
9 neurons in the output layer and respectively 40 and 30 

Fig. 2 Reinforcement learning (RL) algorithm for sensory neurostimulation optimization. A General RL architecture. A software agent observes 
the environment’s state, take an action moving the environment in a new state and receives a reward in return. B During the offline training 
the environment is simulated through three different machine learning models trained on a dataset of neurostimulation experiments 
mimicking answers of subjects, for intensity, type and location elicited. In the online condition, the environment is the real subject interacting 
with the AI-stimulation platform. C The states are represented by the intensity, type, and location of the perceived sensation. Each combination 
of possible states returns a different reward ranging from Min to Max, corresponding to least and most comfortable reported sensations. The 
definition of the reward function is different for the low-level and high-level agents, responsible respectively to regulate low- and high- levels 
of reported sensations (Additional file 1: Fig. S3). D Each agent is a Deep Q-Network consisting of a neural network with two hidden layers, an input 
layer with three neurons (states of the environment), and an output layer with 9 neurons (Q-values of possible actions). With a probability of ε, 
the agent selects a random action (exploration), with probability of 1 − ε, the agent selects the action with the highest Q-value (exploitation). Each 
action consists of increasing/decreasing/maintaining the same PA and PW of the neurostimulation (nine possible combinations)
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neurons in the hidden layers (Fig.  2D). The number of 
input neurons is equal to the number of elements that 
characterize a state of the environment (i.e., perceived 
intensity, type, location). The number of output neurons 
is instead equal to the number of possible actions that the 
agent can choose.

Actions: The action is the way through which the agent 
interacts with the environment. The agent’s purpose 
is the modulation of PA and PW. Two arrays have been 
defined: a PA array made of 16 values ranging from 1 to 
16 mA; a PW array made of 54 values ranging from 70 
µs to 600 µs. The resolution of each array was 1 mA and 
10 µs, respectively. The maximum and minimum values 
were chosen based on those in the previously acquired 
dataset (Table 1). The agent can either modulate only PA, 
only PW or both PA and PW simultaneously. Specifically, 
The PA value could be kept fixed, increased or decreased 
by 1mA. The PW value could be kept fixed, increased or 
decreased by 10 µs. (Fig.  2D). The agent learned which 
action to perform depending on the received reward. The 
PA and PW are characterized by a different resolution in 
charge (and therefore perceived intensity). Modulating 
either one or both simultaneously allows the RL to per-
form larger or smaller steps towards the optimal state, 
according to the distance from it.

Offline implementation: training and testing
The dataset used for offline training comprised data col-
lected from calibration previously performed by expert 
experimenters (Table 1). The mapping was executed fol-
lowing the procedure previously described (section “AI-
based mapping platform, “Sensation characterization 
procedure”) on 27 men and 22 women for a total of 49 
subjects. The number of targeted nerves (i.e., peroneal, 
tibial or sural) varied according to the type of experi-
ment. For each nerve, a different number of stimulations 
was performed. The total number of previously col-
lected trials available was 888. Each trial was composed 
by the stimulation parameters (PA, PW) and the respec-
tive feedback reported by the subject (intensity, type and 
location of sensation) together with personal information 
(weight, gender…). These data were used to build a simu-
lated environment based on data-driven machine learn-
ing algorithm, able to simulate the perceived sensation 
(type, intensity and location) of a specific combination 
of stimulation parameters. It allowed to train the model 
efficiently without demanding extended training sessions 
with each subject.

Each training episode involved the simulation of a 
characterization carried out on each subject of the 
offline dataset, to identify the stimulation parameters 
for the desired intensity level. When an episode ended, 
another one immediately started simulating a different 

and randomly initialized subject (e.g., different weight, 
gender…). This allowed agents to gain insight into the 
variability between subjects. In the offline training the 
pipeline worked as follow: (1) the new actions were given 
as input to the offline environment (composed by the 
three previously trained ML models to mimic patients 
perceived sensation, see Methods—RL implementation); 
(2) The simulated environment returned the respec-
tive new states of the system (perceived intensity, loca-
tion and type); (3) The reward was computed from the 
new states; (4) the agents optimized new actions. An 
episode could end in two ways: (1) the agent reached a 
state where the perceived intensity level was classified 
as too high which implied the failure of that episode; (2) 
the maximum number of iterations was reached which 
implied the success of the characterization. On the other 
hand, the training could end when the maximum num-
ber of episodes was reached, when an average cumulative 
reward was exceeded, or it could be stopped manually. 
The hyperparameters characterizing the agents’ train-
ing were: (1) Learn rate = 0.0001; (2) L2 Regulariza-
tion Factor = 0.0001; (3) Target smooth factor = 0.001; 
(4) Discount factor = 0.99; (5) Mini batch size = 64; (6) 
Epsilon = 1; (7) EpsilonDecay = 0.005. These parameters 
were the default parameters of DQN agents in MAT-
LABR Reinforcement Learning ToolboxTM [65] and they 
have already been proposed in other studies [47–51]. 
Specifically, the learn rate and L2 regularization factor 
were regularizing the updates of the weights during the 
critic’s learning process, the target smooth factor was 
controlling the rate at which the target network’s (used 
to generate the target Q-values for training) parameters 
were updated and the discount factor was scaling down 
the rewards to keep the total sum of rewards bounded. 
Epsilon(ε) and EpsilonDecay, instead, have been used to 
balance the exploration-exploitation mechanisms of the 
policy, which pushes the agent into exploration phases 
at the beginning of training while exploiting what he 
has learned towards the end. After training, the agents 
were then tested offline before moving on to the online 
implementation. New simulations were carried out using 
the trained agents and evaluating their performance 
based on the final state reached and the number of steps 
required by the agents to converge. During the testing 
phase, each episode ended when the parameters chosen 
by the agent did not change for five consecutive itera-
tions, which meant that the agent considered that state as 
the maximum achievable. A final state was then consid-
ered correct when it reached the target level of perceived 
intensity (low- or high-level). The testing phase was car-
ried out on the entire dataset in order to evaluate the 
agents’ performance on each of the simulated subject.
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Online implementation
Subjects’ recruitment
Five healthy subjects (3 females, 2 males; 24.4 ± 1.5 years 
old) were recruited (Table  2). Two neuropathic sub-
jects (male) with consequent distal sensory loss were 
recruited. For each participant, three different nerves 
were tested. Two expert users (i.e., researcher used to fre-
quently perform the characterization of neurostimulation 
parameters in different neuroprosthetic applications) 
and five naïve experimenters (biomedical engineers that 
never performed a neurostimulation characterization 
before) were involved.

Healthy subjects: experimental protocol
Fifteen different nerves from five independent subjects 
were mapped. Specifically, peroneal, tibial and sural 
nerves were tested, which are the relevant innervation 
areas for the use of lower-limb neuroprosthetic devices 
[11, 13]. Firstly, the experimenter placed the electrodes 
on the subjects’ ankle to correctly target the three 
selected nerves. Then, the characterization (low- and 
high-levels) was performed by: (I) an expert user with 
technical knowledge and frequent experience in map-
ping the neurostimulation (simulating the therapist); (II) 
a naive experimenter who never performed the charac-
terization before (simulating a non-experienced doctor in 
the clinic); (III) the RL-algorithm; (IV) a brute force algo-
rithm (BFA). The expert and naïve characterization were 
performed using a designed GUI [34]. Short pulse trains 
of electrical current varying in PA and PW were selected 
by the experimenter. The volunteers described the sensa-
tion in terms of type, location, extent and intensity. The 
process ended when the low- and high-level stimulation 
parameters were found. The expert (i.e., the experimenter 
already trained in performing manual neurostimula-
tion calibration) performed the characterization of each 
stimulation area following the standard procedure (Addi-
tional file  1: Fig. S6) enriched by the experience gained 
by previous characterization. Indeed, the expert begins 
the characterization by performing a pulse amplitude 
ramp at a fixed PW value but with personalized choice 
of starting PA and PW step, intentionally selected based 
on the technical knowledge and experience (Additional 
file 1: Sec. 3, expert mapping algorithm). Then, the expert 

adapts the ramp selecting different steps for PA and PW 
based on the reported sensation by the subject (e.g., if the 
subject is not perceiving any sensation, the expert will 
select a larger starting value and step for the next stimu-
lation). Adapting the initial, final and step values of the 
ramp allow the expert experimenter to perform a reli-
able but fast characterization. The naïve experimenter 
followed a clearly defined protocol (Additional file 1: Fig. 
S6). The BFA was implemented using the VR system and 
UNITY 3D as coding platform. The BFA algorithm per-
formed monotonic increasing ramps of PA and PW until 
the optimal parameters were found (Additional file  1: 
Fig. S7). The parameters were initialized at the lowest 
charge that was able to elicit a low-level sensation in 49 
subjects of the offline dataset, to ensure generalizability 
and to avoid failure of the algorithm in case of too strong 
perceived sensations. Indeed, since the BFA cannot 
decrease the stimulation charge once the target intensity 
is exceeded, it might fail in case of too high initialization. 
The parameters found for the low-level were then used 
as starting values to find the high-level parameters. The 
RL-algorithm was implemented in the AI-based plat-
form previously described. The AI mapping platform 
allows the user to directly perform the characterization 
without any help from the experimenter. The four condi-
tions (i.e., expert user, naïve experimenter, RL-algorithm, 
BFA) were randomly presented to the subjects. Each sub-
ject was tested two times, 1 week apart, to evaluate the 
performance of the algorithm over time and its ability 
to overcome the problem of the adaptation to stimula-
tion. The position of the electrodes on day 1 was saved to 
ensure the repeatability of the experiment during day 2 
and to allow the stimulation parameters to be initialized 
starting from those found on day 1.

Diabetic subjects: experimental protocol
The AI-based mapping platform was then tested on six 
nerves of two individuals suffering from peripheral neu-
ropathy associated with peripheral sensory damage and 
loss. During this testing phase the characterization of the 
peroneal, tibial and sural nerves has been performed on 
each subject on day 1 only.

Table 2 Online healthy and neuropathic dataset used to validate the RL algorithm

Healthy Number Nerve Number Neuropathic Number Nerve Number

Men 2 Peroneal 5 Men 2 Peroneal 2

Women 3 Tibial 5 Tibial 2

Sural 5 Sural 2

Total 5 Total 15 Total 2 Total 6
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Evaluation metrics
Mapping time: For each nerve mapped, the start and final 
time of the characterization have been recorded. The 
recorded time include both the stimulation time (choice 
of the parameters and delivery of the stimulation) and the 
time required by the subject to report the perceived sensa-
tion in terms of intensity, type and location.

Number of delivered stimulation trains: For the expert 
and naive conditions, the minimum, maximum and the 
step chosen for the PA and/or PW ramps were saved dur-
ing the experiments. The number of delivered stimulations 
have been calculated afterwards. For what concerns the 
BFA and the RL algorithm specific counters were updated 
each time new stimulation parameters were delivered.

Injected charge: The charge value was calculated as the 
product between the pulse amplitude and pulse width val-
ues found (Q = PA * PW).

Sensation Quality index: The quality index is a meas-
ure defined to evaluate the quality of the mapping during 
characterization. After each characterization, the subjects 
filled a form to describe the evoked sensation in terms of 
perceived intensity, type, location and intensity perceived 
under the electrodes. Then, the quality index takes into 
account if: (i) the desired perceived intensity level (I) has 
been reached (low or high); (ii) The type of sensation (T) 
belonged to the comfortable or uncomfortable class; (iii) 
The location (L) of the sensation was somatotopic and 
if the in-loco sensation (SE) was higher or lower than the 
intensity of the somatotopic one. Different weights were 
attributed to the individual component so that their total 
sum equals 1 in the best case. Then, we defined each single 
weight (intensity, location and type) to achieve a perceiv-
able, somatotopic, and comfortable sensation. It is first 
required that the electrically evoked sensation is clearly 
perceived and identified, and, for this reason, we prioritize 
the intensity  (w1 = 0.6).

Furthermore, the modulation of the intensity in electri-
cal sensory feedback applications has shown promising 
results (e.g., grasping of an object with a prosthetic hand 
[16, 52, 53], or walking phase information relating to the 
pressure exerted by a lower limb prosthesis [13]). Second, 
it is important to evoke a somatotopic sensation that is 
inherently simple and intuitive, allowing for immediate 
and effortless understanding of the feedback [16], hence a 
medium weight was given to the location  (w3 = 0.25). Third, 
the type of sensation was introduced to avoid uncomfort-
able sensations but, since inducing natural (touch-like) 
sensory feedback with non-invasive interfaces is still a 
unresolved challenge [54–56], the lowest weight was 
assigned to it (w2 = 0.15).

The value of the quality index ranged from 0 to 1, as 
follows:

Data collection and statistical analysis
Plotting, data processing and analysis were performed 
in Matlab (R2020b, The MathWorks, Natick, MA, 
U.S.A.). Statistical analysis was performed using built-
in Matlab functions. Bar plots that present results from 
statistical analysis show the mean and standard devia-
tion of the mean. For healthy subjects’ results asterisks 
on plots indicate the following statistical significance 
levels: p < 0.0083 (*), p < 0.0017 (**), p < 0.00017 (***). 
The normality of the distributions has been checked 
using the Kolmogorov-Smirnov test. A nonparamet-
ric Friedman’s test to compare the experimental con-
dition on outcome measures was used. Since we were 
conducting a hypothesis test with multiple compari-
sons (i.e., four conditions tested for a total of six pos-
sible combinations), a post-hoc analysis with Wilcoxon 
signed-rank tests was conducted with a Bonferroni cor-
rection applied, resulting in a significance level set at 
p < 0.0083. For diabetic subjects’ results a Mann-Whit-
ney test has been used to compare the average value of 
the outcome measures between healthy and diabetic 
subjects. Asterisks on plots indicate the following sta-
tistical significance levels: p < 0.05 (*), p < 0.01(**), 
p < 0.001 (***).

Results
RL agents achieve high offline accuracy
The RL architecture for sensory neurostimulation 
optimization and the key elements (environment, 
states, reward, agent and actions) are shown in Fig. 2. 
The two RL agents (for low and high levels) were 
trained using the MATLABR Reinforcement Learning 
ToolboxTM. An RL environment to train and validate 
the algorithm offline was properly created. Indeed, a 
simulated environment based on data driven machine 
learning models trained on previously collected data 
was created, necessary for long and time-consuming 
training of the RL. The offline environment was fitted 
using previously collected data (888 trials from 49 sub-
jects, Table 1). More details on the design and training 
of the simulated environment are reported in Addi-
tional file 1: 1.2. Specifically, the three machine learn-
ing algorithms (Fig. 2B, Additional file 1: Fig. S1B) that 
made up the environment (see Methods—RL imple-
mentation) were: (1) a linear regression interaction 
model which reached a RMSE << 0.001 to predict the 

Q = w1 ∗ I + w2 ∗ T + w3 ∗ L ∗

(

1−
SE

10

)

with:

w1 = 0.6,w2 = 0.15,w3 = 0.25
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perceived intensity level (2) a KNN ensemble classifier 
with an accuracy of 72.3% to predict the type of sen-
sation (3) a Gaussian Process Exponential Regression 
model used for binary classification which reached a 
final accuracy of 91.8% to predict the location of sen-
sation. In this way, the simulated environment was able 
to mimic the subject’s answer in terms of perceived 
sensation during offline implementation. After the 
training, the two agents were tested offline evaluat-
ing the accuracy of the system and the number of steps 
to converge. Convergence was considered achieved 
when the parameters did not change for five consecu-
tive iterations. A state was considered correct if the 
desired level of perceived intensity was reached. The 
low-level agent showed an accuracy of 88.51% (Addi-
tional file 1: Fig. S1C) and an average number of steps 
equal to 19.3 ± 15.3 (Additional file 1: Fig. S1D). On the 
other hand, the high-level agent showed an accuracy 
of 98.64% (Additional file  1: Fig. S1C) and an average 
number of steps equal to 9.93 ± 22.4 (Additional file 1: 
Fig. S1D). Examples of mapping simulations are shown 
in Additional file 1: Fig. S2.

AI‑based mapping platform performs as a trained 
experimenter in peripheral nerve stimulation
Figure  3 shows the results obtained on healthy subjects 
during day 1 of the experiments. The performance has 
been evaluated in terms of mapping duration, num-
ber of delivered stimulation trains, injected charge, and 
sensation quality. No statistically significant difference 
between Expert (i.e., trained experimenter, see methods) 
and RL-algorithm was found in the amount of charge 
injected for low and high levels (Fig. 3A). However, con-
sidering only the average result in the two conditions, it 
is possible to notice a trend. The RL presents an average 
decrease of the injected charge of 21% for the low-level 
and 20% in the high level. Indeed, considering all the 
characterizations performed on day 1, in 86% of cases for 
the low-level and in 80% of cases for the high-level the 
charge injected by the RL-algorithm was lower than that 
of the Expert. This trend is also repeated during day 2, 
although the difference was not statistically significant 
(Additional file 1: Fig. S4A). Regarding the results of the 
other evaluation metrics, considering all four experimen-
tal conditions, we can assert that the RL algorithm was 
the fastest to perform the sensation mapping of the 15 

Fig. 3 Performance of the RL-based algorithm, BFA algorithm, expert user and naïve user. The results during the first day of characterization 
are shown. These plots are computed for: A final charge released by the stimulation parameters found, divided by low level and high-level 
calibration, comparing expert and RL performance. The RL was then compared to the expert for both low and high level in terms of percentage 
of improvements. B Time needed to perform the characterization of the nerve, C number of stimulations delivered and D overall sensation quality 
of the mapping. The bar plots represent the mean values and standard deviation of the measurements of 15 nerves of five independent subjects 
for the 4 approaches (p < 0.0083 (*), p < 0.0017 (**), p < 0.00017 (***)). The four conditions were then compared to the expert and expressed 
as a percentage of the expert performance. The scatter plots represent a direct comparison between the RL and the expert for each trial
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nerves compared to the Naive (Wilcoxon, p < 0.00017) 
and BFA (Wilcoxon, p < 0.0017) conditions requiring sim-
ilar time compared to the expert (RL: 4.6 ± 2.7 min; Exp: 
7.3 ± 3.0 min; Wilcoxon p > 0.0083) (Fig. 3B). Although no 
statistical significance emerged in the comparison with 
the Expert, the results showed again a promising trend. 
Among the three conditions of which performance was 
evaluated with respect to the Expert (i.e., RL, Naive and 
BFA) the RL was the only one that on average presented a 
decrease in time. Indeed, comparing the results obtained 
in characterizing the 15 nerves, in 74% of cases the RL 
took less time than the Expert thus proving that the RL 
on average required less time to characterize the same 
target nerve (i.e., peroneal, tibial, sural) (Fig. 3B). A simi-
lar pattern was observed in the other evaluation metrics. 
The RL released the lowest number of stimulations (RL: 
7.1 ± 4.0 stimuli), with a statistically significant difference 
compared to the Expert (Wilcoxon p < 0.00017), Naïve 
(Wilcoxon p < 0.00017) and BFA (Wilcoxon p < 0.00017) 
conditions (Fig.  3C). The number of stimulations 
decreased by 85% compared to the Expert (46.2 ± 13.9 
stimuli). Furthermore, in all the characterizations per-
formed (i.e., 100% of cases), the RL released a lower num-
ber of stimulations than those released by the Expert. 
Finally, the quality of the mapping performed by the RL 
was similar to the others experimental conditions (i.e., 

Expert, Naïve, BFA) (Wilcoxon, > 0.0083) (Fig.  3D). The 
comparison with the expert again showed how, although 
not statistically significant (Wilcoxon, p > 0.0083), on 
average the quality of the mapping achieved by the RL 
was higher than the expert, reporting in 53% of the char-
acterizations performed a sensation quality index higher 
than the latter. On the second day of testing, the RL algo-
rithm showed the same trend as on day 1, being again the 
fastest condition in performing the mapping, requiring 
the least number of stimulations, and obtaining high sen-
sation quality index (Additional file 1: Fig. S4).

AI‑based mapping platform properly characterizes 
neuropathic nerves
The AI-mapping platform was able to successfully iden-
tify parameters for neuropathic subjects. Figure  4A 
shows the mapping characterization for subject 1 and 
subject 2 respectively. The results are reported in terms 
of injected charge values for the low- and high-level, sen-
sation location elicited over the foot and type of evoked 
sensation. The average time to perform the mapping of 
a neuropathic nerve was 6 ± 2 min requiring a number of 
stimulations on average equal to 10.3 ± 3.8 (Fig. 4B). The 
average quantity of charge injected was equal to 2.1 ± 0.4 
µC and 4.4 ± 1.4 µC for low and high level respec-
tively (Fig.  4B) and the quality of the mapping reached 

Fig. 4 RL-based platform adapts to impaired nerves of peripheral neuropathic subjects. The results obtained by performing the mapping 
of the three nerves (i.e., peroneal, tibial and sural) on two neuropathic subjects (S1 and S2) using the AI mapping platform are reported. A Results 
of the characterization in terms of injected charge for the low and high level, location and type of evoked sensations. B RL performance in terms 
of average and standard deviation over the three nerves reporting time, number of stimulations delivered, injected charge (low- and high-level 
calibration) and quality of the mapping for each subject. Bar plots in the shaded area represents the average values of each metric for people 
affected by polyneuropathy ( P ) and healthy participants ( H ) for easier comparison (p < 0.05 (*), p < 0.01(**), p < 0.001 (***))
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a sensation quality index value on average equal to 
0.94 ± 0.01 (Fig. 4B). No differences emerged in the com-
parison between healthy and diabetic subjects in terms 
of time, number of stimulations released and sensation 
quality index (Mann-Whitney, p > 0.05). On the other 
hand, an increase equal to 103% for the low-level and 
162% for the high-level in the charge released in diabetic 
subjects compared to that released in healthy subjects 
emerged (Mann-Whitney, p < 0.001) (Fig. 4B).

Discussion
The optimization of neurostimulation parameters is a 
required step of applications exploiting electrical neu-
rostimulation [22, 24, 25, 27]. Specifically, in the case of 
sensory feedback restoration with peripheral nerve stim-
ulation (e.g., TENS), the quality and naturalness of the 
restored sensation are strongly dependent on the choice 
of the optimal parameters [34, 35]. Indeed, the neuro-
stimulation parameters are subject-specific, they are sen-
sitive to different nerve conditions (e.g., in case of nerve 
tissue damage in people affected by peripheral neuropa-
thy [57, 58]), and may change over time due to neural 
adaptation [26] and/or displacement of the electrodes. 
Usually, the stimulation parameters are manually selected 
by an experimenter and adapted accordingly to the sub-
jective perceived sensations. This procedure is expensive 
and time-consuming and mainly relies on the experience 
of the experimenter. Furthermore, the subject is forced to 
come back to the clinic every time a further calibration is 
needed [24, 27, 35].

In this work, we presented an AI-based platform able 
to perform an automatic mapping of the neurostimula-
tion parameters for sensory feedback restoration achiev-
ing performances comparable to a trained experimenter. 
Compared to other applications where the output was 
objectively quantifiable [22, 23], defining an objective 
measure of a reported sensory feedback is an important 
challenge. Thanks to our platform we were successfully 
able to quantify the sensory feedback so that it could be 
used by a properly designed RL algorithm.

We validated the platform both in offline and online 
scenarios. Firstly, we tested the algorithm offline to evalu-
ate the performance of the low-level and high-level RL 
agents. Both agents have accurately identified stimula-
tion parameters for TENS in a limited number of steps. 
Overall, the high-level agent showed better performance 
than the low-level agent, likely due to the different type 
of initialization of the stimulation parameters for the 
two agents. Indeed, while the low-level agent started the 
optimization from the lowest possible pair of param-
eters available in the original dataset, the high-level agent 
started from the parameters previously found by the low-
level agent. Thanks to a better personalized initialization, 

the high-level agent required fewer steps to converge 
and achieved higher accuracy in finding the target state. 
Moreover, in order to compensate for different transition 
probabilities deriving from dissimilar perceptual thresh-
olds among the subjects, training and validation of the 
two RL-agents was performed on a dataset collected on 
a total of 49 individuals. Offline testing therefore proved 
that the two RL-agents were able to find an optimal com-
mon policy among the subjects and that RL system was 
accurate and reliable in the identification of neurostimu-
lation parameters.

Then, the online testing phase on healthy subjects con-
firmed that the RL algorithm was able to perform an 
automatic characterization with performance compara-
ble to a trained experimenter. The RL algorithm required 
comparable time to an expert experimenter, released a 
comparable quantity of charge but with a substantially 
lower number of stimulations. These last two factors are 
important to reduce the long-term tissue damage and 
the energy consumption in battery-powered wearable 
devices [59, 60]. The comparison with the naïve condi-
tion highlighted the problems arising from no experi-
ence in performing the calibration. Indeed, this condition 
presented the highest number of stimulations and time 
required. Our platform would therefore allow the sub-
ject to perform a reliable and fast calibration in com-
plete autonomy, avoiding returning to the clinic with a 
consequent impact on time and costs [28]. We also com-
pared the RL algorithm with a Brute Force Algorithm, to 
evaluate whether a simpler algorithm, not based on AI, 
was still able to achieve similar results. Despite being 
both automatic, RL outperformed BFA for all evalua-
tion metrics. Indeed, while the BFA was based on a linear 
increment of the parameters of the stimulation, the RL 
algorithm learned the optimal policy from the data, fol-
lowing a learning paradigm based on experience similar 
to an expert.

Furthermore, to test the inter-day repeatability of the 
RL calibration, the same healthy subjects were tested a 
second time after 1 week, with acquired knowledge of 
the stimulation parameters. The second day of experi-
ments also showed that the RL algorithm was the fastest 
condition while maintaining a high mapping quality and 
releasing a comparable quantity of charge with respect to 
the expert condition. This testifies the repeatability of the 
RL approach over different environment conditions and 
the effectiveness in recalibration getting closer to a sub-
ject-specific characterization.

Finally, very encouraging results were also obtained on 
six nerves of two neuropathic individuals with reduced 
nerve integrity. Although the algorithm was trained on 
healthy data, it was able to successfully complete the cali-
bration with high sensation quality and maintaining a low 
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number of stimulations delivered and time required. The 
injected charge was higher for neuropathic than healthy 
nerves both for high and low levels, due to nerve damage 
caused by peripheral neuropathy, in agreement with pre-
vious works [57, 58].

Interestingly, the restoration of sensory feedback in 
other body areas (e.g., upper limb sensory feedback [16, 
35, 61] or with different neurostimulation technologies 
(e.g., not invasive [34], intraneural [13, 35, 62, 63], epi-
dural [64] and intracortical [65]) follow the same charac-
terization paradigm proposed in this work. Specifically, 
the main stimulation parameters are pulse amplitude, 
pulse width and frequency and the outcome are meas-
ured in term of location, intensity and quality. Therefore, 
our results support the potential of the RL algorithm in 
other neuroprosthetics applications [66].

Although we have shown that we can perform the map-
ping in a completely automatic way, this is only true in 
case of subjects with a known position of the surface elec-
trodes. Finding the placement of the TENS electrodes in 
order to obtain a somatotopic sensation remains a time-
consuming procedure, particularly when sensory defi-
cits are present. To make the subject totally independent 
from the experimenter, it is essential to make also the 
electrode placement automatic. A possible solution to the 
problem could be the use of a matrix of electrodes placed 
on the foot. Following the choice of the most effective 
pair of electrodes, the algorithm could be applied to the 
specific stimulation channel to consequently perform the 
mapping of the parameters. This would allow to auto-
mate both the electrode placement and the optimization 
of the stimulation parameters. One aspect to consider in 
this study is the definition of BFA automatic mapping, 
which has certain limitations. The BFA was defined to 
replicate the naïve calibration method, employing short 
PW steps to prevent any discomfort and unpleasant sen-
sations. In future works, it will be necessary to explore 
different non-AI automatic calibration approaches that 
could incorporate more intelligent parameters selection. 
Nevertheless, expanding the space of stimulation param-
eters, such as introducing the option to choose a pair of 
electrodes, would exponentially escalate the complexity 
of BFA and its optimal definition.

Another limitation of the study lies in the number of 
subjects affected by peripheral neuropathy which has 
been tested. The number of subjects should drastically 
increase to evaluate the performance of the RL algorithm 
considering also different degrees of lesion. Indeed, one 
of the main future objectives is acquiring further data to 
improve the parameters initialization phase based on the 
biometric data of the subject (e.g., degree of lesion, body 
mass index, etc.). The choice of the initial parameters 

directly influences the number of stimulations required 
and consequently the time needed to perform the char-
acterization. Being able to initialize the parameters based 
on the subject’s biometric data would therefore allow the 
platform to be safer, faster, and more accurate. Further-
more, the calibration process could further benefit from a 
personalized training and designing of the RL algorithm. 
Indeed, a personalized RL would allow specific state tran-
sition probability for each subject (also depending on the 
degree of lesion), possibly improving the time and num-
ber of steps required to calibrate. However, this would be 
possible only after multiple days of use of the generalized 
common RL algorithm, which will collect data specific 
to the subject that can be used to fine tune and person-
alize the algorithm. Furthermore, the default hyperpa-
rameters were selected for RL training. While this is a 
common approach during the initial development of 
a machine learning application, fine-tuning of the RL 
hyperparameters could potentially improve the perfor-
mance of our automatic calibration. Given the majority 
of positive rewards in the actual reward function, the RL 
agent was driven towards longer training episodes over 
shorter training episodes. Future steps will therefore also 
be directed towards further optimization and fine-tuning 
of the actual reward function, which could eventually 
improve the time and number of steps of RL calibration. 
However, the results obtained so far are a good indica-
tion for future tests and open the way to the solution of 
a topical problem such as the optimization of the neu-
rostimulation parameters. In particular, a significant 
future step towards the use of such technology in daily 
life will encompass the development of an AI system-
on-chip designed to be portable and with a user-friendly 
interface.

Conclusion
In this work, we presented the RL algorithm applied for 
the characterization of sensory feedback with TENS 
to optimize and automatize the choice of stimulation 
parameters. The platform showed promising results 
both on non-pathological and pathological (i.e., neuro-
pathic) nerves. In both cases it was able to successfully 
perform the mapping automatically, in a fast manner, 
delivering a low number of stimulation trains and low 
injected charge, while maintaining a high quality of 
the mapping, and outperforming other methods. The 
testing with different subjects and nerves, over differ-
ent days has proven the RL algorithm generalizability 
and repeatability in mapping. That makes it a promising 
tool for the standardization of a subject-specific pro-
cedure such as sensation characterization. This repre-
sents a step towards a platform that will allow subjects 
to autonomously optimize the stimulation parameters 
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without the need of an expert. This will diminish in-
person visits to the clinic to perform further recali-
bration phases, thus saving time and costs, while 
maintaining the same health benefits.
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