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Abstract 

Different research fields, such as biomechanics, medical engineering or neurosciences take part in the development 
of biomechanical models allowing for the estimation of individual muscle forces involved in motor action. The het-
erogeneity of the terminology used to describe these models according to the research field is a source of confusion 
and can hamper collaboration between the different fields. This paper proposes a common language based on lexical 
disambiguation and a synthesis of the terms used in the literature in order to facilitate the understanding of the dif-
ferent elements of biomechanical modeling for force estimation, without questioning the relevance of the terms 
used in each field or the different model components or their interest. We suggest that the description should start 
with an indication of whether the muscle force estimation problem is solved following the physiological movement 
control (from the nervous drive to the muscle force production) or in the opposite direction. Next, the suitability 
of the model for force production estimation at a given time or for monitoring over time should be specified. Authors 
should pay particular attention to the method description used to find solutions, specifying whether this is done 
during or after data collection, with possible method adaptations during processing. Finally, the presence of addi-
tional data must be specified by indicating whether they are used to drive, assist, or calibrate the model. Describing 
and classifying models in this way will facilitate the use and application in all fields where the estimation of muscle 
forces is of real, direct, and concrete interest.

Keywords Musculoskeletal modeling, Muscle forces, Static optimization, Dynamic optimization, Forward modeling, 
Inverse modeling, Data tracking, Terminology homogenization

Background
Musculoskeletal pathologies and neurological motor dis-
orders are public health issues [1] in which the estimation 
of muscle forces in the fields of biomechanical move-
ment analysis, medical engineering, or neurosciences can 
be clearly beneficial [1–3]. Accurately determining the 
forces exerted by each muscle acting on a joint is crucial 
in biomechanics to identify the mechanism behind these 
pathologies, improve treatments, develop new rehabili-
tation techniques and guide surgical procedures [2, 3]. 
Furthermore, determining muscle forces is also essential 
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in neuroscience and related fields to improve the knowl-
edge of neuro-musculoskeletal system organization and 
control, as well as to gain insights into origins of motor 
disorder [4, 5]. Finally, the estimation of muscle forces in 
biomedical engineering provides the necessary tools to 
develop movement devices (motorized prostheses, exo-
skeletons, ergometers) to facilitate clinical rehabilitation 
or assess sports performance [6–8]. Moreover, the real-
time estimation of muscle forces can yield important 
information for human–robot interaction systems [7, 9].

Determining individual muscle forces is not an easy 
process. Despite the inherent limitations in modeling 
assumptions due to the unavoidable simplification of the 
extremely complex neuromusculoskeletal system, bio-
mechanical models (more simply called “models” in this 
article) provide indirect access to muscle force estimation 
[1]. These estimations can reach an adequate level of pre-
cision and reliability for the various fields of application 
concerned [10, 11]. As such, there is no doubt that the 
estimation of the muscle forces is useful to provide accu-
rate knowledge to adapt rehabilitation programs, prepare 
for surgical interventions, prevent the risks of musculo-
skeletal disorders, obtain indications on the origin of a 
motor deficit, or even design robotic prostheses. On the 
contrary, the terminology used to describe these models 
is inconsistent and seems extremely diverse between the 
different fields of research that develop and/or use mus-
culoskeletal models. For example, a significant source of 
confusion exists regarding the description of the different 
steps required for the determination of the muscle forces 
leading some authors to speak of “forward optimization” 
and “inverse optimization” [6, 12]. However, these terms 
are only found in the field of biomechanics and have no 
clear meaning in other fields. This makes it difficult to 
understand the different model components and impedes 
a model’s use beyond its initial scientific field. Without 
questioning a model’s validity and the importance of its 
different components, it appears that the absence of a 
common language to describe biomechanical models 
detriments both the communication and understanding 
between research fields. It would be particularly relevant 
to establish a common language to facilitate method 
discussion, allow comparisons between models and dis-
cuss the advantages, disadvantages, and results. A clear 
description would thus avoid confusion in model com-
prehension and make them more accessible for practical 
applications. In addition, a precise and fully comprehen-
sible description of the model would provide indications 
on the modeling hypotheses and simplify the choice 
of a model according to the desired level of estimation 
precision. This is a determinant point since the mod-
eling assumptions depend on several constraints accord-
ing to the considered field [3]. For example, clinicians 

expect very accurate results even if the data processing 
by the model is computer-intensive [13], while roboti-
cists conversely favor fast solutions for real-time control 
[7]. Another key point is that, regardless of the desired 
level of precision, the estimation of muscle force requires 
measurable external data such as the reaction force com-
ponents at the subject-environment interface, and the 
kinematics of body segments. However, inaccuracies dur-
ing the acquisition of such data [14–16] and the use of 
generic anthropometric tables established from cadavers 
[17] can reduce estimation reliability. To provide addi-
tional information and improve the reliability of solutions 
obtained using modeling, additional data can be added 
[18]. Accurately describing, with a common language, 
the use of these additional data in a model is important to 
know their importance in the estimation process and to 
estimate the reliability of the results.

Hence, the aim of the present paper is not to ques-
tion the importance of muscle force estimation but to 
provide a form of lexical disambiguation and to propose 
relevant universal terminology that can be used in all 
fields of application, enabling the classification of exist-
ing biomechanical models (Fig. 1) using a tree structure. 
This paper is not a systematic review of the terminol-
ogy used but a critical analysis of the terms generally 
used based on a literature review on musculoskeletal 
modeling (mainly on upper limb). To this end, we dis-
cuss the different terms used in the literature based on 
a basic description of the different model components 
and examples and we provide definitions of key terms. 
Firstly, we assess the strategy with which the problem is 
solved: forward or inverse. Secondly, we evaluate the dif-
ferent types of problems: static or dynamic. Thirdly, we 
explain, using computer science terminology, how these 
problems are solved via optimization processes. Fourthly, 
we show how additional data such as electromyography 
(EMG) are integrated and tracked to obtain more physi-
ologically realistic results. Finally, we give some examples 
of model descriptions using the terminology we propose. 
Some models using neural networks or controllers, for 
example, may include some of the components described 
here but are not included in this article.

Solving strategy
Muscle force estimation problems can be solved with 
two different strategies: forward or inverse (Figs.  1 and 
2). With the forward solving strategy, the models aim to 
connect muscle activation level (i.e., level of muscle fiber 
recruitment) and muscle physiology to determine the 
force produced [1, 13]. With the inverse solving strategy, 
the model exploits the consequences of a muscle contrac-
tion to estimate muscle force by determining the net joint 
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Fig. 1 Schematic representation of different components used to describe the biomechanical models for muscle forces estimation. First, 
the solving strategy must be defined by specifying whether it is forward or inverse. Then, the type of problem, static or dynamic, must be described 
while avoiding confusion with the optimization method which can be static or dynamic. Finally, the presence of additional data must be specified 
by indicating whether they are used to drive, assist, or calibrate the model

Fig. 2 Schematic representation of models with forward (A) and inverse (B) solving strategies. In case of a forward strategy, the estimation force 
problem is solved starting from the nervous drive. After estimating the muscle activations, a muscle dynamics model estimates the forces produced 
and then possibly the movement kinematics can be reconstructed. For an inverse strategy, the muscle force estimation problem is solved starting 
from the movement kinematics and kinetics. The net joint torque is distributed in different muscle moments and then possibly assumptions can be 
made about the nervous drive
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torque and dividing it into individual muscle moments 
[13, 14].

During voluntary muscle contractions, the neural 
drive modulating muscle activation is partly generated 
in the primary motor cortex. Neural information trav-
els along the corticospinal tract to motor neurons and 
interneurons located in the spinal cord to reach the mus-
cle fibers. The nervous system has to manage the level 
of muscle fiber activation of different muscles around a 
joint to ensure smooth movements. Buchanan et al. [14] 
described the activation rate of these muscle fibers, called 
muscle activation, as a value between 0 and 1. Electromy-
ography (EMG), optimization, or neural network models 
can be used to estimate this value. With forward solving 
strategy, these muscle activations are the input data of 
models representing the physiology of the muscles and 
tendons with their active and passive components (usu-
ally a Hill-type model). This reflects how muscle activa-
tions are transformed into forces [6, 8, 14, 19]. Individual 
muscle forces operating around the joint add up to pro-
duce a net joint torque.

With inverse solving strategy, the net joint torque is 
determined using the kinematics of the body segments 
and, optionally, reaction forces. The net joint torque is 
then distributed among the different muscles to obtain 
individual muscle forces [12, 16, 20]. However, this distri-
bution is an undetermined problem because the number 
of muscles involved in moving a joint is higher than the 
number of degrees of freedom. This problem of muscle 
redundancy can be solved by minimizing or maximizing 
an objective function, which must be chosen according 
to the task studied to reflect the mechanisms by which 
the muscles are recruited [21, 22]. Crowninshield and 
Brand [23] and Challis and Kerwin [16] tested different 
objective functions to estimate the forces produced by 
the muscles acting around the elbow: the weighted sum 
of the muscle forces, the sum of the forces normalized by 
the isometric maximum force, or the sum of the muscle 
stress. Models solved with inverse strategy are frequently 
used for their simplicity and speed of execution. How-
ever, this simplicity is accompanied by an inadequate 
consideration of the force production physiology and a 
lack of reliability in the results.

While this distinction between the terms “forward” and 
“inverse” allows a clear description of the solving strategy, 
other authors such as Anderson and Pandy [24] com-
bined inverse and forward solving strategies with static 
and dynamic optimization, respectively (Table  1). This 
link implies that the optimization method is determined 
by the solving strategy and suggests that the inverse strat-
egy is static, and the forward strategy is dynamic (a com-
prehensive description of static and dynamic problems 
is given in the following section). This link between the 

solving strategy, the type of problem, and the optimiza-
tion method may be suitable in some fields but can be a 
source of confusion and model misunderstanding. The 
type of problem (further outlined below) and the optimi-
zation method for muscle force estimation can be static 
or dynamic regardless of the solving strategy (Fig.  1). 
Hence, the first element of the model description should 
be the solving strategy: forward or inverse, as defined 
in Table  2 (see: “Forward solving strategy” and “Inverse 
solving strategy”, respectively).

Type of problem
Depending on the task, muscle forces can be estimated by 
a single value at a single time point for a static problem; 
otherwise, for a dynamic problem, muscle force varia-
tion can be followed over time. Dul et al. [25] studied the 
forces produced under isometric conditions by the knee 
flexor muscles with an experimental protocol including 
isometric contractions at different intensities. This static 
problem consisted of calculating the muscle forces pro-
duced at a given time according to contraction intensity. 
Conversely, Lloyd and Besier [26] developed a model to 
obtain the forces produced by the muscles surrounding 
the knee during different tasks (eccentric flexion/exten-
sion, concentric flexion/extension, straight running, 
crossover cut). In their dynamic problem, the forces were 
estimated over the duration of the task. While there is 
no point in solving static problems using a dynamic opti-
mization, dynamic problems can involve either static or 
dynamic optimization.

The type of problem is not usually explicitly described 
in the articles on muscle force estimation (Table 1), even 
methodological articles. Referring to the arguments 
developed above and to the definition given in Table  2 
(see: “Type of problem”), we recommend that the type 
(i.e., “static” or “dynamic”) of problem be clearly stated in 
the model description to avoid confusion with the opti-
mization method.

Optimization method
The optimization method can involve static or dynamic 
optimization (Fig.  1). According to computer science, 
static optimization can be defined as a process that 
allows an optimal solution to be found for a problem in 
which all the input data are known and can be processed 
independently of the time course [27]. We define “opti-
mal solution” as at least one near-optimal solution (pos-
sibly several) found in a given amount of time. Dynamic 
optimization problems are special cases of dynamic 
problems that “are solved online by an optimization 
algorithm as time goes by” [28]. While the set of possi-
ble solutions is defined before static optimization, it can 
be modified during dynamic optimization [29–31]. This 



Page 5 of 11Mathieu et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:130  

Table 1 Example of classification of some biomechanical models for muscle forces estimation

Description by 
authors

Solving strategy Type of problem Optimization method Additional information

Type of 
optimization

Time windows 
resolution

EMG contribution Data tracking

[2] EMG-informed Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque, 
joint contact forces)

[7] Inverse dynamics,
Neural networks

Inverse Dynamic Static Discrete Without Without

[14] Forward dynamic, 
calibrated,
EMG-based

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque)

[16] Inverse dynamics Inverse Static Static Discrete Without Without

[18] Hybrid model (for-
ward and inverse)
Static optimization
EMG-informed

Forward Dynamic Static Discrete EMG-driven Data tracking 
assisted
(Net joint torque, 
muscle excitations)

[35] Inverse Static Static Discrete Without Without

[36] Dynamic optimiza-
tion
Data tracking 
problem

Forward Dynamic Static Continuous Without Data tracking driven
(Ground reaction 
forces)

[38] Inverse dynamic, 
numerical 
optimization, EMG-
assisted

Inverse Dynamic Static Continuous EMG-assisted Data tracking cali-
brated
(Net joint torque)

[41] tracking-assisted 
forward-dynamic
optimizations

Forward Dynamic Static Continuous Various models are 
presented

Data tracking driven

[46] Inverse dynamics Inverse Static Static Discrete Without Without

[47] Kinematics 
and EMG based

Inverse Dynamic Static Discrete EMG-calibrated Data tracking driven
(Net joint torque)

[48] EMG-assisted 
optimization

Inverse Dynamic Static Continuous EMG-driven Without

[51] Forward dynamic,
tracking simulation

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Joint angle)

[52] inverse dynamic, 
Kinematic tracking

Inverse Dynamic Static Discrete Without Data tracking 
assisted
(Joint angle 
and velocity)

[21] Inverse dynamics,
Static optimization

Inverse Static Static Discrete Without Without

[50] Numerical optimi-
zation,
EMG driven

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque)

[6] Inverse and for-
ward optimization,
EMG driven

Forward Dynamic Static (× 2) Continuous 
and discrete

EMG-driven Data tracking 
assisted
(Activation)

[19] Forward dynamic,
Static optimization, 
EMG driven

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque)

[53] EMG driven Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque)

[17] Forward dynamics,
EMG driven

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque 
and joint angle)
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search for optimal solutions can be carried out in differ-
ent resolution time windows: if the problem is solved at 
each time interval, the optimization is in discrete time; if 

the problem is solved for the entire duration of the task 
studied in a single step, the optimization is in continuous 
time [32].

Table 1 (continued)

Description by 
authors

Solving strategy Type of problem Optimization method Additional information

Type of 
optimization

Time windows 
resolution

EMG contribution Data tracking

[26] EMG driven Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Net joint torque)

[12] Inverse-dynamics 
optimization 
and inverse-
forward-dynamics 
models

Inverse Dynamic Static Discrete Without Data tracking 
assisted
(Joint angle 
and velocity)

[8] EMG driven Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated
(Joint angle)

[42] Calibrated, EMG-
informed

Forward Dynamic Static Continuous EMG-driven Data tracking cali-
brated and assisted
(Net joint torque)

[20] Inverse dynamics Inverse Dynamic Static Discrete Without Without

Proposal of a new classification of references presenting a model for the estimation of muscle forces available in biomechanics and associated fields, based on 4 
superimposed components (solving strategy, type of problem, optimization method, additional information) and using the semantic elements of the common 
language recommended to facilitate the use, development, and applications of biomechanical modeling in all the fields where the estimation of muscle forces is of 
direct interest

Table 2 Definitions of principal terms

Term Definition

Muscle force estimation problem Problem consisting in seeking a muscle effort estimation [1]. Muscle efforts are related to muscle force or muscle 
moment production

Solving strategy Strategy chosen to solve the muscle force estimation problem which may or may not correspond to the physiologi-
cal motor control

Forward solving strategy Strategy chosen to solve the muscle force estimation problem which corresponds to the physiological motor con-
trol, i.e., from nervous drive to force production

Inverse solving strategy Strategy chosen to solve the muscle force estimation problem which does not correspond to the physiological 
motor control, i.e., from the movement kinematics and external forces to muscle moment production

Muscle excitation Nervous drive controlling muscle contraction [14]

Muscle activation Rate of motor units’ recruitment within the muscle [14]

Type of problem Designates the static or dynamic aspect of the solution sought to the muscle force estimation problem. In case 
where a single value of muscle force at a given time t is sought, the problem is a static type. Conversely, if a change 
of muscle force produced over time is sought, the problem is a dynamic type

Optimization method Mathematical method used to solve the muscle force estimation problem

Time windows resolution Designates the temporal aspect of optimization implementation. A discrete-time optimization searches for a solu-
tion for each temporal node individually. For continuous-time optimization, a solution is sought over the entire 
duration of the experiment in a single step

Static optimization Process that allows an optimal solution to be found to a problem for which all the input data are known and can be 
processed independently of the time course [27]

Dynamic optimization Process that allows an optimal solution to be found to a problem for which data being acquired and can’t be pro-
cessed independently of the time course [28]

Experimental situation of interest Period during which the acquired data correspond to the situation to which the study problem relates

Data tracking Process that allows the tracking of experimental data to ensure the realism of muscle force estimation. Estimations 
are compared and adjusted to experimental data [1]
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In practice, static optimization is used in static or 
dynamic problems to calibrate or drive models with for-
ward solving strategy and to solve the problem of mus-
cle redundancy with inverse solving strategy [1, 13, 24, 
33]. Many parameters are needed to estimate individual 
muscle forces using the forward solving strategy. These 
parameters can be the maximal force, optimal length, 
maximal shortening velocity, the force–length and force–
velocity relationships, and the parameters allowing for 
muscle activation estimation. The latter values can be 
obtained from measurements made on cadavers [34] but 
these parameters vary from one individual to another 
and depending on the task [17]. A calibration process is 
usually performed before experimental situation of inter-
est, as the reliability of muscle force estimation depends 
on the individualization of these parameters [35]. For 
example, Hou et  al. [19] used a set of data (joint angles 
and EMG) acquired before the experimental situation 
of interest to estimate muscle activation and the muscle 
parameters of their model with forward solving strategy. 
A static optimization process determined the optimal 
values of these parameters to minimize the difference 
between the net joint torque estimated by the model and 
the same values determined through experimental data. 
Likewise, Lin and Pandy [36] used static optimization 
to find a set of muscle excitations to drive a model using 
OpenSim software [37]. They collected gait data and cal-
culated the set of muscle excitations that reproduced the 
experimental data over one stride cycle, minimizing the 
difference between the estimated and measured ground 
reaction forces. These two optimizations conducted 
by [19] and [36] in a model with forward solving strat-
egy were performed in one step for all the data from the 
experimental situation of interest (the time is not divided 
into time intervals, it is a continuous variable) and so 
are continuous-time static optimizations [32]. This type 
of optimization is often mistakenly regarded as dynamic 
optimization due to the continuity over time of the result 
obtained (Table 1). Models with inverse solving strategy 
can also be associated with continuous-time static opti-
mization. As an example, Amarantini et al. [38] estimated 
agonist and antagonist muscle moments with coefficients 
applied to EMG data, and used a static optimization pro-
cess in one step for the whole session data to estimate the 
values of these coefficients.

Static optimization problems can also be solved at each 
time interval [1, 13, 24, 33, 36]. For example, Challis and 
Kerwin [16] distributed muscle forces using static opti-
mization to solve the problem at each time point with-
out correlation with the results from the previous or next 
instant in time. However, this type of optimization can 
lead to discontinuities in the results obtained over time. 
In this study, time is an integer parameter, and the time 

interval is fixed. They solved a static optimization prob-
lem in discrete time [32].

Although it seems unnecessary to specify the resolution 
time windows (as defined in Table  2) in model descrip-
tions, it is essential to avoid any confusion between the 
type of problem and the optimization method (as both 
can be static or dynamic) and not systematically link the 
continuous aspect with dynamic optimization.

To our knowledge, there is no muscle force estima-
tion model that uses a dynamic optimization process 
as defined above. Therefore, we will refer to the field of 
computer science to provide an example of dynamic opti-
mization. Several variants of the well-known dynamic 
path planning problem are good candidates to test static 
vs. dynamic optimization processes [31, 39, 40]. Even if 
the problem considered is based on routing helicop-
ters in three dimensions, this is quite similar to a clas-
sical Global Positioning System (GPS). The objective is 
to determine an optimal route (or at least a sub-optimal 
route) to go from point S (start) to point D (destination) 
that minimizes the distance and/or time and/or fuel con-
sumption while fulfilling constraints related to the vehicle 
and so on. Before the trip, considering the conditions as 
ideal, a route is obtained using static optimization. Dur-
ing the trip, the route is dynamically re-optimized to deal 
with real-time problems (traffic jams, meteorological 
events, breakdowns, addition/deletion of waypoints…). 
Optimization is therefore carried out in a changing envi-
ronment and must adapt to changes made in real time. 
Muscle force estimation models may involve dynamic 
problems but have not yet been used in changing envi-
ronments requiring adaptation of the objective function 
or constraints over time.

For a better understanding of the model process and 
characteristics used to estimate muscle force, it seems 
necessary to specify whether the optimization method is 
static or dynamic (Fig. 1) as defined in Table 2 (see: “Static 
optimization” and “Dynamic optimization”, respectively). 
Regardless of the method, optimization provides an opti-
mal result that does not necessarily correspond to the 
experimental data, and which is not systematically physi-
ologically realistic.

Beyond the needful clarifications regarding the seman-
tic elements relating to the solving strategy, and some 
characteristics of optimization problems designed to esti-
mate muscle forces, further clarifications seem necessary 
regarding the possibility of adding additional information 
from experimental data.

Additional information
There seems to be a consensus on the usefulness of addi-
tional information to improve the reliability of the results 
obtained with biomechanical models [18, 41, 42]. EMG 
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data reflect the sum of the action potentials received by 
muscle motor units and provide information on how the 
nervous system controls muscle contractions. These data 
are important to improve the accuracy of the estimated 
muscle forces. Moreover, new approaches characterizing 
how the nervous system drives muscle coordination con-
stitutes a field of research that deserves to be investigated 
to provide a more realistic and neurophysiologically-
compatible estimation of muscle forces [18, 42]. Other 
experimental data can be considered to ensure a good 
correlation between the experimental data and the solu-
tions provided by the model. However, the terminology 
used to describe their integration into models is hetero-
geneous and requires clarification.

Contribution of EMG
EMG data reflect the central neural drive from the cortex 
to the muscle and can be used with forward or inverse 
solving strategies (Fig.  1). Models using EMG data are 
called EMG-informed models [2, 42] and are further des-
ignated by a variety of sub-terms such as EMG-driven, 
EMG-assisted, EMG-hybrid [2], EMG-based [38], and 
EMG–force [43] (Table 1). These last two terms (EMG-
based and EMG–force) are not widely used in the litera-
ture and the term EMG-hybrid does not refer directly 
to the EMG implementation process. To clarify this ter-
minology, the classification proposed by Hoang et al. [2] 
can be simplified to present only two categories: “EMG-
driven” in which EMG is used as an essential input to 
drive the model, and “EMG-assisted” in which EMG 
provides additional information to improve solution reli-
ability but its removal would not hinder the estimation 
of muscle forces. However, this classification has to be 
expanded to take into account “EMG-calibrated” models 
in which EMG helps to calibrate the model before apply-
ing it to the experimental situation of interest.

Buchanan et  al. [14] proposed to transform the EMG 
signals into muscle activations to drive a model with for-
ward solving strategy. For this purpose, the EMG signals 
were normalized by their maximal value during a maxi-
mal voluntary contraction and filtered to obtain muscle 
excitations. These muscle excitations were transformed 
into neural activations to take into account the electro-
mechanical delays (i.e., the delay between neural drive 
and force production) [6, 14, 44]. According to their 
study, this transformation was achieved with a differen-
tial equation or a recursive filter. The neural activations 
were then adjusted to consider the non-linear aspect of 
the EMG–force relationship [6, 14, 45]. In this context, 
the EMG signals are input data driving these models, 
which can be called EMG-driven models [1–3, 14, 26, 
42].

With the inverse solving strategy, EMG provides addi-
tional information to divide the net joint torque into indi-
vidual muscle moments to obtain more realistic results. 
The objective functions tested by Crowninshield and 
Brand [23] or Challis and Kerwin [16], are commonly 
used but they can fail to correctly predict the co-contrac-
tion of antagonist muscles [46, 47]. The minimization of 
muscle forces or muscle stresses leads to an underesti-
mation of the forces acting in the opposite direction of 
the movement. To improve the estimation of antagonist 
muscle forces, EMG data can be added to guide the force 
distribution during optimization. Amarantini et  al. [38] 
minimized the difference between the net joint torque 
determined by inverse dynamics and the net joint torque 
estimated through an EMG-torque relationship obtained 
with a static optimization. This optimization determines 
the values of the coefficients representing the EMG-
torque relationship, individual muscle gains, stiffness, 
and viscosity that were applied to the EMG data to esti-
mate net agonist and antagonist torques. These muscle 
group torques were then divided into individual muscle 
moments using a min/max optimization process with an 
objective function based on muscle stress. This is a typi-
cal EMG-assisted model [48] as EMG data were used as 
additional data to limit the set of possible solutions of the 
optimization process.

The EMG data can also help to calibrate the objective 
function of the optimization process. Wen et  al., [47] 
employed a model with a forward solving strategy using 
EMG, and an inverse solving strategy with an objective 
function including a co-contraction factor, Xs, at an ini-
tial value. These two estimations of muscle forces, with 
forward and inverse strategies, were compared, and Xs 
was adjusted to minimize the difference between them. 
This process was applied to data from 17 subjects to find 
a relationship between Xs and kinematic data using lin-
ear regression. Once this calibration was performed, it 
was possible to estimate the muscle forces without EMG 
data. This is an example of a model that can be called 
EMG-calibrated because EMG data allow the objective 
function to be calibrated but are not useful during the 
experimental situation of interest.

Data tracking
The term “data tracking” refers to a process during which 
an optimization or a controller minimizes the differ-
ence between the data estimated using the model and 
the experimental data. The tracking data can be joint 
torques [19, 49, 50], kinematics [51], or muscle activa-
tions [6] (Table  1). The tracking information allows for 
more realistic results to be obtained, and limits inter-trial 
variability and sensitivity to noise. Data tracking can be 
conducted before model application to the experimental 



Page 9 of 11Mathieu et al. Journal of NeuroEngineering and Rehabilitation          (2023) 20:130  

situation of interest during a calibration process, or 
directly during the experimental situation of interest. In 
the latter case, the terminology used to describe how data 
tracking contributes to the estimation of forces varies. 
For example, “enhanced static optimization” [3], “closed-
loop control strategies” [52], “inverse forward optimiza-
tion” [12], “assisted data tracking” [1, 13], and “tracking 
methods” [51] all refer to a form of data tracking process. 
Some of these terms only apply to a minority of existing 
models because they are too specific to a model configu-
ration. For example, the term “enhanced static optimiza-
tion” could only apply in the case of static optimization. 
In addition, we eliminated terms that did not directly 
refer to the process described. The terms “closed-loop 
control strategies” and “inverse forward optimization” do 
not directly refer to experimental data tracking. Finally, 
some terms are too generic, such as “tracking methods”, 
and impede the differentiation of different possible con-
figurations. To clarify this terminology, we propose to fol-
low the same reasoning as with EMG contribution, and 
can define three categories (Fig. 1): “data tracking-driven” 
models in which data tracking is used as an essential 
input to drive the model; “data tracking-assisted” mod-
els where data tracking brings additional information to 
improve solution reliability, but its removal would not 
hinder the estimation of muscle forces; and “data track-
ing-calibrated” models in which data tracking helps to 
calibrate the model before its use in experimental situa-
tion of interest.

Data tracking-driven processes can be used to drive 
models with forward solving strategy. Lin and Pandy, 
[36] tracked external forces to determine a set of mus-
cle activations that correspond to experimental data to 
drive their model. This approach, providing solutions 
that reflect the dynamics of the system, is often assimi-
lated to dynamic optimization [24]. However, even if the 
force estimation problem is dynamic, the set of possible 
solutions does not change during the optimization; the 
environment remains stable. This dynamic problem is 
therefore solved using continuous-time static optimiza-
tion (Table 1).

Data tracking-assisted processes can be used to 
enhance the reliability of the estimated forces in an addi-
tional feedback loop that can be removed. For example, 
data tracking can limit errors linked to net joint torque 
computation using inverse dynamics and allow for better 
consideration of muscle physiology with inverse solving 
strategy. Rengifo et  al. [52] determined the joint torque 
with inverse dynamics and then divided it into indi-
vidual muscle forces using an objective function with 
a co-contraction factor. The corresponding kinemat-
ics were computed using a geometrical musculoskeletal 
model; a controller minimized the difference between the 

estimated and experimental kinematics to adjust the net 
joint torque.

Finally, data tracking-calibrated processes can aid 
model adjustment for the subject and the task before 
the experimental situation of interest. Koo and Mak 
[53] applied a model with forward solving strategy to 
estimate the forces produced at the elbow. To calibrate 
their model, the subjects carried out maximal isometric 
contractions and muscle parameters were optimized by 
tracking the maximal isometric torques.

In summary, in Table 1, we present a classification with 
which each of the models cited as an example would be 
characterized following the common language that we 
propose.

Conclusion
As with semantic clarifications that have already been 
proposed on other topics [54–56], the goal of this paper 
is to provide a common language to define, report, and 
classify biomechanical models for the estimation of 
muscle forces and moments. We do not question the 
relevance of the models or the terminology, which is 
generally correct in each field. The idea is to encourage 
researchers to consider the proposed semantic adjust-
ments to make the description of the components of their 
model easier to understand, communicate, and interpret. 
It is also a question of resolving some issues regarding 
the apparent contradiction between articles and avoiding 
misunderstandings relating to how the models are con-
ceived. Ultimately, this will facilitate the use and appli-
cations in various fields where the estimation of muscle 
forces is of real, direct, and concrete interest.

First, the solving strategy must be defined by specifying 
whether it is forward or inverse. Then, the type of prob-
lem, static or dynamic, must be described while avoiding 
confusion with the optimization method which can be 
static or dynamic. Finally, the presence of additional data 
must be specified by indicating whether they are used to 
drive, assist, or calibrate the model.

These semantic recommendations are based on a syn-
thesis of terms used in the main fields that develop or 
use models to estimate muscle forces. This synthesis was 
carried out in way that the selected terms can be adapted 
for most of the existing models and by excluding the 
terms specific to the configuration of few models or too 
broad. Ultimately, we propose a common language for 
which the systematic use seems particularly justified in 
all these fields in order to facilitate understanding of the 
use, development, and solutions of models for engineers, 
clinicians, and researchers in all related fields. As a future 
perspective, to further validate this new terminology, a 
questionnaire could be sent to the scientific community 
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using or developing musculoskeletal models to compare 
it with their practices and determine its acceptance.
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