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Abstract 

Background Chronicity and lack of motivation often go together during the upper limb rehabilitation process 
in stroke. Virtual reality is a useful tool in this context, providing safe, intensive, individualised treatments in a playful 
environment. B‑cost, easy‑to‑use devices with personalised and motivating games for a specific population seem 
to be the most effective option in the treatment of the upper limbs.

Methods A randomised clinical study with follow‑up was carried out to assess the effectiveness of the Leap Motion 
Controller® device in improving the functionality of the upper limb in patients with chronic stroke. Patients (n = 36) 
were randomised into a control group that performed conventional therapy and an experimental group that com‑
bined the virtual reality protocol with conventional therapy. The outcome measures used were grip strength; 
the Block and Box Test; the Action Research Arm Test; the Disabilities of the Arm, Shoulder and Hand; as well as a Tech‑
nology Satisfaction Questionnaire and adherence to treatment.

Results Inter‑group statistical analysis showed no significant differences except in subsection D of the Action 
Research Arm Test. Intra‑group analysis showed significant differences in both groups, but the experimental group 
reached significance in all long‑term variables. Satisfaction and adherence levels were very high.

Conclusions The Leap Motion  Controller® system, as a complementary tool, produces improvements in grip 
strength, dexterity and motor function in patients with chronic stroke. It is perceived as a safe, motivating, and easy‑
to‑use device.

Clinical Registration: NCT04166617 Clinical Trials.

Keywords Leap Motion  Controller®, Neurorehabilitation, Stroke, Upper limb, Video games, Virtual reality

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of NeuroEngineering
and Rehabilitation

*Correspondence:
Isabel M. Alguacil‑Diego
isabel.alguacil@urjc.es
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-024-01303-2&domain=pdf


Page 2 of 11Aguilera‑Rubio et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:12 

Introduction
The chronicity of the upper limb (UL) rehabilitation 
process in stroke leads to an inherent loss of motivation 
in the long term, resulting in the need for new treat-
ment approaches that combine both the recovery of 
functionality and the motivation to continue to achieve 
functional goals [1, 2].

The use of virtual reality (VR) in neurorehabilita-
tion arose with the aim of creating new, more efficient 
options for functional recovery by generating environ-
ments in which to carry out different tasks and is cur-
rently a potential treatment tool [3]. VR is a promising 
tool in neurorehabilitation, as it promotes neuroplasti-
city by enabling treatments with a high number of rep-
etitions, allowing changes in task difficulty, and keeping 
patients motivated and involved during the rehabilita-
tion session [4, 5].

The development of portable and affordable VR 
devices is making VR therapy accessible to the chronic 
population [6]. A recent review on the design of serious 
games in the field of neurorehabilitation [7] outlines 
three necessary concepts when developing this technol-
ogy: the game genre, the nature of the game, and the 
game development strategy. The authors concluded 
that casual games (any game that involves the comple-
tion of single, simple tasks, not tied to a story or exten-
sive development) designed specifically for one type 
of patient, with a first-person perspective, played in 
single-player mode, and using non-immersive VR had 
better clinical outcomes. In contrast to this, they also 
stated that commercial games are perceived as more 
engaging and motivating, emphasising the need for 
future work in this area. Therefore, perhaps the trend 
should be to use inexpensive, easy-to-use devices, but 
with games that are personalised and motivating for a 
specific population.

The Leap Motion  Controller®  (LMC®) system is 
a small, portable, low-cost, and commercially avail-
able tracking device that can capture UL movements in 
3D, without the need for motion markers. It is a part of 
semi-immersive VR and allows the development of cus-
tomised applications thanks to its software development 
kit [8, 9]. Its use has been investigated both as a single 
therapy and in combination with conventional treat-
ment in stroke patients, mainly in the acute and subacute 
phases. In both cases, the ultimate goal has been to assess 
its effectiveness on parameters of grip strength, dexter-
ity, or motor function [10]. After a review of the current 
literature on the use of this device in the stroke popula-
tion [10], we deduce that studies with a larger sample 
size, with higher methodological quality, and with follow-
up evaluations are needed to assess its effectiveness with 
greater precision.

Prior to this research, a pilot study of the feasibility of 
the device was developed together with a VR protocol 
with games created ad hoc for the chronic stroke popu-
lation [11]. The results were very positive, which gen-
erated the need to verify these results with a study of 
higher methodological quality.

Despite the amount of scientific literature on the 
use of virtual reality in the field of neurorehabilitation, 
and the constant changes in devices, there is a lack of 
clear detailed protocols, reproducible through low-cost 
devices.

Therefore, the aim of the present research was to 
assess the effectiveness of the  LMC® system through 
games designed specifically for chronic stroke patients, 
and whether the potential benefit, if any, would be 
sustained over time. A semi-immersive VR protocol 
was developed as an adjunct to conventional rehabili-
tation treatment in improving the functionality of the 
UL compared to a conventional treatment group, in 
addition to assessing motivation and adherence to 
treatment.

Methods
Design
A single-blind, randomised clinical trial (RCT) with fol-
low-up, using non-probability sampling of consecutive 
cases, is presented. To ensure the methodological qual-
ity of the study, the CONsolidated Standards Of Report-
ing Trials (CONSORT) checklist was followed [12]. 
The present work was also registered in Clinical Trials 
(NCT04166617).

Patients
After selection and acceptance to take part in the study, 
patients were randomly divided into two groups, the 
control group (CG) and the experimental group (EG). 
Randomisation was carried out by blinded selection of a 
ballot paper inside an envelope by the patients. A ballot 
marked with an X meant the patient belonged to the EG, 
and a blank ballot meant they belonged to the CG. Inclu-
sion criteria were a confirmed diagnosis of chronic stroke 
(more than 6 months of evolution); people over 18 years 
of age with no upper age limit; subjects of both sexes; 
being able to sit independently, without posterior sup-
port; and having a score on the Fugl-Meyer scale of the 
upper extremity equal to or higher than 16. Exclusion cri-
teria were additional diagnosis of other pathologies limit-
ing occupational performance, Mini-Mental test score of 
less than 24, sensory aphasia, visual disturbances not cor-
rectable with ocular devices, and a history of epilepsy due 
to the use of video games.
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Procedure
The protocol of the present study was approved by the 
local ethics committee (1603201806018). In addition, the 
ethical principles for medical research in humans of the 
Declaration of Helsinki and subsequent revisions were 
followed. Each participant signed the informed consent 
form after receiving a detailed explanation of the study 
objectives and the procedures to be used.

The entire sample received two treatment sessions per 
week of 60 min’ duration for 8 weeks, resulting in a total 
of 16 sessions. Figure  1 represents the protocol carried 
out during the present investigation.

The two groups underwent three assessments, all car-
ried out by the same examiner, blinded to the allocation 
group: pre-treatment (at the start of the intervention), 
post-treatment (at the end of the intervention), and a 
final follow-up (4  weeks after the end of the interven-
tion). All patients underwent both the assessments 
and the intervention at their centre of origin between 

November 2018 and March 2022. All patients were 
recruited from different private physiotherapy clinics in 
Madrid.

The bulk of each session in the CG was spent on func-
tional tasks, while the EG spent the bulk of each session 
on the VR intervention (Fig. 2).

The characteristics of each of the games used in the 
VR protocol are detailed in Table  1. The VR protocol 
applied was the same as that developed in the previous 
feasibility pilot study, designed specifically for stroke 
patients [11]. The virtual environment was created by 
a multidisciplinary group of clinicians and engineers 
using the Unity3D Game Engine software. It consists of 
4 games, designed specifically for stroke patients. All of 
them are aimed at improving UL functionality through 
movements that this population often has altered such 
as: shoulder girdle stability, shoulder joint movements, 

Fig. 1 Procedure

Fig. 2 Intervention protocol of the control and experimental groups. 
Joint mobilizations: shoulder girdle, shoulder, elbow, and wrist; 
Modulation of muscle tone: stabilizing muscles of the scapula 
and the entire upper limb; Strengthening and stretching upper 
limb musculature; Motor Control and Functional Task: tasks focused 
on activities of daily living such as dressing, eating, or performing 
household chores
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elbow flexion–extension, forearm pronation-supina-
tion, finger flexion–extension or palmar flexion.

All games had the possibility of starting unilaterally. 
It was decided to start with the unaffected hand (so that 
the patient could become familiar with the game), con-
tinuing later with the affected hand. Finally, each game 
was played with both hands simultaneously, except for 
the game known as "sequence", which did not offer this 
possibility.

In order to be able to adapt the degree of difficulty to 
the particular needs of each patient, the games can be 
customized and individualized. In each of the games, 
the number of objects that initially appear on the 
screen, the distances between them and the depth at 
which they are placed can be configured. All these set-
tings are recorded and stored in each patient’s profile. 
Furthermore the level of difficulty was adjusted, always 
starting with easier games, and concluding with more 
difficult games.

During VR therapy, the patient remained seated, with 
the feet in contact with the floor, and to avoid compen-
satory movements, the trunk was restricted by means 
of an elastic strap. Likewise, the hand that was not 
being used at the time of the game was placed on the 
table in order to facilitate midline orientation and the 
increase of axial tone.

Outcome measures
Grip strength
The Jamar hydraulic  dynamometer® (Model 5030J1 
serial number 20210511237) was used to measure the 
grip strength of the affected hand, following the recom-
mendations of the American Hand Association [13], 
and position II of the dynamometer handle was set as 
the standard size.

Table 1 Characteristics of the serious games used

Serious game Description

Reach game In this game, several fruit ‑shaped objects are shown within the reaching range 
of the user’s upper extremity represented in different locations. The user has to touch 
the fruit that is highlighted. Once the fruit is reached, the gravity is activated so it falls 
to the floor of the virtual scene. To complete the game, the user must reach all cubes 
showed in random order

Sequence game This game uses the same set‑up as the Reach Game. Now a sequence of fruits 
is presented to the user, who must memorize the sequence and repeat it by reaching 
the fruits in the same order shown, adding a cognitive training to the game

Flip game This game trains pronation and supination movements of the forearm. The user 
must place the palm of the hand over the  LMC® device imitating a waiter holding 
out a tray. A small tray with a cube in the middle appears in the center of the screen. 
The patient should then turn the palm downwards. Upon doing so, the cube 
detaches from the tray and falls to the ground

Opening/closing game This game encourages the user to achieve the opening and/or closing of the hand, 
simulating grasping movements, depending on the percentage specifically pro‑
grammed for each of them. A red circle in the centre of the screen is showed to indi‑
cate to the user where to place the fruits into. When a fruit is highlighted, the user 
must grasp it and move it to the red circle while keeping their hand closed, and keep 
this gesture until the hand touches the red circle. Then the user has to open the hand
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Block and box test (BBT)
An outcome measure to assess gross manual dexterity. 
In this study, values were recorded only for the affected 
hand, although, as the test requires, a previous attempt 
was made with the unaffected hand [14].

Action research arm test (ARAT)
A reliable assessment tool to evaluate the motor func-
tion of the UL after stroke. A distinction was made 
between the four sections (A, B, C, D) of the test, which 
was maintained when analysing the results [15].

Disabilities of the arm, shoulder and hand (DASH)
A self-administered and specific questionnaire to meas-
ure the function of the UL. A direct relationship is 
established between the different parts of the UL and 
the patient’s perceived difficulty in carrying out certain 
activities [16].

Technology satisfaction questionnaire
The research group designed a specific questionnaire 
based on a Likert-type scale in order to assess patient 
satisfaction, since patient satisfaction is a clear addi-
tional indicator of the effectiveness of a therapy, as it 
improves both treatment compliance and adherence to 
treatment [1, 2, 17]. The questionnaire consisted of 9 
items that assessed the usefulness of the  LMC® in their 
rehabilitation, the degree of motivation, possible tech-
nical problems during the intervention, usability, pos-
sible pain reported during therapy, the importance of 
therapist support, experience, frequency of use of elec-
tronic devices and the use of new technologies in the 
rehabilitation process. The range of the questionnaire 
was from 1 to 4, with a maximum possible score of 36 
points. All questions were directly proportional, i.e. the 
higher the score, the better the patient’s perception.

Treatment adherence rate
The percentage of attendance was recorded, as was the 
presence of adverse effects in both treatment groups.

Statistical analysis
Using G*power software (version 3.1.7), the sample size 
was calculated, resulting in a minimum of 36 participants 
for the study. The estimated effect size for the main out-
come measures established in this study was 0.30, consid-
ering a power of the statistical test of 0.95, an alpha error 
of 0.05, a correlation between repeated measurements of 
0.5 (two groups, three measurements), a sphericity cor-
rection coefficient of 1, and a loss rate of 20%.

Statistical analysis was carried out using Statistical 
Package for the Social Sciences (SPSS) 24.0 statistical 

software for Windows (SPSS Inc., Chicago, IL, USA; 
version 24.0). Since the sample followed a normal 
distribution, repeated measures analysis of vari-
ance (ANOVA) was performed for the variables grip 
strength, BBT, ARAT, and DASH, with time (pre-treat-
ment, post-treatment, follow-up) as an intra-group 
factor and group (experimental and control) as an 
inter-group factor, all with Bonferroni post-hoc adjust-
ment. The p-values associated with the ANOVA F-sta-
tistics were adjusted using the Greenhouse–Geisser 
correction. The statistical analysis was performed at a 
95% confidence level, so p-values of less than 0.05 were 
considered significant.

Results
The sample consisted of 36 patients. The characteristics 
of the sample are shown in Table 2.

Statistical analysis showed no statistically significant 
inter-group differences except in ARAT subsection D 
(gross movements), which was significant in the post-
treatment assessment (p = 0.044) (Table  3). Intra-group 
analysis showed significant differences in different varia-
bles in both groups. The EG recorded statistically signifi-
cant changes in grip strength in pre- and post-treatment 
assessments (p = 0.021) and between pre-treatment and 
follow-up (p < 0.001); in BBT between pre-treatment and 
post-treatment (p = 0.001) and between pre-treatment 
and follow-up (p < 0.001); in the total ARAT assessment 
between pre- and post-treatment (p = 0.002); in ARAT 
subsections A (grip) and C (grip) between pre-treatment 
and follow-up (p = 0.029 and p = 0.009, respectively); and 
finally, in the DASH questionnaire between pre- and 
post-treatment assessments (p = 0.004) and between pre-
treatment and follow-up (p = 0.007). The CG obtained 
the following significant differences: in the BBT between 
pre-treatment and follow-up assessment (p = 0.014) 
and between post-treatment and follow-up assess-
ments (p = 0.005), and in the DASH questionnaire in the 
pre-treatment versus follow-up assessment (p = 0.035) 
(Table 4).

With respect to the satisfaction questionnaire related to 
the VR protocol performed by the EG, the degree of sat-
isfaction was satisfactory. The mean score obtained was 
29.83 (± 2.792), out of a maximum score of 36 (Table 5).

With regard to adherence to treatment, the CG com-
pleted an average of 15.67 sessions, representing 97.93%, 
and the EG completed the intervention with an average 
of 15.78 sessions, i.e. 98.63%.

Also, no patients dropped out of the trial and there 
were no adverse effects other than occasional mild shoul-
der discomfort at the end of the treatment session in 
some participants (n = 4).
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Table 2 Characteristics of the sample

Data expressed as mean, standard deviation and frequencies (percentages)

Student’s t‑test for independent samples. *p value < 0.05

*p value statistically significant

n = 36 Experimental group
(n = 18)

Control group
(n = 18)

P value

Age 64.94 (± 12.33) 60.33 ± 12.44 69.56 ± 10.63 0.230

Sex

 Male 20 (55.56%)
16 (44.44%)

8 (44.44%) 12 (66.67%) 0.190

 Female 10 (55.56%) 6 (33.33%)

Years since stroke onset 5.78 (± 5.42) 5.64 ± 6.26 5.92 ± 4.60 0.883

 Type

  Ischaemic 32 (88.89%)
4 (11.11%)

15 (83.33%) 17 (94.44%) 0.105

  Haemorrhagic 3 (16.67%) 1 (5.56%)

 Affected side

  Left 20 (55.56%)
16 (44.44%)

11 (61.11%) 9 (50%) 0.331

  Right 7 (38,89%) 9 (50%)

Table 3 Inter‑group results

EG experimental group, CG control group, SD standard deviation, MD mean difference, CI confidence interval, Pre pre‑treatment, Pos pos‑treatment, F-up follow‑up, 
BBT block and box test, ARAT  action research arm test, ARAT (A) action research arm test subtest A grasp, ARAT (B) action research arm test subtest B grip, ARAT (C) 
action research arm test subtest C pinch, ARAT (D) action research arm test subtest D gross movement, DASH disabilities of the arm, shoulder and hand questionnaire

Repeated measures analysis of variance (ANOVA) with Bonferroni a posteriori adjustment. *p value < 0.05

Variable EG CG F P Bonferroni

Media ± SD Media ± SD MD P CI

Grip strength pre 14.87 ± 8.07 21.33 ± 12.71 1.855 0.174 − 6.47 0.077 (− 13.68 to 0.74)

Grip strength pos 16.92 ± 8.29 22.63 ± 12.43 − 5.71 0.114 (− 12.87 to 1.44)

Grip strength f‑up 17.61 ± 9.08 22.50 ± 12.58 − 4.89 0.190 (− 12.32 to 2.54)

BBT pre 23.78 ± 12.42 31.56 ± 11.71 3.046 0.076 − 7.78 0.062 (− 15.95 to 0.40)

BBT pos 27.17 ± 13.27 32.50 ± 10.68 − 5.33 0.193 (− 13.50 to 2.83)

BBT f‑up 27.72 ± 12.13 33.89 ± 10.89 − 6.17 0.118 (− 13.96 to 1.64)

ARAT pre 41.78 ± 14.94 48.78 ± 7.52 0.549 0.498 − 7.00 0.085 (− 15.01 to 1.01)

ARAT pos 45.06 ± 14.51 50.17 ± 7.16 − 5.11 0.189 (− 12.86 to 2.64)

ARAT f‑up 42.94 ± 16.78 50.56 ± 6.75 − 7.61 0.083 (− 16.27 to 1.05)

ARAT (A) pre 13.39 ± 5.18 16.00 ± 2.47 0.717 0.420 − 2.61 0.062 (− 5.36 to 0.14)

ARAT (A) pos 14.17 ± 4.99 16.50 ± 2.23 − 2.33 0.079 (− 4.95 to 0.28)

ARAT (A) f‑up 14.50 ± 4.93 16.50 ± 2.23 − 2.00 0.126 (− 4.59 to 0.59)

ARAT (B) pre 9.78 ± 2.96 11.17 ± 1.47 0.513 0.491 − 1.39 0.083 (− 2.97 to 0.19)

ARAT (B) pos 10.28 ± 2.56 11.39 ± 1.24 − 1.11 0.107 (− 2.47 to 0.25)

ARAT (B) f‑up 10.39 ± 2.55 11.44 ± 1.20 − 1.06 0.664 (− 2.40 to 0.29)

ARAT (C) pre 10.72 ± 6.27 12.83 ± 4.84 1.647 0.209 − 2.11 0.266 (− 5.90 to 1.68)

ARAT (C) pos 12.44 ± 6.39 13.28 ± 4.90 − 0.83 0.663 (− 4.69 to 3.02)

ARAT (C) f‑up 12.56 ± 6.30 13.61 ± 4.43 − 1.06 0.565 (− 4.74 to 2.63)

ARAT (D) pre 7.83 ± 1.79 8.78 ± 0.94 0.375 0.572 − 0.94 0.056 (− 1.91 to 0.03)

ARAT (D) pos 8.17 ± 1.69 8.98 ± 0.02 − 0.83 0.044* (− 1.64 to − 0.02)

ARAT (D) f‑up 8.28 ± 1.65 8.98 ± 0.02 − 0.72 0.076 (− 0.08 to 1.52)

DASH pre 42.98 ± 16.07 37.22 ± 19.23 0.382 0.564 5.78 0.335 (− 6.23 to 17.79)

DASH pos 40.35 ± 16.22 35.35 ± 17.23 4.98 0.377 (− 6.34 to 16.33)

DASH f‑up 40.45 ± 15.68 35.14 ± 17.28 5.31 0.341 (− 5.86 to 16.49)
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Discussion
The purpose of the present study was to assess the 
effectiveness of the  LMC® system in a semi-immersive 
VR protocol, as an adjunct to conventional rehabilita-
tion treatment, in improving the functionality of the UL 
through grip strength, dexterity, and motor function 
compared to a conventional treatment group. In addition, 
the degree of satisfaction with the device was assessed, as 
well as adherence to treatment.

To our knowledge, the present investigation is the first 
RCT with follow-up to assess the effectiveness of the 
 LMC® device in improving the functionality of the UL, 
through grip strength, dexterity, and motor function, in 
patients with stroke in the chronic phase. Satisfaction 
with the device and the rate of adherence to treatment 
were also considered.

Regarding the VR protocols with the  LMC® device 
observed in the literature, each author handled different 
times, numbers of sessions, and frequencies [10]. The 
time spent in VR ranged from 15 to 45 min [11, 18–23], 
in interventions where it was supplemented with conven-
tional therapy, the total treatment session time ranged 
from 45 to 60 min [11, 18–21] or even 90 [23] or 110 [22] 
minutes. In reference to the number of sessions, Aramaki 
et  al. [29] in their review on VR in the rehabilitation of 
stroke patients, highlight the predominance of proto-
cols of short and moderate duration, in addition to low 
intensity in terms of the number of weekly sessions. The 
intervention methodology of most of the studies analysed 
in this review was to apply two sessions per week, lasting 
between 30 and 60 min each, for a period of 6 weeks. The 
total number of sessions also varied, although most stud-
ies conducted between 9 and 20 sessions, spread over 
4–12 weeks [10, 11]. In summary, the amount of therapy 
with the  LMC® device does not seem to be a determin-
ing factor in the improvement of the functionality of the 

UL, as significant improvements have been achieved with 
different times, numbers of sessions, and frequencies [10, 
11].

Follow-up assessment usually varies in the same way in 
the literature, but our work coincides with that proposed 
in the review by Jin et al. [4], where the 4-week period is 
established as the most widely adopted in VR studies in 
patients with UL impairment after stroke.

With regard to grip strength, recovery is the primary 
goal. Muscle weakness is the most common impairment 
of the UL after stroke [24], leading, in addition to the 
impact on activities of daily living (ADLs), to potential 
long-term problems such as decreased bone density and 
thus risk of fracture [25]. All authors who assessed it after 
intervention with the  LMC® found significant improve-
ments. Vanbellingen et  al. [19] improved their partici-
pants’ grip strength by 11.3% in a single VR intervention. 
Similarly, but in combination with conventional therapy, 
improvements in grip strength were also achieved [11, 
22]. Iosa et  al. [22] attribute them to the fact that the 
 LMC® system allows the capture and reproduction of 
movements with all degrees of freedom at the wrist and 
fingers. In our case, we obtained improvements in both 
groups, and the GE achieved significance between pre- 
and post-treatment assessments, and between pre-treat-
ment and follow-up. Although the VR protocol did not 
include any specific muscle-strengthening exercises, the 
GE achieved significance. Improved stabilisation of the 
shoulder girdle in stroke patients is a necessary precursor 
to improved grip strength [26]. Following this premise, 
our results on improvements in gross movements (ARAT 
D) could justify improvements in grip strength.

Our results on gross motor dexterity assessed by the 
BBT show that both groups achieved the minimum 
detectable change necessary (1.99 blocks) to translate 
into clinical improvements in the affected hand [27]. The 
BBT was also the test of choice for other authors [11, 21] 
to measure gross manual dexterity, in both cases showing 
significance. In contrast, two other studies opted for the 
Nine Hole Peg Test as a method for assessing fine dexter-
ity. Iosa et  al. [22] did not obtain significance, although 
they did obtain improvements, while Vanbellingen et al. 
[19] did achieve significant differences. It should be noted 
that, in these two studies, some of the games developed 
involved selective finger movements, unlike those devel-
oped for our study.

In relation to motor function assessed by ARAT , there 
is strong scientific evidence of its improvement after VR 
protocols in stroke patients. It is one of the aspects most 
frequently addressed in research on VR, and there are 
different tools for its assessment [28, 29]. In the present 
investigation, despite the improvements in all subgroups 
and the significance obtained, no minimal clinically 

Table 5 Results of the technology satisfaction questionnaire for 
the experimental group

Data expressed as mean and standard deviation (SD)

Ìtem Media—SD

Motivation 3.56 (0.616)

Usability 3.00 (0.767)

Use of electronic devices 2.78 (0.877)

Pain 3.61 (0.502)

Therapist´s help 3.83 (0.383)

Technical problems 2.56 (0.856)

Utility 3.39 (0.608)

Experience 3.28 (0.574)

New technologies 3.83 (0.383)

Total score 29.83 (2.792)
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important differences were achieved in either treatment 
group. A score of 5.7 has been established as the value 
that determines these minimal differences [18], and in 
our case, all improvements were below this figure. Two 
papers [11, 18] used this test in their research on  LMC® 
and stroke, in both cases showing significant differences. 
On the other hand, in one of them [18], in contrast to 
our results, there were minimal clinically important dif-
ferences in EG, perhaps because their protocol was more 
intensive (three sessions per week for 6  weeks, using 
VR as the only therapy), and/or their intervention was 
immersive, as it combined the  LMC® with Oculus  Rift® 
(Oculus VR, USA) goggles. However, the authors did 
not break down their results into subgroups by differ-
entiating between different motor functions. In order to 
gather more information about the UL motor function of 
the participants, we decided to include the DASH ques-
tionnaire. Although we relied on the patient’s subjective 
opinion, it allowed us to measure and quantify the degree 
of difficulty in performing certain ADLs. Despite being a 
validated questionnaire in stroke patients, its use is not 
very widespread in relation to VR, as we have seen both 
in different systematic reviews [3, 4, 28–31] as well as in 
articles where  LMC® was used in relation to stroke [11, 
18–23].

In this investigation, it was decided not to measure 
participants’ spasticity, since objective and validated 
outcome measures are not available to all clinicians. 
Although the Modified Ashworth Scale is the gold stand-
ard manual tool for assessing spasticity, there is contro-
versy as to whether it should remain so [32], given its 
enormous inherent subjectivity component. Resistance 
to passive movement is not solely due to reflex muscle 
activity, but is also influenced by non-neural mechanical 
characteristics. In chronic patients, it is common that the 
viscoelastic properties of joint structures and soft tissues 
are frequently altered. Some authors propose the use of 
this scale in conjunction with instrumented monitoring 
systems or electromyography [32], while other authors 
opt for instrumental systems alone [33]. The aim would 
be to be able to accurately discriminate these compo-
nents, to understand their influence on motor recov-
ery and to optimize treatment options on an individual 
basis. Perhaps this argument justifies why spasticity is 
not a variable that is overly analysed in VR studies in the 
chronic patient.

The patient’s opinion is fundamental in any neuroreha-
bilitation process, and in our research, we used an ad-hoc 
Technology Satisfaction Questionnaire. Patient satisfac-
tion in these processes has an inherent relationship with 
adherence to treatment and therefore with the quality of 
life of patients. It is common for people who have suf-
fered a stroke, and are in chronic phases, not to maintain 

the motivation to go to rehabilitation for long periods of 
time. Considering that in many cases the treatment is 
carried out throughout life (in lesser or greater amounts), 
we consider that it is important to know the individual 
experience after the use of new tools. In this way, more 
individualized intervention models can be adjusted [34].

“Technical problems during the intervention” was the 
item with the lowest score (2.56). In particular, the lack of 
a signal from the device was a recurrent complaint from 
patients. This is in line with Iosa et al. [22], who attribute 
it to the  LMC® sensors’ lack of ability to follow the move-
ments of the fingers when the hands are overlapped, or 
when there is a high level of spasticity. This same prob-
lem has also been reported in a previous study [11]. The 
next item with the lowest score (2.78) was “the use of 
electronic devices”, from which we wanted to learn the 
frequency with which participants used either mobile 
phones, computers, or video game consoles. Although 
the mean age of the EG was 60.33  years, we associated 
that the older the age, the lower the frequency of use 
of this type of device and, consequently, the greater the 
difficulty of use. However, this question was addressed 
by another article [22] in which the  LMC® device was 
applied in older patients in the subacute phase, without 
the sample showing any problems with its use, although 
the participants’ satisfaction was not assessed.

On the other hand, the items with the highest scores 
were “the incorporation of new technologies into the 
rehabilitation process” and “the therapist’s help during 
the intervention”, especially during the first treatment 
sessions, both with a score of 3.83 points out of 4 [30, 
31]. The help of a therapist during the play period also 
appeared in other similar studies [11, 19, 22, 23], con-
cluding, as in our work, the advantage of having a clini-
cian nearby at the beginning of the intervention.

Pain was another of the questionnaire items with the 
best score (3.61). Only a few patients reported occasional 
mild shoulder discomfort at the end of the treatment 
session, compatible with tendon overloads, which disap-
peared after the use of the therapy, and which at no time 
made it necessary to interrupt it. Nor was there any other 
type of discomfort, since, as indicated by Ogün et al. [18], 
the new generation of VR devices avoid symptoms such 
as dizziness, nausea, and headache, which is their big-
gest advantage compared to older devices. However, as 
no specific pain scale was used, the data provided by the 
questionnaire cannot be considered conclusive regarding 
pain.

Stroke, like the vast majority of chronic neurologi-
cal diseases, given the care resources available, does not 
allow these patients to be treated continuously over time, 
and they are discharged from rehabilitation services after 
around 6  months [35, 36]. Current evidence has shown 
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that improvements in functionality are still possible in 
the chronic patient [36]. This should force a change in 
the paradigm of care for these patients, but until this 
happens, and in the face of limited social and health care 
resources, the implementation of this type of treatment 
tool must be considered.

Limitations
The present study is not without limitations. The main 
limitation was the lack of stratification of patients in 
relation to their level of involvement. This would have 
allowed a more accurate assessment of the results, given 
the clinical heterogeneity inherent to UL involvement 
in stroke, as it is a way of homogenising the sample. For 
this same reason, together with the need for a larger sam-
ple size, our results cannot be extrapolated to the entire 
chronic stroke population. Furthermore, the differences 
in some of the variables in the initial evaluations mean 
that the results should be taken with caution.

Would have been interesting to measure the baseline 
spasticity of the sample, and perhaps it can be included in 
future studies, but with objective instrumental tools.

Although common guidelines and directives were 
given, the therapy was applied by different therapists, 
and therefore the patients’ different backgrounds are a 
limitation.

To determine the full effectiveness of the  LMC® as a 
therapeutic tool for chronic stroke patients, other com-
parisons, such as conventional treatment versus VR pro-
tocol as a single intervention or comparison with other 
types of VR devices, were not considered.

Conclusions
The  LMC® system produces improvements in the gross 
motor skills of chronic stroke patients in combination 
with conventional therapy treatment versus conventional 
physiotherapy. As a complementary tool, it produces 
improvements in grip strength, dexterity, and motor 
function. Similarly, the  LMC® system is perceived as a 
safe, motivating, and easy-to-use tool and provides a very 
high level of adherence.
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