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functional connectivity and change in motor
function after motor imagery intervention
in patients with stroke: a scoping review
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Abstract

Background In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its
feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open-
or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory affer-
ent (e.g., Brain Computer Interface (BCl)-based interventions). Meanwhile, open-loop interventions include methods
without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a sig-
nificant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a power-
ful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC
after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions
at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor
function and changes in rs-FC after motor imagery in patients with stroke.

Review process The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE,
Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The
included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation,
and BCl-based interventions. The correlation between rs-FC and motor function before and after the intervention
was analyzed. After screening by two independent researchers, 13 studies on BCl-based intervention, motor imagery
intervention, and kinesthetic illusion induced by visual stimulation therapy were included.

Conclusion All studies relating to motor imagery in this review reported improvement in motor function post-inter-
vention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function
and rs-FC (e.g., sensorimotor network and parietal cortex).

Keywords Motor imagery, Brain—-computer interface, Resting state functional connectivity, Stroke, Scoping review
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even at 3—6 months after the event, further leading to a
decline in health-related quality of life [1, 2].

Motor imagery involves as the mental presentation of
an action without voluntary body movement [3]. The
physiological effect was first represented as the regional
cerebral blood flow during rest and planning of voluntary
movement reported by Roland et al. [4] They reported
that motor imagery activates central sites involved in
normal voluntary movements. After more than 10 years,
Yahagi and Kasai reported that the primary motor cortex
excitability increased during motor imagery without gain
modulation in the spinal reflex, using transcranial mag-
netic stimulation (TMS) [5, 6]. After their reports using
TMS, a number of studies concerning the physiological
effects of motor imagery have since reported [7-10]. In
2011, Aoyama demonstrated that the facilitatory effect
depends on the voluntary effort level of the motor image
in the soleus muscle without a change in H-reflex gain
[11]. We previously demonstrated the negative effect of
sustained rest during joint immobilization on facilita-
tory function of motor imagery [12]. In that research,
we demonstrated that the facilitation effect in which the
motor evoked potentials (MEP) during motor imagery
was suppressed after immobilization along parallel with
decreased muscular output. Furthermore, when the vol-
untary muscular activity level recovered to that of before
the immobilization, MEP was restored to the normal
level. These previous findings of the physiological effects
indicate the potential use of motor imagery as a clini-
cal treatment, including in stroke. Systematic reviews
reported the effects of motor imagery for corticomoto-
neuronal excitability. In 2019, Dilena et al. [13] indicated
that the excitability of the corticomotoneuronal system
was enhanced by the kinesthetic illusion, which was
induced through visual and tendon vibration.

An advantage of motor imagery intervention is that it
may be feasible in patients with severely impaired motor
function. Zimmermann-Schlatter et al. [14] conducted
a systematic review in 2008 on the efficacy of motor
imagery intervention in post-stroke rehabilitation. They
found that an improvement in motor imagery, as evi-
denced by the Fugl-Meyer Assessment (FMA), can confer
additional benefits to conventional therapy. Biosignal-
based brain-computer interface (BCI) hold great poten-
tial for the motor rehabilitation of patients with stroke.
Systematic reviews and meta-analyses reported the
effects of BCI-based interventions. In 2017, Monge-
Pereira et al. [15] indicated that BCI may be potentially
beneficial in improving motor outcome measures, such
as FMA, Action Research Arm Test (ARAT), and Wolf
Motor Function Test (WMFT), in patients with stroke.
Carvalho et al. [16] also reported in 2019 that BCI-
based intervention, in conjunction with physical practice
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(conventional or robot-assisted therapy), can enhance
upper limb functional recovery. BCI-based intervention
can categorize as a closed-loop intervention. In closed-
loop intervention, voluntary motor imagery is examined
through electroencephalography (EEG). The EEG-based
BCI system uses this signal to drive exoskeletal robots
and induces peripheral sensory afferent. Meanwhile,
open-loop intervention involves methods without vol-
untary effort to reproduce motor imagery and/ or the
absence of sensory afferent. Motor imagery interven-
tions have been shown to be effective in improving motor
function [17, 18].

Resting-state functional connectivity (rs-FC) is a pow-
erful tool for exploring the baseline characteristics of
brain connectivity. rs-FC is a significantly temporal cor-
related signal between functionally-related brain regions
in the absence of any stimulus or task [19]. rs-FC meas-
urable through functional magnetic resonance imag-
ing (fMRI), EEG, and magnetoencephalography (MEG).
According to previous studies, the intensity of rs-FC
was related to behavioral measures, and repetition of a
specific task modified the rs-FC between brain regions
closely related to that task after stroke [20-23].

Previous studies investigating motor imagery interven-
tion reported that the inter-and intra-hemispheric rs-FC
differs in patients depending on stroke severity, becom-
ing weak in patients with severe stroke [24]. Patients in
the subacute-to-chronic phase after stroke exhibit dimin-
ished rs-FC between the primary motor cortex (PMC) of
each hemisphere compared to the healthy controls [25].
The index of asymmetry was significantly correlated with
motor function deficits, and the rs-FC between post-
central gyrus (S1) and other regions indicated an asym-
metrical difference [26], while rs-FC was increased in the
ipsilesional (ipsi-) sensorimotor cortex during the neuro-
feedback intervention [27]. We investigated that relation-
ship between rs-FC and motor function [28]. This study
indicated indicate a linear relationship between rs-FC
and improvement of motor function. Investigating the
relationship between improvements in motor function
and changes in rs-FC through motor imagery interven-
tion can provide valuable insights into understanding this
relationship. We hypothesized that resting-state brain
function coupling underlies the improvement in motor
function with motor imagery intervention. However, our
hypothesis has not been reviewed. Therefore, the present
review aimed to review and describe the status of these
studies.

Methods

Search strategy

The literature review was based on the framework by
Arksey and O’Malley [29]. The following describes the
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phases of the framework adopted to conduct the scoping
study: stage 1: identifying the research question; stage 2:
identifying relevant studies; stage 3: study selection; stage
4: charting the data; and stage 5: collating, summarizing,
and reporting the results.

The PubMed, Ovid MEDLINE, Cochrane Central Reg-
ister of Controlled Trials, and Web of Science databases
were accessed, and the search was completed on Septem-
ber 30, 2023.

The primary search was conducted using the follow-
ing terms: ((((illusion) OR ("motor image") OR ("motor
imagery"”) OR ("motor images") OR ("mental practice")
OR (Vibrator) OR (Vibration) OR (imitation) OR ("visual
stimulation”) OR (BCI) OR (BMI) OR ("brain computer
interface") OR ("brain machine interface")) AND ((stroke)
OR (CVA) OR ("cerebrovascular accident") OR ("cer-
ebral infarct") OR ("cerebral hemorrhage”) OR (hemi-
plegia) OR (hemiparesis) OR (ABI) OR ("acquired brain
injury"))) AND ((fMRI) OR (MEG) OR (MRI) OR (TMS)
OR ("Transcranial Magnetic Stimulation") OR (PET) OR
(EEG) OR ("cortical network")) AND ("resting state")).

Additionally, the following parameters were employed
to identify the relevant studies: clinical trials/randomized
controlled trials and other studies written in English
language whose full texts were available. The publica-
tion date ranged from 2011 to 2023. Additional studies
were identified via a manual search and duplicates were
eliminated.

Screening
The inclusion criteria were as follows:

« adult stroke patients (age > 18 years).

+ treatment using the illusion without voluntary action,
motor image, action imitation, and BCI-based inter-
ventions.

+ the outcome measures included brain function tests,
such as fMRI, MEG, transcranial magnetic stimula-
tion, positron emission tomography, and EEG, and
motor function tests, such as the FMA, modified
Ashworth Scale (MAS), Box and Block Test, and
ARAT.

« statistical analysis of the correlation between brain
function and motor function before and after the
intervention.

+ studies published in English language.

The exclusion criteria were as follows:

+ interventions such as mirror therapy and brain stim-
ulation.

« non-peer-reviewed studies and papers that reported
only the protocol.
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Two reviewers screened potential studies to eliminate
irrelevant studies based on the reference selection pro-
cess and above-mentioned inclusion and exclusion crite-
ria. If the relevance of a study was ambiguous from the
abstract, it was ascertained from the full text.

Data extraction and summarization

Data on the study design, participants, sample size, inter-
ventions used, intervention protocol, evaluation tools,
and the outcome of the correlation between brain func-
tion and motor function were extracted (Fig. 1). The
extracted data were summarized into a table by one inde-
pendent author.

Result

Study selection

The characteristics of the included studies are listed
in Tables 1 and 2. A total of 131 studies were identified
through the database search, of which 41 were dupli-
cates. Screening by two independent researchers yielded
13 studies on BCI-based interventions [30-37], motor
imagery [38-41], and visually induced kinesthetic illu-
sion (V-Kinesthetic illusion) [28] which were included.

Participants

A total of 73 and 130 participants underwent open- and
closed-loop interventions, respectively. The mean inter-
val between the onset of stroke and open-loop interven-
tion was 1.94 to 44.0 months and that for closed-loop
intervention was 2.11 to 47.75 months. Three studies
that used open-loop intervention evaluated patients in
the acute stage (1.94-3.84 months) [38-40] and two
studies evaluated patients in the chronic stage (10.15-
44.0 months) [28, 41], while two studies that used closed-
loop intervention evaluated patients in the acute stage
(2.11-5.90 months) [31, 35], and six studies evaluated
patients in the chronic stage (11.67-47.75 months). [30,
32-34, 36, 37].

Training protocol

Open-loop intervention training sessions (e.g., motor
imagery therapy) lasted 20-60 min, and the treatment
course was 10-30 days. All participants received stand-
ard medical care and rehabilitation (conventional ther-
apy). The protocol of the motor imagery task (without
voluntary movement) was as follows: (1) opening and
closing of the hand [38, 39], (2) arm elevation [38, 39], (3)
flexion and extension of the elbow [38, 39], (4) grabbing
[40], (5) pushing [40], (6) first clenching [40], (7) writing
[40], (8) finger tapping [40], (9) brushing or combing hair
[41], (10) picking up and bringing different types of fruit
to the mouth [41], (11) extending the arm to pick up a
cup from a cabinet, placing it on the counter and gently
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Fig. 1 A flow diagram of the selection process

releasing it [41], (12) cleaning the kitchen counter using
a cloth [41], and (13) observing a video of opening and
closure of a hand [28].

Closed-loop intervention training was conducted
over 10-60 sessions, and the duration of each session
was different. Three studies used conventional therapy.
The protocol of the motor imagery task was as follows:
(1) opening and closing the affected hand [30, 32], (2)
the state of the muscles as the hand stretches or con-
tracts [31], (3) grasping or releasing a cup according to
the instruction [33-36], and (2) reaching in eight direc-
tions [37]. The closed-loop intervention was assisted by a
robotic equipment as follows; hand grasp and open [30—
36] and the MANUS robot in moving the stroke-affected
limb toward the goal displayed on the screen [37].

Outcome measures

Nine studies used resting-state brain function as evalu-
ated with fMRI as the outcome measure [28, 31, 33-35,
37-41] (one study additionally used EEG [33]), EEG used

)
c
"% Records identified through Additional records identified
;}:’ database searching through other sources
b= (n=127) (n=4)
3
(=1
——
PN Records after duplicates removed
(n =90)
Records excluded
Records screened (n=77)
(n=13)
® Review articles
BCI (n=8) \ ® Mirror therapy
E’ motor imagery ® No intervention
5 (n=4) ® No evaluated for
I Visually induced brain function
8 kinesthetic illusion ® No evaluated for
(n=1) motor function
® No statistical
analysis of the
relationship of
resting-state
brain function and
motor function
-/

in two studies, [30, 32] and MEG was used in one study
[36].

Motor function outcome measures were used to assess
the functional aspects or activities of daily living. Twelve
studies used the FMA [28, 30-35, 37-41], five studies
used the ARAT [28, 30, 32, 35, 36], three studies used the
grip strength [30, 32, 36], two studies used the modified
Ashworth Scale (MAS) and Morticity Index [30, 32], and
one study used the WMFT [35] to measure upper limb
motor function. One study used the modified Barthel
index [38] and one study used motor activity log [28] as
measures of activities of daily living.

Relationship between brain function and motor function

Open-loop intervention studies used seed-based FC
analysis, graph theory, and spectral Granger causality
(GC) measures for MRI analysis. Seed-based FC analysis
was used to identify temporally correlated brain regions
using blood-oxygen-level-dependent (BOLD) signal fluc-
tuations in the regions of interest. Three studies used
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seed-based FC analysis, which indicated the following:
(1) fractional amplitude of low-frequency fluctuations in
the slow-5 band in the ipsi-inferior parietal gyrus (IPL)
was positively correlated with the FMA [38]; (2) The ipsi-
IPL with the bilateral (bi-) parahippocampal gyrus (PHG)
was increased after motor imagery intervention corre-
lated with the improvement of FMA score [38]; (3) The
ipsi-IPL with the bi-middle cingulate gyrus (MCG), the
contralesional (cont-) medial frontal gyrus (MeFG) was
decreased after motor imagery intervention correlated
with the improvement of FMA score. [38]; (4) the rs-FC
between the bi-PMC was positively correlated with the
FMA [40]; and (5) the relationship (negative to positive)
between the interhemispheric rs-FC of the bi-IPS and
FMA changes and the significant negative correlation
between the FMA and interhemispheric rs-FC of the IPL
disappeared on the unaffected side and premotor cortex
after the intervention [28]. One study, which used graph
theory, indicated that the clustering coefficient was sig-
nificantly positively correlation with the FMA [26]. The
study that used spectral GC measures indicated a posi-
tive correlation between GC differences (from the sup-
plementary motor area (SMA) to the lateral premotor
cortex) and FMA [41].

Closed-loop intervention studies used seed-based
FC analysis and EEG and MEG parameters. Five stud-
ies used seed-based FC analysis and reported the fol-
lowing: (1) the rs-FC change between the ipsi-PMC and
cont-Brodmann area (BA)6 was positively correlated with
FMA [33]; (2) the FMA score altered with changes in the
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interhemispheric rs-FC [34]; (3) the rs-FC between the
ipsi-PMC with the cont-premotor area and ipsi-SMA of
the bi-superior parietal lobule (SPL) was positively corre-
lated with FMA [34]; (4) the changes in interhemispheric
rs-FC and FMA score were positive correlated [34]; (5)
the left BA5 and right BA48 were positively correlated
with the FMA, ARAT, and WMFT [35]; (6) the rs-FC of
the SMA, cont- and ipsi-PMC, visuospatial system and
cerebellum correlated with FMA [35]. Three study used
EEG parameter analysis and reported the following: (1)
FMA, ARAT and Motricity Index significant correlated
with increased coupling of theta and gamma frequencies
in the motor regions [30], (2) Theta-gamma coupling was
enhanced bi-PMC and showed significant correlations
across BCI intervention sessions [32], and (3) the infor-
mation flow change from the cont-PMA to the ipsi-PMC
and SMA to the ipsi-PMC were significantly correlated
with the FMA score [33]. One study, which used MEG
parameters, reported that the motor network involving
the PMC, S1, and SMA brain regions became stronger
with upper-limb functional recovery [36].

Discussion

Summary of evidence

The categories of motor imagery interventions extracted
in this review and the brain networks that were associ-
ated with changes in motor function are summarized
in Fig. 2. In closed-loop intervention, voluntary motor
imagery is examined through electroencephalography
(EEG). The EEG-based BCI system uses this signal to

“Motor i[nagery”

Voluntary motor imagery

No T Yes
| 1
‘ Sensory afferent ‘
Nol |Yes Nol ' IYes
V-Kinesthetic V-Kinesthetic Motor imagery EEG-Based
illusion [7,43,45] illusion + Electrical [38-41] BCI [30-37]

Stimulation [28]

7\

¥\ ( PMC

NS ey
) Y
Involved Uninvolved

FMA Score; (12.2+2.9)

“Open-loop”

o A

PMC E PMC PMC 4 = PMC
Y
\\\\\‘\9\ ' [ 7 ) way s
b S, \ > v/ N
N ¥ ‘ Y ¥ e
NS L S s
X ) t 7/ ) Q ) 4
FMA Score; FMA Score;
(17.6-37.8) (17.6-33.3)

“Closed-loop”

Fig. 2 Categories of motor imagery intervention and brain regions associated with improved motor function and changes in rs-FC. The unified
right hemisphere as an uninvolved hemisphere. FMA Score indicate range of mean score in before intervention (The article using V-Kinesthetic

illusion + Electrical stimulation was indicated as mean +SD)
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drive exoskeletal robots and induces peripheral sensory
afferent. Then, in BCI-based intervention voluntary
motor imagery can be modulated based on sensory affer-
ent, we categorized this intervention as a closed-loop.
Meanwhile, open-loop intervention involves methods
without voluntary effort to reproduce motor imagery
and/ or the absence of sensory afferent. All 13 studies
were included in this review disturbed motor function
after stroke improved following intervention in all stud-
ies. Furthermore, the relationship between the change in
motor function and rs-FC, including the sensorimotor
network and parietal cortex. Previous studies suggested
the effectiveness of open- and closed-loop interventions
in improving motor function [14-16]. Exploring the cor-
relation between the improvement in motor function and
changes in rs-FC following motor imagery intervention
can help elucidates the underlying causality behind this
relationship.

Phases of stroke during the intervention

Functional recovery after stroke is known to reach a pla-
teau within 3-6 months, and 85% of stroke survivors
experience paralysis and 55-75% have upper limb dis-
function, which are associated with a diminished health-
related quality of life [1]. All studies selected for this
review included patients in the subacute to chronic phase
and exhibited recovery of motor function following
open- or closed-loop intervention. Both types of inter-
vention have the potential to improve motor function in
the chronic phase after stroke.

Differences between open-loop and closed-loop
intervention protocols

The most salient difference between the open-loop and
closed-loop intervention protocols was the inclusion of
combined conventional therapy in the former. Open-loop
intervention was combined with conventional therapy
in all studies. Open-loop interventions included motor
imagery and V-Kinesthetic illusion. Open-loop interven-
tion entails repetitive cognitive recall of body movements
without voluntary body movements as sensory afferent
of the motor imagery. V-Kinesthetic illusion is defined as
the psychological phenomenon in which a person who is
resting feels as if a part of their own body is moving or
feels the desire to move a body part while watching film
footage of a moving body part [7]. Kaneko et al. refer to
this therapy as '’KINVIS therapy’ because abbreviated
from kinesthetic illusion induced by visual stimulation,
and the effect of KINVIS therapy was explored in the
clinical trials [10, 28, 42—44]. In several studies, V-Kines-
thetic illusion while neuromuscular electrical stimulation
was applied to the agonist muscle to the one causing the
movement in the film. In V-Kinesthetic illusion, motor
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imagery was not a picture but kinesthetic perception. In
addition to this step, motor imagery is passively induced,
and brain activity similar to that during exercise is
obtained [45]. Such as V-Kinesthetic illusion, passively
induced motor imagery following the cognitive replace-
ment was categorized as open-loop intervention in this
review.

Unintentionally generated motor imagery (e.g., obser-
vation of movement) is called implicit motor imagery
[46]. According to Hanakawa et al. [47, 48], there is addi-
tional evidence suggesting that the participants’ neural
activity during motor imagery resembled that observed
just prior to actual finger movements. V-Kinesthetic illu-
sion is without intentionally movement and passively
induced motor imagery during observation movements.
V-Kinesthetic illusion can be represented as virtual kin-
esthetic perception, and it can have markedly vivid kines-
thetic perception than simple observation of movement
[7]. Therefore, we interpret it as implicit motor imagery.

Closed-loop intervention, which uses BCI as feedback
for motor imagery, can activate the neural pathway of
motor control via motor intention and the actual move-
ment [49]. BCI-based interventions can ensure better
active engagement and motivation of patients compared
to conventional therapy [50]. Closed-loop intervention
does not necessarily require conventional therapy; EEG-
based BCI occur with joint movements associated with
motor imagery, which may be equivalent to active move-
ment. [51] In this case, conventional therapy may not be
required for impairment of motor function.

Relationship between brain and motor function

after motor imagery intervention

Previous studies used fMRI to show that the motor
imagery and perception of a kinesthetic illusion were
associated with activation of the primary motor cortex,
premotor cortex, SPL, primary somato-sensory cortex,
SMA, IPL, cingulate motor area, and cerebellum [52-58].
BClI-based intervention was associated with rs-FC net-
works related to the motor attempt [59-61].

In 2019, Kaneko et al. [28]. reported that the relation-
ship between the pre-test rs-FC and the improvement
in motor function after V-kinesthetic illusion therapy
showed a significant negative correlation with affected
IPS-unaffected IPS to the ARAT and a positive correla-
tion from affected SMG-Vermis to the ARAT. Miyawaki
et al. [62] explored the effect of V-kinesthetic illusion
therapy with therapeutic exercise (TheEx) on motor
functions through spasticity. They used a mediation
model in which the indirect effect was evaluated with
path analyses in structural equation modeling. V-Kines-
thetic illusion therapy combined with TheEx leads to a
reduction in the MAS score, resulting in improvements



Tanamachi et al. Journal of NeuroEngineering and Rehabilitation

in FMA and ARAT scores. Notably, the mediation model
revealed that there was no significant direct impact
of V-Kinesthetic illusion therapy on FMA and ARAT
scores. These findings imply that the influence of V-Kin-
esthetic illusion therapy with TheEx on upper limb motor
function is indirectly mediated through its effect on spas-
ticity. Moreover, rs-FC between affected IPS-unaffected
IPS was associated with the motor function of hands
and fingers, unaffected IPL-unaffected PMd was associ-
ated with the motor function of shoulders and elbows
and affected IPS-unaffected IPS or affected SMG-Vermis
reflect the change in motor function. Thus, investigat-
ing the relationship between rs-FC and improvement in
motor function with therapy may reveal a causal relation-
ship between the improvement in motor function and
therapy.

All studies in this review performed open-loop inter-
vention without voluntary movement and the absence
of sensory afferent or closed-loop intervention with sen-
sory afferent of motor imagery using BCI. In both types
of interventions, improvements in motor function were
related to the change of rs-FC, including the sensorimo-
tor network and parietal cortex. In the closed-loop inter-
vention, proprioceptive and visual inputs were associated
with movement. This may induce a sense of body owner-
ship and kinesthetic perception and increase the rs-FC of
the motor-related function and parietal cortex.

Previous studies have not sufficiently focus on estab-
lished treatments to improve severe impairment of upper
limb motor function. In our previous clinical trial with
V-Kinesthetic illusion [28], the baseline FMA of stroke
patients included lower than that of other motor imagery
interventions. The V-Kinesthetic illusion is not limited by
motor impairment and may be better suited for patients
with severe motor paralysis.

Closed-loop interventions (EEG-based BCI) have
recently been proposed as a stroke neurorehabilitation
strategy to improve symptoms, including paralysis, cog-
nitive disorders, and aphasia [35]. Despite the substantial
heterogeneity in the available literature, there is a con-
sensus that closed-loop intervention can help improve
upper limb motor function in patients with stroke [16,
63]. Furthermore, the result of this review indicated that
closed-loop intervention, as with open-loop, improves
motor function and induces the changes in the rs-FC.

Several studies already showed that motor imagery
increases corticospinal excitability [5—13]. The changes
in rs-FC following the motor imagery intervention in the
present study may represent a brain network enhanced
by use-dependent plasticity due to repetition of motor
imagery [64, 65].

Future studies should examine not only the assessment
of motor function but also brain function because the
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latter may help clarify the mechanism of motor function
improvement.

Limitations

The quality of evidence was not assessed in this review.
The type and severity of the participants’ disability, as
well as the intervention methodologies and protocols,
were not considered. A high-quality systematic review
with a larger scope and with control for factors affect-
ing the effectiveness of rehabilitation (e.g., type of lesion,
the phase of recovery, dosage, and intensity of training) is
necessary to address these limitations in the future.

Conclusion

This review shows that rs-FC is related with change in
motor function after motor imagery intervention. There
are many similarities between the open-loop and closed-
loop interventions with respect to the brain regions,
such as the sensorimotor network and the parietal cor-
tex, which are correlated with the change in motor func-
tion. These findings may provide a neurological basis for
a clinician considering a motor imagery intervention. It
should be noted, however, that the validation of the effec-
tiveness of motor imagery interventions still involves
heterogeneity to date. Further studies are required to
strengthen the evidence on intervention protocols and
provide detailed information regarding the application of
different interventions to optimize practice benefit and
outcomes.
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