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Abstract 

Background Wearable technologies are currently clinically used to assess energy expenditure in a variety of popula-
tions, e.g., persons with multiple sclerosis or frail elderly. To date, going beyond physical activity, deriving sensorimotor 
capacity instead of energy expenditure, is still lacking proof of feasibility.

Methods In this study, we read out sensors (accelerometer and gyroscope) of smartwatches in a sample of 90 
persons with multiple sclerosis over the course of one day of everyday life in an inpatient setting. We derived a variety 
of different kinematic parameters, in addition to lab-based tests of sensorimotor performance, to examine their inter-
relation by principal component, cluster, and regression analyses.

Results These analyses revealed three components of behavior and sensorimotor capacity, namely clinical character-
istics with an emphasis on gait, gait-related physical activity, and upper-limb related physical activity. Further, we were 
able to derive four clusters with different behavioral/capacity patterns in these dimensions. In a last step, regression 
analyses revealed that three selected smartwatch derived kinematic parameters were able to partially predict sensori-
motor capacity, e.g., grip strength and upper-limb tapping.

Conclusions Our analyses revealed that physical activity can significantly differ between persons with comparable 
clinical characteristics and that assessments of physical activity solely relying on gait can be misleading. Further, we 
were able to extract parameters that partially go beyond physical activity, with the potential to be used to monitor 
the course of disease progression and rehabilitation, or to early identify persons at risk or a sub-clinical threshold 
of disease severity.

Keywords Multiple sclerosis, Physical activity, Sensorimotor capacity, Accelerometer, Gyroscope, Wrist-worn 
actigraphy, Smartwatch

Background
To date, a variety of different wearable technologies 
exist to assess physical activity (PA), using time series of 
heart rate, acceleration signals, and acceleration derived 
pedometer counts [2, 4, 17, 37]. The application has a 
broad scope, covering the complete age range from juve-
niles to elderly and a comprehensive spectrum of health 
states, i.e., healthy populations with the aim to foster a 
healthy lifestyle or supervise training loads in athletes, as 
well as clinical populations, like frail elderly, stroke sur-
vivors, or persons with neurodegenerative diseases, for 
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instance Parkinson’s disease or multiple sclerosis (MS) 
[4, 5, 7, 19, 28, 31, 33]. Currently, the main target is to 
make a rough estimate of energy expenditure, whether by 
the number of daily steps, the intensity of movements, or 
increases from resting heart rate. The predictive value of 
such data is high [3, 17, 37, 38]. To date and to the best of 
our knowledge, however, none of these technologies, or 
better: none of the current derived parameters, are capa-
ble to go beyond pure energy expenditure and provide 
estimates of the wearer’s (health-related) sensorimotor 
capacity, although there have been first attempts [7, 21, 
23]. For instance, comparing a healthy person with sed-
entary behavior with a neurologically impaired person 
who pursues a highly active lifestyle by means of the PA 
levels could lead to wrong assumptions about the course 
of the disease and prevent early detection or knowledge 
on therapeutic success (e.g., by drug or training inter-
ventions). While PA can be a predictor, or risk factor, as 
well as the consequence of disease [1, 3, 6, 22, 38], many 
(neuro)degenerative diseases and syndromes show early 
and strong sensorimotor impairments. This particu-
larly, highlights the importance of, additionally to energy 
expenditure, assessing sensorimotor capacity, which can 
be observed in terms of particular characteristics such as 
reduced movement speeds, movement smoothness, or 
more monotonous activity patterns [7, 12, 25, 32]. Con-
sequently, the question is not only “How much are you 
moving?”, but also “How well are you moving?”. Therefore, 
our target was to explore the capacity of wearable tech-
nology derived data to estimate the sensorimotor capac-
ity—to go beyond PA.

In this exploratory study, we assessed the uncontrolled 
(i.e., outside the lab) behavior of 90 persons with mul-
tiple sclerosis (pwMS) in an inpatient neurorehabilita-
tion setting by the use smartwatch technology to collect 
data from the built-in pedometer, accelerometer, and 
gyroscope. MS was used as a model due to its progres-
sive nature, a broad spectrum of potential impairments 
ranging from spasticity to cognitive symptoms, and its 
established measures of disease severity—the expanded 

disability status scale (EDSS), as well as its sensorimo-
tor-based pendant—the Watzmann severity scale (WSS) 
[18]. By a set of different parameters, which were partially 
derived from previous kinematic analyses of sensorimo-
tor performance in complex (instrumented) activities of 
daily living (ADL) [12, 16, 32], we were aiming to explore 
the potential to estimate the sensorimotor capacity in a 
wide range of disease severity.

Methods
Sample
A convenience sample of 90 patients was recruited at the 
Centre for Clinical Neuroplasticity, Medical Park Loipl, a 
specialist clinic for neurology and rehabilitation in Ger-
many (Table  1). Inclusion criteria were a diagnosed MS 
(according to the patient file) and the willingness to par-
ticipate in the study. Diagnoses were, dependent on the 
date of diagnosis, based on different criteria, which were 
McDonald (2017) in 23% (n = 21), McDonald (2010) in 
30% (n = 27), McDonald (2005) in 13% (n = 12), McDon-
ald (2001) in 12% (n = 11), Poser in 19% (n = 17), and 
Schumacher in 2% (n = 2) of the cases. None of the initial 
diagnoses have been revised. In that sense, we assumed 
a clean sample of persons with multiple sclerosis. Exclu-
sion criteria were the presence of neurological comorbid-
ities like, for instance, stroke. Further, due to the nature of 
the rehabilitation facility, a certain preselection of poten-
tial participants was unavoidable, excluding participants 
with EDSS scores higher or equal than 8.5, intense need 
for nursing, and psychiatric disorders. Ethical approval 
was given by the ethics committee of the Medical Faculty 
of the Technical University of Munich (approval identi-
fier: 478/19 S-SR). All participants gave written informed 
consent to participate in the study.

Procedure
Participants underwent a sensorimotor test battery at the 
clinic’s Neuro Assessment Lab (NAL), which included a 
set of tests of upper-limb sensorimotor capacity and gait 
performance. On the same or following day, participants 

Table 1 Sample characteristics

EDSS: Expanded disability status scale, WSS: Watzmann Severity Scale [18]

Dataset Age in [a] Biological sex Type of MS Time in [a] since 
first manifestation

EDSS WSS

Full
n = 90

50.2 ± 10.6
(25–73)

67% female
33% male

64% relapsing remit-
ting
36% progressive (pri-
mary or secondary)

17 ± 12
(0–51)

4.0 ± 1.9
(1.0–8.0)

3.7 ± 1.6
(0.7–7.9)

PCA/Clustering
n = 76

49.5 ± 10.1
(25–71)

67% female
33% male

71% relapsing remit-
ting
29% progressive (pri-
mary of secondary)

16 ± 12
(0–49)

3.6 ± 1.7
(1.0–7.5)

3.4 ± 1.2
(0.7–5.8)
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were equipped on the dominant or better functioning 
(i.e., predominantly used in everyday life) upper-limb 
with a Huawei gt2 smartwatch (Huawei Investment & 
Holding Co., Ltd., Shenzhen, China) for one day. The 
smartwatch comprised a custom Android application 
(TUM:W—standing for Technical University of Munich 
Watch) that has been developed using C# Xamarin (Vis-
ual Studio 2019; Microsoft Corp., Redmond, WA). Par-
ticipants wore the watch for one full (working/therapy) 
day between 08:00 and 18:00. Amount and content of 
therapies was not controlled for. Participants were told 
that the watch aims to assess the quality of everyday 
movements rather than PA (as part of the informed con-
sent). As visible in Table  1, not all participants had full 
datasets, which was in eight cases due to an inability to 
carry out balance and gait tests in higher EDSS grades. 
One participant (1 out of 1) with an EDSS of 8.0 was not 
able to carry out neither the balance nor the gait tests. 
Two participants (2 out of 4) with an EDSS of 7.5 were 
not able to execute the balance tasks. One participant (1 
out of 2) with an EDSS of 7.0 was not able to execute nei-
ther the balance nor the gait tests and a further one (1 
out of 2) was not able to carry out the balance task (total 
2 out of 2). Three participants with an EDSS of 6.5 (3 out 
of 6) were not able to execute all gait tests.

Parameters: patient characteristics
We recorded the following key characteristics: The age 
(in [a]; AGE), the time since first manifestation of MS (in 
[a]; FM), and the EDSS.

Parameters: neuro assessment lab (NAL)
All tests of the Neuro Assessment Lab (NAL) were used 
to estimate the sensorimotor capacity of the participants.

Upper-limbs: We recorded the summed performance 
of dominant and non-dominant upper-limb for the nine 
hole peg test (due to a non-normal distribution we used 
the reciprocal 1/ sum of trial durations which lead to 
[1/s], PEG), a grip strength assessment using a isomet-
ric dynamometer (sex-specific z-scores of the summed 
force equivalent in [kg], GRIP), a upper-limb tapping 
task (sum of frequencies over the course of 10s in [Hz], 
TAP), and a pursuit task (sum of deviations from target 
in [mm], DOT).

Information processing capacity: Simple and go/no go 
reaction times (mean of 10 (go) trials per task in [ms], RT 
and GNG) were checked to coarsely estimate the infor-
mation processing capacity of our subjects. Participants 
were asked to use their better functioning upper-limb to 
execute the tasks.

Postural control and gait: Further, body sway in parallel 
stance with open eyes and the Romberg index in a closed 
eyes condition (sway closed eyes/ sway open eyes) (10s 
trial durations, sway as the mean acceleration of the fron-
tal part of the hip in [mm/s2]; SWAY  and ROMBERG), 
and the time to execute the timed stand up and go (with 
2 × 3m walking distance], in [s]; TSUG), the time to walk 
10m at normal and maximum pace (in [s]; NORM10 and 
MAX10) were assessed. Lastly, in gait at self-selected 
(“normal”) pace, the step frequency (in [Hz]; FREQ), the 
smoothness of gait (in % with 100% being perfect; COM-
PLEXITY), the signal to noise ratio of gait (in % with 
100% being perfect; NOISE), an gait asymmetry index 
(ratio of second highest and highest weighting of the fre-
quency spectrum of the acceleration signal at the ster-
num in % with 0% being perfect; ASYM), and the limping 
(relative deviation of acceleration maxima between the 
two legs during gait in % with 0% being perfect, LIMP) 
were assessed. An upper- and lower-limb laterality index 
(LAT) was computed as the relative interlimb differences 
of the following tests: nine hole peg test, grip strength, 
tapping, smooth pursuit, and limping during gait. Lastly, 
the WSS was determined on the basis of sensorimotor 
performance. All tests, the underlying algorithms and 
methodologies, as well as the validation of the WSS have 
been previously described in Gulde [18].

Parameters: smartwatch (TUM:W)
All parameters of the smartwatch (TUM:W) were used 
to assess the level of physical activity and explore the 
potential of a set of mostly gyroscope-derived param-
eters to estimate the sensorimotor capacity that has 
been examined in the NAL (see above).

The measurement frequency of the accelerometer was 
100Hz and of the gyroscope 25Hz. The built-in pedom-
eter was accelerometer-based. The gyroscope data was 
used for kinematic analyses (spatiotemporal charac-
teristics of behavior), so we smoothed it using a mov-
ing average of 0.42s [14]. All data processing to derive 
the used parameters was executed on the smartwatch 
to minimize needed storage. Figure 1 is an illustration 
of TUM:W and its derived parameters (additionally 
summed up and explained in Table 2).

Accelerometer (incl. pedometer): Every minute, the 
number of taken steps, based on the built-in pedom-
eter, was read out. The 95th percentile of the cadence 
(of all minutewise data points which exceeded 5 steps/
min to exclude non-gait intervals) was calculated 
(CADENCE95), as well as the mean of all minutewise 
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pedometer data points exceeding 5steps/min in [steps/
min] (CADENCE). The coverage of a whole minute 
allowed to emphasize outdoor walking. Indoors, espe-
cially in a room or flat, continuous gait with durations of 
more than a minute would most probable not take place. 
The 95th percentile was thought to catch the achieved 
maximum (excluding outliers, which were expected to 
occur less frequent than in, e.g., 5s measurement periods; 
in this sense, the 95th percentile was used instead of the 
90th percentile), while the mean also represented frag-
mentation of distance and activity, i.e., walking, but not 
continuously, within every included minute.

The 90th percentile of the mean acceleration in [g] 
(MEANG), the mean amplitude deviation (MAD; the 
average deviation from the mean of the signal) in [milli-
g], and the taken steps (i.e., movements recognized as 
steps) per second were read out and the frequency of 
steps (STEPFREQ) was derived, based on consecutive 
measurements of 5s. The shorter interval for gait assess-
ment was thought to emphasize covering short distances 
(going to the bathroom or from the patient room to the 
cafeteria) and therefore potentially a different aspect of 
gait than the cadence parameters (which were covering 
1 full minute).

Gyroscope: Every 5s, the mean angular velocity in [°/s] 
was calculated and the 90th percentile was computed 
(ACTI). This parameter was thought as the gyroscope-
equivalent to MEANG.

Every 2.5s for the past 5s, the highest coefficient of 
autocorrelation (AUTOCOR) and its frequency in [Hz] 
in a band of 1.0–3.0Hz were calculated (AUTOCOR-
FREQ). This was thought to catch cyclic movements, for 
instance gait. The relatively short time windows (i.e., 5s) 
of assessment was chosen to enable to also catch short 
movement durations (for instance, washing hands or 
walking indoors).

Every 30s, the last 60s of angular velocity data were 
read out and a set of kinematic parameters was derived. 
For each described parameter, the 90th percentile (i.e., 
reproducible best performance) was computed. The 
five highest velocity peaks in [°/s] (MAX5), the stand-
ard deviation of the velocity in [°/s] (STD), the standard 
deviation divided by the mean of the velocity (STD-
MEAN), the ratio of velocity peaks that exceed the 
last minimum by 0.17°/s (in order to exclude peaks by 
“human” noise; sensor noise was cancelled by signal 
smoothing) and all velocity peaks (PEAKRATIO; the 
ratio of intended peaks and the sum of intended and 

Fig. 1 Illustration of TUM:W and its derived parameters
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unintended peaks as an estimate of movement smooth-
ness), the number of velocity peaks per 360° (PEAK-
SPER360, in contrast to the other parameters, high 
values represent the worst performance; as an estimate 
of movement smoothness  [15]), the mean of the veloc-
ity peaks [°/s] (MEANPEAK), the standard deviation 
of the velocity peaks [°/s] (PEAKSTD), and the stand-
ard deviation of the velocity peaks divided by the mean 
(PEAKSTDMEAN).

Summary parameters: For the full recording, the ratio 
of activity bouts (MAD > 100 milli-g) of at least 30s and 
of at least 5s was computed (FATREV; accelerometer, 
higher values indicate lower fragmentation). Further, the 
relative amount of time of at least light physical activity 
(MAD > 100  milli-g) (RELPA; accelerometer), and the 
amount of gait with low autocorrelation (at least 5 rec-
ognized steps/min and a coefficient of correlation below 
0.30) (LOW; gyroscope) were derived.

Table 2 Summary of parameters derived from the TUM:W smart-watch

The dimension was based on our a-priori assumption, with PA standing for physical activity / energy expenditure and beyond PA for sensorimotor capacity

Abbreviation Sensor (dimension) Assessment Operationalization Outcome (thought) Target

CADENCE95 Pedometer
(PA)

60s every 60s Steps/min 95th perc Continuous walking capacity (to 
cover distance)

CADENCE Pedometer
(PA)

60s every 60s Steps/min if > 5 recognized steps Mean Walking fragmentation

MEANG Accelerometer
(PA)

5s every 5s Mean acceleration 90th perc Energy expenditure

MAD Accelerometer
(PA)

5s every 5s Average deviation from mean 
of signal

90th perc Energy expenditure

STEPFREQ Pedometer
(PA)

5s every 5s Steps/s 90th perc Short distance walking (e.g., indoors)

ACTI Gyroscope
(beyond PA)

5s every 5s Mean angular vel 90th perc Intensity of upper-limb use (e.g., 
during ADL)

AUTOCOR Gyroscope
(beyond PA)

5s every 2.5s Highest coefficient of autocorrela-
tion

90th perc Continuity of cyclic movements

AUTOCORFREQ Gyroscope
(beyond PA)

5s every 2.5s Frequency of highest autocorrela-
tion (1.0–3.0Hz)

90th perc Speed of cyclic movements

MAX5 Gyroscope
(beyond PA)

60s every 30s 5 highest vel. peaks 90th perc Intensity of upper-limb use

STD Gyroscope
(beyond PA)

60s every 30s Standard deviation of signal 90th perc Intensity of upper-limb use (by 
the variance of its movement)

STDMEAN Gyroscope
(beyond PA)

60s every 30s Standard deviation of signal divided 
by the mean of the signal

90th perc Intensity of upper-limb use in relation 
to maximum capacity (within the 60s 
scenario)

PEAKRATIO Gyroscope
(beyond PA)

60s every 30s Ratio of delimited (min. distance 
to last minimum) and all vel. peaks

90th perc Movement smoothness (signal-to-
noise)

PEAKSPER360 Gyroscope
(beyond PA)

60s every 30s Number of vel. peaks
per 360° summed rotation

90th perc Movement smoothness

MEANPEAK Gyroscope
(beyond PA)

60s every 30s Average height of vel. peaks 90th perc Intensity of upper-limb use

PEAKSTD Gyroscope
(beyond PA)

60s every 30s Standard deviation of the height 
of vel. peaks

90th perc Intensity of upper-limb use

PEAKSTDMEAN Gyroscope
(beyond PA)

60s every 30s Standard deviation of the height 
of vel. peaks divided by the mean 
of vel. peaks

90th perc Intensity of upper-limb use in relation 
to maximum capacity (within the 60s 
scenario)

FATREV Accelerometer
(PA)

n.a Ratio of ≥ 30s and ≥ 5s activity bouts 
(> 100 milli-g)

Complete dataset Activity fragmentation (e.g., by fati-
gability)

RELPA Accelerometer
(PA)

5s every 5s Relative time with > 100 milli-g Complete dataset Physical activity

LOW Gyroscope
(beyond PA)

5s every 2.5s If > 5 steps/min, ratio of coeff. 
of autocor. < 0.30 and all > 5 steps/
min data points

Complete dataset Amount of gait with low autocorrela-
tion (e.g., by changes of movement 
direction)
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A summary of all used parameters is given in Table 2. 
Based on a-priori assumptions, we assigned dimen-
sions, i.e., PA and beyond PA, to the parameters. 
PA means that we assumed a parameter to be closely 
related to energy expenditure. This included the gait 
parameters (CADENCE95, CADENCE, STEPFREQ), 
parameters describing average acceleration (MEANG) 
and the average of its fluctuation (MAD), and param-
eters that are based on volume (RELPA) and fragmen-
tation (FATREV) of energy expenditure. We assumed 
all gyroscope parameters to rather describe the qual-
ity than the intensity or volume of behavior, since they 
mostly rely on wrist rotations that move only small 
masses (the hand and everyday objects like a pen or 
glass of water)—and even rotations of the whole upper-
limb (by turning of the shoulder) are expected to rotate 
along the axis of shoulder and hand and in direction 
of gravity when executing tasks with higher torque 
demands. The variance in these measures is therefore 
rather connected to strength, dexterity, and poten-
tially personality (speed-accuracy trade-off ) than the 
cardiovascular capacity and physiological workload. 
Further, we expected the gyroscope derived parame-
ters to be driven by (rotational) upper-limb, especially 
hand, movements that are not made to move larger 
masses like the own body mass during gait (leading 
to meaningful energy expenditure). Still, rotational 
movements can be more or less intense. This can be 
very well described by peak-based metrics. Such met-
rics extract local maxima, ignoring phases of inactiv-
ity and only taking actions into account. MEANPEAK 
would describe the average reached angular velocity of 
movements, for instance, when opening a lid or comb-
ing one’s hair. Higher values would indicate that these 
movements were carried out quicker (with higher peak 
velocities), meaning more intense. Deriving the stand-
ard deviation of the reached peaks (PEAKSTD) would 
further describe to what extent one can adapt the 
movement intensity—scooping a hot soup should not 
necessarily be too intense. However, higher values (i.e., 
variance) can only be achieved if higher intensities are 
reached (the lower limit of zero cannot be shifted), so 
PEAKSTD indicates the intensity of movements, but 
is also taking into account that the intensity should be 
adapted (to a task). In order to extent this thought, we 
also derived the quotient of standard deviation and the 
average (PEAKSTDMEAN), examining the adaptability 
within the range of one’s capacity to carry out intense 
movements.

Statistical analysis
In a first step, parameters with the highest number 
of strong correlations with all other parameters were 

identified and used as anchors (starting points) for a prin-
cipal component analysis (PCA; forward selection by 
Kaiser–Meyer–Olkin criterion). By that, a set of parame-
ters was built, with a measure of sample adequacy (MSA) 
of at least 0.65 per parameter (Kaiser–Meyer–Olkin cri-
terion) and minimum communalities of 0.65. The num-
ber of components was derived from a scree plot. The 
component scores were then fed into a medoid-based 
cluster analysis, with the number of clusters being drawn 
from a scree plot. The clusters where then compared in 
their clinical and behavioral properties using analyses 
of variance. Further, the strongest and most unidimen-
sional TUM:W parameters were taken (for each result-
ing component of the PCA) and examined concerning 
their association with the NAL measures and models of 
multiple linear regressions were computed for param-
eters of upper-limb sensorimotor capacity (i.e., GRIP, 
PEG, TAP, and DOT) by the respective TUM:W param-
eter and the EDSS to estimate the specificity of associa-
tion (general constitution vs. upper-limb capacity). All 
analyses were run using Rstudio (R version 4.0.5, Rstudio 
version 1.4.1106, Rstudio PBC, Boston, MA). Parameter 
distributions were examined for normality using qq-plots 
and in case of PEG normal distribution was achieved by 
using the reciprocal of the trial durations. The thresh-
olds for strengths of associations were set to: weak effects 
r ≥|0.10|, moderate effects r ≥|0.30|, and strong effects 
r ≥|0.50|. α was set to 0.05.

Results
Of the recruited 91 participants, 90 watch datasets were 
used [1 (1%) was excluded due to a relapse, 0 (0%) data-
sets were missing], 76 had complete datasets [all tests of 
the NAL test battery, i.e., 14 (16%) missing at least one 
lab test]. The 76 datasets (Table  1) were used for the 
PCA and clustering, excluding persons with an inability 
to perform all lab tests, including walking and standing 
freely (with closed eyes), and in two cases showing such 
little activity that FATREV could not be calculated (the 
respective EDSS were 5.0 and 6.0 and RELPA 1% and 
3%). The average wear time (which corresponded to bat-
tery time) was 350 ± 87 min (245–541 min). Table 3 gives 
an overview of the key parameters and their descriptive 
statistics.

PCA: The PCA resulted in three components (eigenval-
ues of 5.2, 4.7, and 3.7; 86.2% explained variance). The 
MSA was 0.86, ranging from 0.77 to 0.93 and the commu-
nality was 0.86 (0.66–0.97), indicating a successful selec-
tion of a total of 16 parameters (i.e., the PCA was based 
on 16 parameters). Based on the loading components, we 
labeled the components PA (UL) (physical activity with 
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an emphasis on upper-limb; we did not choose to label it 
upper-limb capacity, since there was no loading of upper-
limb NAL assessments), PA (Gait) (physical activity with 
an emphasis on gait), and Clinical (Gait) (clinical meas-
ures with an emphasis on gait capacity) (Fig. 2). Positive 
component scores indicated better performance, higher 
activity, or better clinical status, respectively. Although 
there were cross-loadings of PA parameters, the PCA 
was overall able to differentiate between PA (UL) and PA 
(Gait). Parameters that were derived from angular veloc-
ity were predominantly loading on PA (UL), accelerom-
eter derived parameters on PA (Gait), and gait function 
from the assessment battery on Clinical (Gait). FATREV 

revealed a strong cross-loading on the clinical compo-
nent and had moderate-to-strong associations with the 
EDSS (r = − 0.58, p < 0.01) and WSS (r = − 0.63, p < 0.01) 
in single regressions. The most unidimensional parame-
ters were PEAKSTD (PA (UL)), COMPLEXITY (Clinical 
(Gait)), and CADENCE (PA (Gait)).

Cluster: The cluster analysis suggested the best fit with 
four clusters (Fig.  3). The clusters differed in all three 
dimensions (all ps < 0.01). Cluster 1 was physically active 
(upper-limb) (component scores: 0.76 ± 0.89), with a 
good clinical status (0.41 ± 0.42), and little gait activ-
ity (− 0.39 ± 0.53). Cluster 2 revealed an average clinical 

Table 3 Listing of key parameters and their descriptive statistics of the full sample (n = 90)

Parameter Descriptives Operationalization Parameter Descriptives Operationalization

TAP
in [Hz]

12.0 ± 2.1
(7.1–18.1)

Sum of both hands: upper-limb tap 
frequency (10s)

NORM10
in [s]

12.5 ± 24.5
(3.6–217)

Time to cover 10m, self-paced

GRIP
in [kg]

Male: 82.1 ± 20.2
(49.6–125.8)
Female: 47.6 ± 10.8
(22.0–72.8)

Sum of both hands:
grip strength

MAX10
in [s]

12.5 ± 24.2
(5.7–217)

Time to cover 10m, maximum speed

DOT
in [mm]

14.5 ± 2.5
(9.8–23.4)

Sum of both hands: Average dis-
tance in a tracking task

TSUG
in [s]

13.6 ± 19.8
(1.4–146)

Time to perform the timed stand 
up and go test (2 × 3m)

PEG
in [1/s]

0.021 ± 0.006
(0.006–0.032)

1/sum of both hands: Trial duration 
in the nine-hole peg test

FREQ
in [Hz]

1.75 ± 0.35
(0.0–2.2)

Step frequency during self-paced gait

RT
in [ms]

500 ± 76
(374–754)

Mean simple reaction time (10 
trials)

COMPLEXITY 0.60 ± 0.23
(0.11–0.93)

Power spectrum derived smoothness 
of gait, self-paced

GNG
in [ms]

596 ± 94
(449–866)

Mean go/no go reaction time (10 
trials)

NOISE 0.69 ± 0.16
(0.18–0.91)

Low-pass filter derived signal-to-noise 
ratio gait, self-paced

SWAY 
in [mm/s2]

85 ± 23
(43–154)

Mean acceleration of waistline dur-
ing parallel stance (10s)

ASYM 0.23 ± 0.24
(0.01–0.97)

Power spectrum derived asynchro-
nicity of gait, self-paced

ROMBERG 1.41 ± 0.82
(0.85–7.05)

Mean acceleration of waistline 
during parallel stance with closed 
eyes (10s)

LIMP 0.09 ± 0.05
(0.02–0.28)

Acceleration derived limping dur-
ing self-paced gait

LAT 0.09 ± 0.06
(0.02–0.37)

Laterality index of lab tests (NAL) STD
in [°/s]

62 ± 12
(32–107)

Standard deviation of angular vel

CADENCE95
in [1/min]

92 ± 24
(29–160)

Steps/min STDMEAN 2.19 ± 0.35
(1.48–3.60)

Standard deviation of signal divided 
by the mean of angular vel

CADENCEin [1/min] 44 ± 13
(18–89)

Steps/min if > 5 recognized steps PEAKRATIO 0.42 ± 0.08
(0.21–0.71)

Signal-to-noise ratio of angular vel. 
peaks

MEANG
in [g]

0.06 ± 0.03
(0.004–0.17)

Mean acceleration PEAKSPER360
in [1/360°]

8.8 ± 1.3
(6.6–12.7)

Number of angular vel. peaks/360°

MAD
in [mg]

153 ± 52
(42–299)

Fluctuation of acceleration MEANPEAK
in [°/s]

142 ± 27
(80–235)

Average height of angular vel. peaks

STEPFREQ
in [Hz]

1.76 ± 0.18
(1.24–2.14)

Steps/s PEAKSTD
in [°/s]

84 ± 14
(43–144)

Standard deviation of the height 
of angular vel. peaks

ACTI
in [°/s]

93 ± 27
(35–186)

Mean angular vel PEAKSTDMEAN 0.85 ± 0.07
(0.68–1.03)

Standard deviation of the height 
of vel. peaks divided by the mean 
of vel. peaks

AUTOCOR 0.44 ± 0.03
(0.37–0.57)

Coefficient of autocorrelation FATREV 0.53 ± 0.16
(0.10–0.83)

Fragmentation of PA

AUTOCORFREQ
in [Hz]

2.5 ± 0.1
(2.3–2.6)

Frequency of autocorrelation 
(1.0–3.0Hz)

RELPA 0.19 ± 0.09
(0.006–0.426)

Relative time with > 100 milli-g

MAX5
in [°/s]

297 ± 59
(150–539)

Maximum of angular vel LOW 0.52 ± 0.15
(0.10–0.83)

Amount of gait with low autocor-
relation
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status (0.12 ± 0.54), average physical activity (upper-limb) 
(0.15 ± 0.75) and the highest gait activity (1.47 ± 0.96). 
Cluster 3 was physically slightly inactive (upper-
limb) (−  0.14 ± 0.96), had a more severe clinical status 
(− 1.75 ± 0.50), and very little gait activity (− 0.39 ± 0.74). 
Cluster 4 was physical inactive (upper-limb) 
(−  0.81 ± 0.62), had a good clinical status (0.68 ± 0.39), 
and revealed little gait activity (− 0.39 ± 0.74).

Three TUM:W parameters of interest were further 
examined (most unidimensional parameters of the three 
components). PEAKSTD to better understand PA (UL), 
CADENCE for PA (Gait), and FATREV with its strong 
cross-loading (0.62) on Clinical (Gait) (Table 4, Fig.  4). 
Figure  5 gives exemplary scatterplots of these three 
parameters with EDSS adjusted test scores of upper-limb 
capacity from the NAL.

PEAKSTD was moderately associated with GRIP 
(r = 0.44, p < 0.01, n = 90) and weakly with PEG (r = 0.25, 
p = 0.028, n = 90) and TAP (r = 0.25, p = 0.029, n = 90). 
Further, PEAKSTD was associated with EDSS (r = − 0.31, 

p = 0.007, n = 90), MAX10 (r = −  0.29, p = 0.010, n = 85), 
NORM10 (r = −  0.27, p = 0.019, n = 85), and LIMP 
(r = −  0.24, p = 0.040, n = 82). GRIP was predictable 
 (R2

adj = 0.27, p < 0.01, n = 90) by PEAKSTD (β = 0.33, 
VIF = 1.11, p < 0.01) and EDSS (β = 0.33, VIF = 1.11, 
p < 0.01), while models for PEG and TAP showed no sig-
nificant impact of PEAKSTD if the EDSS was included.

CADENCE was associated with almost all char-
acteristics and NAL parameters: AGE (r = −  0.40, 
p < 0.01, n = 90), FM (r = −  0.34, p < 0.01, n = 90), EDSS 
(r = −  0.57, p < 0.01, n = 90), WSS (r = −  0.43, p < 0.01, 
n = 90), PEG (r = 0.43, p < 0.01, n = 90), GRIP (r = 0.38, 
p < 0.01, n = 90), TAP (r = 0.44, p < 0.01, n = 90), DOT 
(r = −  0.40, p < 0.01, n = 90), RT (r = −  0.24, p = 0.034, 
n = 90), TSUG (r = −  0.51, p < 0.01, n = 85), MAX10 
(r = −  0.50, p < 0.01, n = 85), NORM10 (r = −  0.47, 
p < 0.01, n = 85), FREQ (r = 0.55, p < 0.01, n = 84), COM-
PLEXITY (r = 0.35, p < 0.01, n = 84), and LIMP (r = − 0.25, 
p = 0.032, n = 82). TAP was predictable by CADENCE 
and EDSS  (R2

adj = 0.25, p < 0.01, n = 90; CADENCE 

Fig. 2 Resulting PCA with 16 parameters and 86.2% explained variance. Components are color coded and circled. Meaningful cross-loadings 
are indicated by color gradients. In contrast to the other parameters loading on Clinical (Gait), higher values in COMPLEXITY represent better 
performance. FATREV: activity fragmentation, RELPA: relative time being physical active, CADENCE: walking fragmentation, MEANG (mean 
acceleration): energy expenditure, MAD (mean amplitude deviation): energy expenditure, PEAKSTD (STD of ang. vel. peaks): movement intensity, 
PEAKRATIO (signal to noise ratio of ang. vel. peaks): movement smoothness, STD (STD of ang. vel.): movement intensity, MAX5 (5 highest ang. 
vel. peaks): intensity, ACTI (mean ang. vel.): intensity, MEANPEAK (mean of ang. vel. peaks): intensity, WSS (Watzmann Severity Scale): severity 
of MS, NORM10 (self-paced time to cover 10m): walking ability, MAX10 (time to cover 10m at maximum pace): walking ability, TSUG (timed stand 
up and go): functional gait capacity, COMPLEXITY (quality of gait): walking ability
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β = 0.25, p = 0.042; EDSS β = −  0.33, p < 0.01; VIF = 1.48) 
and DOT only by CADENCE  (R2 = 0.15, p < 0.01, n = 90; 
CADENCE β = − 0.40, p < 0.01).

FATREV also revealed a plethora of significant corre-
lations. It was associated with AGE (r = −  0.36, p < 0.01, 
n = 88), FM (r = − 0.35, p < 0.01, n = 88), EDSS (r = − 0.58, 
p < 0.01, n = 88), WSS (r = −  0.63, p < 0.01, n = 88), 
PEG (r = 0.50, p < 0.01, n = 88), GRIP (r = 0.32, p < 0.01, 
n = 88), TAP (r = 0.57, p < 0.01, n = 88), DOT (r = -0.55, 
p < 0.01, n = 88), RT (r = −  0.37, p < 0.01, n = 88), GNG 
(r = − 0.27, p = 0.018, n = 88), TSUG (r = − 0.69, p < 0.01, 
n = 83), MAX10 (r = −  0.67, p < 0.01, n = 83), NORM10 
(r = −  0.62, p < 0.01, n = 83), FREQ (r = 0.63, p < 0.01, 
n = 82), COMPLEXITY (r = 0.56, p < 0.01, n = 82), NOISE 

(r = 0.37, p < 0.01, n = 81), ASYM (r = −  0.24, p = 0.038, 
n = 82), and LAT (r = − 0.24, p = 0.034, n = 88). The asso-
ciations with AGE, WSS, GRIP, TAP, DOT, RT, GNG, and 
FREQ were stronger than of the EDSS. PEG was predict-
able  (R2

adj = 0.37, p < 0.01, n = 88) by FATREV (β = 0.24, 
VIF = 1.50, p = 0.034) and EDSS (β = −  0.45, VIF = 1.50, 
p < 0.01). GRIP was predictable by FATREV  (R2 = 0.32, 
p < 0.01, n = 88; FATREV β = 0.57, p < 0.01), but not 
EDSS, same as DOT  (R2 = 0.31, p < 0.01, n = 88; FATREV 
β = −  0.55, p < 0.01), TAP  (R2 = 0.31, p < 0.01, n = 88; 
FATREV β = 0.57), RT  (R2 = 0.14, p < 0.01, n = 88; FATREV 
β = -0.37, p < 0.01), and GNG  (R2 = 0.07, p = 0.018, n = 88; 
FATREV β = − 0.27, p = 0.018).

Fig. 3 a Individual component loadings of the four derived clusters. Lower loadings indicate worse performance in the respective dimension. b 
3D scatterplot of the individual component loadings of the four derived clusters. Lower loadings indicate worse performance in the respective 
dimension
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Discussion
In this exploratory, cross-sectional study, we exam-
ined the physical behavior of 90 pwMS in an inpatient 
neurorehabilitation setting. Our goal was to go beyond 
the sheer estimate of energy expenditure by using a set 
of kinematic parameters derived from the sensors of a 
smartwatch. Our analyses suggested that two distinct 
dimensions of PA were assessed. One being gait related—
increased energy expenditure by gait—and one being 
upper-limb determined—increased energy expenditure 

by everyday hand use. Further, based on a lab assess-
ment of sensorimotor control (upper-limbs, information 
processing capacity, gait) and estimates of the clinical 
severity of the MS (i.e., EDSS and WSS), a third com-
ponent was derived. This, however, did not include kin-
ematic parameters from the smartwatch and had a strong 
emphasis on gait. In a third analytical step, we exam-
ined the potential to describe sensorimotor capacity by 
TUM:W parameters—to go beyond PA.

Table 4 Univariate and EDSS adjusted associations between key-parameters and performance at the Neuro Assessment Lab, 
including patient characteristics

“EDSS adjusted” lists parameters that can be predicted by the respective TUM:W parameter with a model including the EDSS

PEAKSTD: standard deviation of angular velocity peaks, higher values indicate higher intensities of upper-limb use, CADENCE: average steps/min in case of gait, 
higher values indicate less walking fragmentation, PEG: 1/trial duration, higher values indicate better performance; FATREV: bouts > 30s/> 5s, higher values indicate 
lower fragmentation

Parameter Dimension Univariate regression EDSS adjusted

PEAKSTD Upper-limb GRIP r = 0.44, p < 0.01
PEG r = 0.25, p = 0.028
TAP r = 0.25, p = 0.029

GRIP β = 0.33, p < 0.01

Gait LIMP r = − 0.24, p = 0.040
NORM10 r = − 0.27, p = 0.019
MAX10 r = − 0.29, p = 0.010

–

Information processing capacity – –

Clinical estimate & age EDSS r = − 0.31, p < 0.01 –

CADENCE Upper-limb GRIP r = 0.38, p < 0.01
PEG r = 0.43, p < 0.01
TAP r = 0.44, p < 0.01
DOT r = − 0.40, p < 0.01

TAP β = 0.25, p = 0.042
DOT β = − 0.40, p < 0.01

Gait LIMP r = − 0.25, p = 0.032
COMPL r = 0.35, p < 0.01
FREQ r = 0.55, p < 0.01
NORM10 r = − 0.47, p < 0.01
MAX10 r = − 0.50, p < 0.01
TSUG r = − 0.51, p < 0.01

–

Information processing capacity RT r = − 0.24, p = 0.034 –

Clinical estimate and age EDSS r = − 0.57, p < 0.01
WSS r = − 0.43, p < 0.01
AGE r = − 0.40, p < 0.01
FM r = − 0.34, p < 0.01

–

FATREV Upper-limb GRIP r = 0.32, p < 0.01
PEG r = 0.50, p < 0.01
TAP r = 0.57, p < 0.01
DOT r = − 0.55, p < 0.01

GRIP β = 0.57, p < 0.01
PEG β = 0.24, p = 0.034
TAP β = 0.57, p < 0.01
DOT β = − 0.55, p < 0.01

Gait ASYM r = − 0.24, p = 0.038
NOISE r = 0.37, p < 0.01
COMPL r = 0.56, p < 0.01
FREQ r = 0.63, p < .01
NORM10 r = − 0.62, p < 0.01
MAX10 r = − 0.67, p < 0.01
TSUG r = − 0.69, p < .01

–

Information processing capacity RT r = − 0.37, p < 0.01
GNG r = − 0.27, p = 0.018

RT β = − 0.37, p < 0.01
GNG β = − 0.27, p = 0.018

Clinical estimate and age EDSS r = − 0.58, p < 0.01
WSS r = − 0.63, p < 0.01
AGE r = − 0.36, p < 0.01
FM r = − 0.35, p < 0.01
LAT r = − 0.24, p = 0.034

–
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PA clusters
Patients revealed different behavioral stereotypes (as 
previously reported for self-reported fatigue [19], that 
strongly differed in the amplitude of upper-limb PA, 
gait-related PA, as well as their clinical status. Cluster 1 
revealed greater amounts of upper-limb PA, while show-
ing little gait PA, with an overall good clinical status. 
Cluster 2 showed average upper-limb PA and clinical 
status, but a high level of gait PA. Cluster 3 was slightly 
inactive (upper-limb PA), showed little gait activity, and 
had the most severe clinical status. Cluster 4, although 
having a good clinical status, showed little gait activ-
ity and the least upper-limb PA. Cluster 3 showed an 
expectable behavior concerning the clinical status (i.e., 

more severe clinical status, physically slightly inactive, 
and very little gait activity). Cluster 1 and 2 suggest that 
there could be different emphases of PA, either trying to 
maximize ambulatory activity or upper-limb movements, 
although it remains unanswered how these upper-limb 
PA levels were achieved—by ADL, upper-limb trainings, 
gesticulating while conversing, or recreational activities 
(knitting, gaming, nose-picking, etc.). Although cluster 4 
had the best clinical status, they revealed little to very lit-
tle PA of upper-limbs and gait. These could be indicators 
of sedentary behavior, potentially caused by psychologi-
cal factors like experienced fatigue, depression, or low 
motivation; it has been previously reported that higher 
levels of experienced fatigue are rather accompanied by 

Fig. 4 Associations between three key-parameters and performance at the Neuro Assessment Lab, including patient characteristics (green). IPC: 
Information processing capacity. PEAKSTD (STD of ang. vel. peaks): movement intensity, CADENCE: walking fragmentation, FATREV: activity 
fragmentation

Fig. 5 Exemplary scatterplots of PEAKSTD, CADENCE, and FATREV with EDSS adjusted test scores of upper-limb capacity from the NAL. GRIP 
refers to grip strength (higher values indicate better performance), DOT to the distance in a manual pursuit task (lower values indicate better 
performance), TAP to the upper-limb tapping frequency (higher values indicate better performance). PEAKSTD is the standard deviation 
of the angular velocity peaks assessed by the smartwatches (higher values indicate higher intensities of upper-limb use), CADENCE is the average 
of recorded cadences in case of gait (higher values indicate less walking fragmentation), FATREV is the reverse of activity fragmentation (higher 
values indicate less fragmentation)



Page 12 of 15Gulde et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:123 

lower levels of PA than activity fragmentation, which 
would be the case for cluster 4 (FATREV [fragmenta-
tion of PA] cluster 4 = 0.56 ± 0.08 vs. FATREV all partici-
pants = 0.54 ± 0.15, p = 0.642) [17, 30]. Taken together, the 
clusters show that (a) just because one can walk doesn’t 
mean that one will walk, (b) the amount and intensity 
of usage of upper-limbs is quite independent from the 
clinical status, and (c) that sedentarism might be limb-
specific, i.e., persons with a lot of gait activity do not 
necessarily show a lot of upper-limb activity. It will be 
necessary to examine the impact of personal interests, 
therapy content, intensity, applied therapists, medication, 
as well as cognitive and emotional status on the transla-
tion of clinical status (e.g., the ability to walk fast or use 
the hands in a dexterous way) into everyday behavior.

Going beyond PA
We explored three TUM:W parameters of particular 
interest; parameters with strong unidimensional load-
ing for each of the extracted components. Each of the 
extracted three components represented a certain aspect 
of capacity and/or everyday behavior. If being able to 
gather information of sensorimotor capacity (e.g., grip 
strength, finger dexterity, or gait quality) from wearable-
derived parameters, it would allow us to shift from a 
lab-based scenario with discrete measurement points to 
a continuous assessment strategy. This could also cover 
fluctuations, the course of therapy or disease, and pro-
vide the opportunity to go beyond PA, for instance, dis-
tinguishing between a sedentary healthy person and a 
physically active person with a neurological disease, or 
early detecting persons at risk/without diagnosis. Beyond 
PA, in this context, is the estimation of sensorimotor 
capacity, independent of physical activity.

PEAKSTD [standard deviation of angular velocity 
peaks] showed connections with gait and upper-limb 
performance and the EDSS (Figs. 4, 5). When examining 
the sensorimotor capacity of the upper-limbs, only GRIP 
was not fully mediated by the EDSS. In this respect, the 
standard deviation of the angular velocity peaks was a 
moderate predictor of sex specific grip and—considering 
the gait speed associations—general physical strength (as 
grip strength has been shown to estimate general physi-
cal strength in clinical populations [34]. Increased physi-
cal strength would allow an individual to fully adapt its 
actions to the demands of different actions (e.g., slow 
manipulation vs. quick transport), while weaker individu-
als tend to rather show monotonous behavioral patterns 
due to their limited task-adaptability as it has been shown 
for elderly with higher levels of frailty [32]. It is important 
to note that the parameter was based on angular veloc-
ity, i.e., rotation and not translation of the wrist was the 
driving factor. The ability to predict the sex-adjusted 

grip-strength makes PEAKSTD a parameter with great 
potential for populations with a (pathological) loss of 
muscle mass and/or function (e.g., frail elderly), not only 
to assess the progression, but also to observe rehabilita-
tion outcomes in an externally valid way (actual use in 
everyday life).

The derived mean cadence (CADENCE) of recognized 
minute wise ambulatory activity was associated with 
almost all lab assessments (Fig. 4), covering the full range 
of upper-limb capacity, gait performance, as well as clini-
cal estimates. The strong association with the calendar 
age of patients, stronger than the correlation with FM 
[time since first manifestation of MS], indicates that age 
should always be concerned, independent of neurologi-
cal health status [27]. CADENCE was a good predictor 
of the global condition of a subject, but very unspecific 
(i.e., CADENCE was a good predictor of a multitude 
of parameters,see Table  4, Figs.  4, 5). One can derive 
the status or the changes of status without knowing the 
underlying mechanisms. Gait is frequently called the 
“sixth vital sign” [11] and is, as in our case, often a strong, 
but unspecific symptom [29, 35]. Additionally, cluster 4 
indicated that gait-related PA alone can be misleading, 
as it had a good clinical status (with an emphasis on gait 
capacity) but revealed only little gait. Walking little can 
stem from an impaired gait function, a low motivation 
to walk, or a combination of both. Further, one should 
keep in mind that a low fitness level has been shown to 
be a risk factor for developing MS [6]. Cortese et al. [6] 
(successfully) used the duration for a 3000m run of 19a 
men (Norwegian conscription measure) to estimate the 
impact of aerobic fitness on the prevalence of MS with 
onsets later than 10a after the fitness test, therefore con-
trolling for potential confounding early disease signs. In 
this sense, i.e., low fitness levels being a risk factor for 
MS, CADENCE alone might not be the best measure to 
go beyond PA, although adding the percentile-based met-
ric of the step frequency or cadence to the currently used 
daily step counts [1, 4, 5, 17, 20] might be a valuable addi-
tion (not only in neurological samples). The remaining 
association of CADENCE and TAP [upper-limb tapping] 
after controlling for the EDSS indicates that the average 
cadence is already deteriorating with decreasing conduc-
tivity (tapping tasks have been shown to be markers of 
reduced central nerve conductivity [20] before reduced 
gait distances become apparent in the EDSS scoring sys-
tem. The connection of CADENCE with DOT [pursu-
ing a moving target with the finger] (approx. 15% shared 
variance) rather underlines the missing representation 
of non-self-paced time pressure tasks in the disease rat-
ing (DOT have been shown to be moderately associ-
ated with the EDSS [18], although the multiple sclerosis 
functional composite used to include the paced auditory 



Page 13 of 15Gulde et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:123  

serial addition task [26]. Interestingly, but in accordance 
with [36], fast lab walkers were apparently not automati-
cally fast everyday walkers, as there was no connection 
between gait velocity (in the lab) and CADENCE after 
controlling for the EDSS. One potential alternative expla-
nation for the connection of CADENCE with TAP and 
DOT would be that strong upper-limb movements have 
been wrongly recognized as steps by the pedometer and 
persons with better upper-limb capacity would show 
more misrecognizable activity. However, a missing cross-
loading on PA (UL) (Fig. 2) speaks against this.

FATREV [fragmentation of PA], the inverse ratio of 
short and long activity bouts, with higher values indicat-
ing less fragmentation, revealed, like CADENCE, a very 
global connection to the almost the complete test battery 
of the NAL (Figs. 4, 5). Same as CADENCE, it appeared 
to be comprehensive but unspecific. A deeper examina-
tion, however, showed that FATREV was well able to go 
beyond PA (after controlling for EDSS mediation), being 
a moderate to good predictor of upper-limb capacity and 
even weakly of information processing capacity. FATREV 
(EDSS adjusted) was able to predict the (inverse) nine 
hole peg test performance, grip strength, upper-limb tap-
ping, pursuit under time pressure, and reaction times 
(simple and go/nogo). Especially the grip strength, tap-
ping, and pursuit task predictions had quite strong 
|β|-weights of > 0.50. Studies from ageing and stroke have 
revealed for complex ADL that increased fragmentation 
(active times during task execution, usually referred to 
as relative activity) during execution is a good predic-
tor of overall performance (i.e., trial duration) in elderly 
[13, 16], further that performance in neurological popu-
lations (i.e., stroke survivors) could be globally reduced 
(i.e., independent of sub-action demands) [12], and that 
higher individual demands of a tasks can also lower the 
execution speed and therefore sub-pass the threshold 
of ‘activity’ (i.e., activity being meaningful for increas-
ing the energy expenditure) for wearables [16, 32]. Too 
what extend fatigability [19, 30], cognitive task demands 
[12, 13], or limited sensorimotor capacity is leading to 
a reduced FATREV, however, stands to be answered in 
future studies, as we did not include tasks on fatigability 
(motor/&cognitive in the NAL test battery).

The potential advantage of the three discussed param-
eters in comparison to conventionally assessed capacity 
measures is that they can be derived from wearables and 
therefore be used in a continuous way (see discussion 
above). Further, assessing persons in their home envi-
ronment (including the nearby community), would allow 
us to have externally valid information of sensorimotor 
capacity (and its fluctuations and changes), as an addi-
tional dimension to physical activity measures.

The use of the 90th percentile was aiming at assessing 
the best possible performance during daily life without 
being too prone to outliers or measurement errors. In 
future it would be of interest to see if such derived val-
ues tend to be stable over longer measurement durations. 
Further, gyroscopic data appeared to be better suited to 
go beyond PA, since there appeared to be less “cross-talk” 
with gait, like it is often observed in pure accelerometric 
assessments [7, 23, 24], and due to the fact that rotation 
(and orientation) of the forearm is crucial for ADL per-
formance [9, 23], however, a direct comparison of com-
parable gyroscopic and acceleration based parameters 
is still lacking. Different sensor placements might also 
allow to assess gait and postural stability in daily life, as 
there have been promising approaches [10]. The extent 
of transferability of our findings to world settings (not 
inpatient rehabilitation), longer measurement periods, or 
healthy samples will be covered in future studies. So far, 
battery life remains the strongest barrier in this field of 
research (without losing information by down-sampling) 
[7]. Another promising approach would be to examine 
the impact of therapy volume, exercise intensity, and the 
executing therapist on behavior and its changes. Such 
data could be used to optimize and personalize therapeu-
tic measures.

Conclusion
Although reporting limited explained variance of lab-
assessed sensorimotor capacity in a patient sample, we 
report first prove of feasibility of deriving meaningful 
information that goes beyond estimated energy expendi-
ture. However, we only used one measurement point, so 
we have no information on the reliability of the approach. 
Such assessment, if proven to be reliable, might help to 
supervise interventions or to early identify persons at risk 
of losing independence in daily life.
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