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Abstract 

In recognition of the importance and timeliness of computational models for accelerating progress in neurorehabili-
tation, the U.S. National Science Foundation (NSF) and the National Institutes of Health (NIH) sponsored a conference 
in March 2023 at the University of Southern California that drew global participation from engineers, scientists, clini-
cians, and trainees. This commentary highlights promising applications of computational models to understand neu-
rorehabilitation (“Using computational models to understand complex mechanisms in neurorehabilitation” section), 
improve rehabilitation care in the context of digital twin frameworks (“Using computational models to improve deliv-
ery and implementation of rehabilitation care” section), and empower future interdisciplinary workforces to deliver 
higher-quality clinical care using computational models (“Using computational models in neurorehabilitation requires 
an interdisciplinary workforce” section). The authors describe near-term gaps and opportunities, all of which encour-
age interdisciplinary team science. Four major opportunities were identified including (1) deciphering the relationship 
between engineering figures of merit—a term commonly used by engineers to objectively quantify the performance 
of a device, system, method, or material relative to existing state of the art—and clinical outcome measures, (2) vali-
dating computational models from engineering and patient perspectives, (3) creating and curating datasets that are 
made publicly accessible, and (4) developing new transdisciplinary frameworks, theories, and models that incorporate 
the complexities of the nervous and musculoskeletal systems. This commentary summarizes U.S. funding oppor-
tunities by two Federal agencies that support computational research in neurorehabilitation. The NSF has funding 
programs that support high-risk/high-reward research proposals on computational methods in neurorehabilitation 
informed by theory- and data-driven approaches. The NIH supports the development of new interventions and thera-
pies for a wide range of nervous system injuries and impairments informed by the field of computational modeling. 
The conference materials can be found at https:// dare2 023. usc. edu/.
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Background
Neurorehabilitation is a complex process. The success 
of neurorehabilitation strategies depends on multiple 
components described by the ICF, the International 
Classification of Functioning, Disability, and Health 
[1, 2]: personal factors, body functions and structures, 
activity and participation levels, and environmental 
and social support systems. The vision of neuroreha-
bilitation is to deliver the right treatment to the right 
patient at the right time [3]. Even for the most effective 
treatments, implementation would be highly specific 
to each patient who needs them at the correct time, 
frequency, and dose to restore or maintain function. 
Given the complexities of the human brain, the body 
it controls, and their interactions with the environ-
ment, methodologies that can manage these systems, 
and their heterogeneities after disabling neurological 
injury or disease are needed. Novel and ubiquitous sen-
sor technologies now allow for the collection of rapidly 
expanding amounts of physiological and behavioral 
data. Increasing computational power and efficiencies 
further contribute to unprecedented research opportu-
nities to develop innovative computational approaches 
and models capable of addressing these complexities. 
Together, these evolving challenges of data and mod-
eling complexity have led to the emerging field of com-
putational neurorehabilitation [4, 5]. This new field 
integrates computational approaches into neuroreha-
bilitation to reveal important insights into neural con-
trol of human behaviors [6–8] and movement [9, 10] 
associated with recovery or rehabilitation.

The March 2023 Disability and Rehabilitation Engi-
neering (DARE) Conference [11], co-sponsored by the 
National Science Foundation’s (NSF) Directorate for 
Engineering and the National Institutes of Health’s (NIH) 
National Institute of Child Health and Human Develop-
ment’s (NICHD) National Center for Medical Rehabilita-
tion Research (NCMRR), brought together researchers, 
clinicians, engineers, and trainees to discuss and explore 
new developments and opportunities in computational 
neurorehabilitation. Informed and inspired by the confer-
ence, program staff from NSF and NIH took the oppor-
tunity to write this commentary for this special issue. 
This commentary highlights innovative computational 
approaches with potential roles in (1) understanding the 
complex mechanisms underlying neurorehabilitation, 
(2) improving the delivery and implementation of reha-
bilitation care, and (3) empowering future rehabilitation 
workforce. The authors reflect on currently supported 
efforts by both agencies in promoting research that cre-
ates or uses computational approaches. The authors 
also highlight the specific and complementary program-
matic opportunities from both agencies in computational 

neurorehabilitation as an integral part of the nation’s 
future healthcare system.

Using computational models to understand complex 
mechanisms in neurorehabilitation
Computational modeling is often considered the “third 
paradigm” of scientific discovery [12], alongside theory 
and experiments. Decades of NSF and NIH supported 
research (“Alignment with federal agencies” section) have 
demonstrated that combining theoretical and physics-
based models can enhance the rigor of experimental 
design and lead to a deeper understanding of complex 
human systems. This has also been demonstrated in 
neurorehabilitation research, where mechanistic models 
have revealed the underlying principles and dynamics 
of a motor recovery system [13, 14] while physics-based 
models provide a more detailed description of the physi-
cal interactions and properties of neuromuscular and 
musculoskeletal systems [15]. Both mechanistic and 
physics-based models can contribute to new theoreti-
cal frameworks. By combining these two approaches, 
researchers can develop more accurate and comprehen-
sive models that capture aspects of these systems that are 
often inaccessible in human subjects research. This com-
bination of mechanistic and physics-based approaches 
has the potential to lead to discovery of previously 
unknown but potentially critical variables and relation-
ships. The combination may also provide insight into the 
underlying neural basis of recovery at the systems and 
behavioral levels. Ultimately, these model-based frame-
works may allow for new, mechanistic experimental 
designs to conduct both hypothesis-driven human neu-
roscience studies of brain and behavior and clinical trials 
of newly developed treatment strategies.

Using computational models to improve delivery 
and implementation of rehabilitation care
With the emergence of ubiquitous, multi-modal sensors, 
the ability to capture the relative complexities of human 
behaviors in quantifiable parameters: cognition, per-
ception, motor control, and emotion, to name a few, is 
in reach. These parameters can be further merged with 
social and environmental determinants of health [16] 
to create a complete picture of a person’s function. For 
artificial-intelligence-enabled biomedicine, these data 
could be used to create digital twins of patients and the 
environment associated with their care (Fig. 1). The defi-
nition of a digital twin was recently modified to include 
“a set of virtual information constructs that mimics the 
structure, context, and behavior of a natural, engineered, 
or social system (or system-of-systems), is dynamically 
updated with data from its physical twin, has a predic-
tive capability, and informs decisions that realize value. 
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The bidirectional interaction between the virtual and the 
physical is central to the digital twin” [17]. In healthcare, 
digital twins could be used to create personalized models 
of patients that allow clinicians to identify the most effec-
tive approach to optimize healthcare delivery [18]. These 
in silico systems would combine data such as muscle 
strength, joint range-of-motion, attention, and functional 

brain connectivity, and data gathered from similar patient 
populations, to identify the most effective, efficient, and 
economical rehabilitation strategies by simulating differ-
ent scenarios. Note, however, that digital twins are not 
without challenges [17]. Table  1 summarizes key issues 
in developing a digital twin for healthcare that must 
be overcome as presented at a National Academies of 

Fig. 1 The future of neurorehabilitation. In discussions with your clinician about your health, access to your personal baseline data of your 
cognition, physicality, biology, and more will be readily assessable. Shared data from de-identified patients with similar clinical phenotypes allows 
the clinician to compare your health against that of your population. Your data could then be modeled to provide preventive care guidance, 
efficacious treatment plans, and allow for the experimentation of novel hypotheses that may predict outcomes beyond the feasibility of human 
subjects research. Figure designed in BioRender

Table 1 Challenges identified in creating a digital twin for medicine

(1) Identify and solve difficult scientific problems that arise at different scales (e.g., systems biology, biophysics, the immune system)

(2) Address gaps in modeling (e.g., multiscale hybrid stochastic models, model design that facilitates updates and expansion, reusable models, 
and model standards)

(3) Develop appropriate collection modalities for patient data (e.g., noninvasive technologies and imaging capabilities)

(4) Develop novel forecasting methods (i.e., learning from successful hurricane forecasting)

(5) Develop data analytics methods for model recalibration from patient measurements

(6) Train a highly educated workforce

(7) Create appropriate funding models for individual medical digital twin projects from conception to prototype, and for larger infrastructure develop-
ment projects
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Sciences, Engineering, and Medicine Workshop in Janu-
ary 2023 [18].

By using computational models, researchers and clini-
cians may be able to predict the effects of different train-
ing protocols on neural function, optimize the timing and 
intensity of rehabilitation interventions, and personalize 
treatment plans based on individual patient character-
istics [5]. Moreover, monitoring patient progress over 
time allows clinicians to develop adaptive interventions 
that can adjust in real time to changes in patient behav-
ior or response to treatment. Similar concepts have been 
raised in the literature in the context of adaptive behav-
ior and plasticity [19]. Continual, real-time monitoring 
and assessments can lead to more effective and efficient 
rehabilitation, reducing the time and resources required 
to achieve meaningful outcomes. These efficiencies are 
increasingly important as hospital stays for patients with 
traumatic neurological injuries and stroke in the United 
States continue to shorten [20], thereby accelerating the 
timing for early in-home rehabilitation need and support. 
As more rehabilitation takes place at home, the need to 
monitor and deliver care remotely (telerehabilitation) 
continues to increase since the COVID-19 pandemic 
[21].

Beyond predicting how patients respond to standard 
therapies, models could simulate how a heterogeneous 
patient population would respond to an experimental 
treatment by iterating therapy dose, timing, procedure, 
etc., on as many virtual subjects as necessary to provide a 
sound evaluation. As an example, cardiac in silico models 
have been shown to be able to evaluate drug trials to pre-
dict clinical risk of drug-induced arrhythmias with 89% 
accuracy [22]. In comparison to the cardiac system, much 
about the human brain and its disease etiologies remains 
largely unknown; a computational approach could poten-
tially play a significant role in dealing with such complex-
ity and heterogeneity. Ultimately, computational models 
could expedite research and breach boundaries and ena-
ble approaches that are currently unfathomable.

Using computational models in neurorehabilitation 
requires an interdisciplinary workforce
Computational modeling serves as a platform to bring 
rehabilitation-invested professionals from various dis-
ciplines into an integrated patient-centered ecosystem. 
Transformative and innovative solutions for rehabilita-
tion arise from a convergence of expertise from clini-
cians, scientists, statisticians, engineers, patients, and 
care partners. The clinical team (i.e., physicians, nurses, 
and therapists) plays a critical role in delivering inter-
ventions (often behavioral or non-pharmacological) and 
providing the associated patient care. In addition to their 
clinical experience and skills, clinicians can partner with 

engineers, scientists, and statisticians to develop the best 
tools and technologies to inform and perform their ther-
apies. Engineers bring expertise in novel sensor design, 
measurement, computational models and methods, 
as well as rehabilitation and assistive devices that can 
enhance clinical practice and empower patients. Lastly, 
persons with lived experience (i.e., patients and caregiv-
ers) can be tapped to provide insights as to meaningful 
outcome measures and accessibility of therapies. In turn, 
the resulting data from these insights can be fed back into 
the ecosystem for further computation. One can imagine 
a framework in which each of these groups contributes to 
a robust and synergistic learning health system.

Gaps and opportunities
NIH and NSF have funded decades of research on com-
putational modeling and neurorehabilitation. All NIH 
funded projects can be accessed at the NIH Reporter 
(via https:// repor ter. nih. gov/) while NSF projects can 
be accessed at the NSF Award Search (via https:// www. 
nsf. gov/ award search/). In spite of decades of funding, 
the basic principles for how the human brain controls 
behaviors, including its role in neurorehabilitation, have 
yet to be discovered. As scientists and engineers across 
multiple disciplines continue to address this scientific 
gap, the authors have identified near-term opportuni-
ties for further research. For computational models to 
be adopted into clinical practice, they need to be seam-
lessly integrated into the clinical workflow and connected 
with clinical outcome measures. Many neurorehabilita-
tion outcome measures are based on patient self-report 
or clinician assessments. Some outcome measures do not 
capture the full complexity of the behavior being evalu-
ated or may not be sensitive to subtle changes in function 
or quality of life. These limitations present opportunities 
that the field can address. Researchers can bridge engi-
neering figures of merit (FoM) with domain-specific and 
performance-based clinical measures (e.g., described in 
[23]). Common engineering FoM (e.g., latency, accuracy, 
signal-to-noise ratio, spatial and/or temporal resolution, 
etc.) may not easily map to clinical measures and some 
engineering solutions may not be connected to actual 
patient or clinician priorities. Interdisciplinary teams 
can work through these challenges together to improve 
patient care.

To grow the field of computational modeling in neu-
rorehabilitation, trust must be earned through rigorous 
validation and open data. With regards to rigor, two types 
of model validation should be considered: engineering 
perspective and patient experience.  From an engineer-
ing perspective, several challenges remain in model vali-
dation [24, 25]. Base models are often not representative 
of the patient population including gender, age, race, and 

https://reporter.nih.gov/
https://www.nsf.gov/awardsearch/
https://www.nsf.gov/awardsearch/
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impairment [26]. Many validation studies are conducted 
with electromyography sensors, which often only provide 
a coarse measure of muscle activation patterns. With few 
exceptions [27, 28], there is a paucity of noninvasive sen-
sors that can measure the in vivo internal forces experi-
enced by muscles and tendons before and after treatment. 
This fundamentally limits the accuracy of model valida-
tion. From the patient’s perspective, one can assume that 
most models will predict the maximum achievable recov-
ery for a patient, or capacity. It is important, however, 
to receive feedback from patients on whether they are 
experiencing functional recovery consistent with model 
prediction and in domains most important to the patient 
(e.g., time available for therapy). It is imperative that 
patient input be captured so that deviations from predic-
tions could be learned by the model to improve future 
treatment in a continual manner over the lifespan of the 
patient. The model should be flexible enough to accom-
modate advances in clinical outcome measures. With 
regards to open data, access to extensive and rich, repre-
sentative datasets that are ethically collected are essential 
for models to comprehensively test theories or principles 
while mitigating bias. As an emerging field, computa-
tional neurorehabilitation needs more data that is openly 
accessible. Taking musculoskeletal modeling as an exam-
ple: a rich dataset, in the upper extremity, would signifi-
cantly facilitate developing frameworks to understand 
when and what to personalize computationally to opti-
mize clinical utility. Although tremendous progress has 
been made in lower limb musculoskeletal models [15], 
they too remain limited in identifying or incorporating 
clinically meaningful outcomes, such as minimizing pain 
and improving function in a lasting and sustainable way. 
A stronger culture of data sharing would enable research-
ers to compare their findings and corroborate their mod-
els. The availability of open, robust, and trusted datasets 
mitigates the difficulties of recruiting subjects and allows 
researchers to build predictive models based on more 
representative samples of the population.

To ensure that data is collected and stored in a con-
sistent and interoperable manner, the findable, acces-
sible, interoperable, and reusable (FAIR) principles 
[29, 30] of data sharing should be adopted by the field. 
Standards define the structure, format, and semantics 
of data, as well as the methods for data exchange and 
processing. Without standards, data can be inconsist-
ent, incomplete, or incompatible, which can hinder the 
ability to make accurate and timely decisions based on 
the data. In healthcare, data standards are particularly 
important for ensuring that patient data is accurately 
and securely transmitted between healthcare provid-
ers, researchers, and other stakeholders. Furthermore, 

data standards can facilitate the integration of data 
from different sources, such as electronic health 
records, medical imaging systems, wearables, human 
machine interface (HMI), and robotics, which can pro-
vide a more comprehensive view of patient health and 
enable more effective healthcare delivery. While there 
are efforts underway to create data standards for some 
neurorehabilitation data, there are many opportunities 
for alignment in the field. Both NSF and NIH support 
wide sharing of all scientific data in publicly accessible 
data archives to further encourage collaboration and 
knowledge growth among researchers [31–33].

Finally, more fundamental research is essential for 
developing unifying conceptual frameworks, theories, 
and computational models [34], which must incor-
porate the complexities of both the nervous and mus-
culoskeletal systems. There are multiple questions to 
be addressed: how will temporal changes that repre-
sent evolving computational parameters be incorpo-
rated? How will plasticity in musculoskeletal tissues 
and the nervous system be modeled to reflect changes 
in altered activity, adaptive biomechanical supports, 
or other outcomes of therapies? Future research may 
benefit from incorporating causal inference methods 
into neuroimaging and brain mapping techniques [35] 
or new directions in reinforcement learning models 
[36]. A benefit of this approach is that it would allow 
clinicians to computationally bridge knowledge across 
levels within the ICF framework and across timescales 
(i.e., point of intervention to long-term functional out-
comes). In addition, hybrid approaches that combine 
and integrate decades of physiological knowledge with 
emerging machine learning algorithms [37] could cre-
ate data-efficient computational models. The current 
state-of-the-art musculoskeletal models have yet to 
sufficiently incorporate components of the nervous 
system that are needed to study the intercausal rela-
tionship between pain, movement, and muscle control 
[38]. Given the complexity of the biotic (e.g., nervous 
system) and abiotic (e.g., electrodes, HMI) interactions, 
one can argue that theory-driven mechanistic models 
are an essential complement to data-driven computa-
tional models in this domain.

In summary, the increasingly vast and varied data-
sets to be generated by neurorehabilitation research 
will require effective data sharing based on FAIR prin-
ciples, new theory-driven computational models com-
bining neuroscience [34] and biomechanics [39], and 
the development of new engineering figures of merit 
that relate to clinical outcome measures [40] that will 
collectively present many new and exciting research 
opportunities.



Page 6 of 8Hwang et al. Journal of NeuroEngineering and Rehabilitation  (2024) 21:17

Alignment with federal agencies
Computational approaches are an emerging force that 
could shape the future of biomedicine and healthcare. 
Joint NSF-NIH initiatives that have promoted com-
putational research relevant to neurorehabilitation 
include the Brain Research Through Advancing Inno-
vative Neurotechnologies (BRAIN®) Initiative [41, 42], 
the Collaborative Research in Computational Neuro-
science (CRCNS) program, and the Smart Health and 
Biomedical Research in the Era of Artificial Intelligence 
and Advanced Data Science (SCH) program. These joint 
funding programs are particularly well suited for advanc-
ing the opportunities identified in this perspective.

In addition to joint agency partnerships, the NSF offers 
several funding opportunities to support rehabilita-
tion engineering research. The DARE program is one of 
the few congressionally mandated programs at the NSF 
exclusively created to generate engineering knowledge 
to improve the quality of life of persons with disabili-
ties, including visible and invisible disabilities. Funding 
by the DARE program focuses on high-risk/high-reward 
foundational engineering research that has future trans-
lational applications through new technologies (includ-
ing HMI), devices, or software; advancing knowledge of 
normal or pathological human motion; or understand-
ing injury mechanisms. While the NSF’s Directorate for 
Engineering supports projects that include human sub-
jects or appropriate animal models, NSF cannot support 
clinical trial research. This is an important consideration 
for investigators as metrics for success will be based on 
engineering figures of merits and optionally clinical out-
comes, since interventions based on clinical outcome 
measures are outside the purview of the NSF. Compli-
mentary to the DARE program are the Engineering of 
Biomedical Systems (EBMS) program that supports fun-
damental and transformative research that integrates 
engineering and life sciences to solve biomedical prob-
lems, the Biomechanics and Mechanobiology (BMMB) 
program that supports fundamental research on biologi-
cal mechanics across multiple scales—from subcellular 
to whole organism, and the Mind, Machine and Motor 
Nexus (M3X) program that supports research on the 
reciprocal interactions—mediated by motor manipu-
lation—between human cognition and embodied and 
intelligent engineered systems (e.g., including HMI and 
robotics). Likewise, there are collaborative programs 
within the NSF that cross directorates where computa-
tional rehabilitation may fit such as Cyber-Physical Sys-
tems (CPS), Foundational Research in Robotics (FRR), 
Integrative Strategies for Understanding Nneural and 
Cognitive Systems (NCS), Cyberinfrastructure for Sus-
tained Scientific Innovations (CSSI), and Computational 
and Data-Enabled Science and Engineering (CDS&E). 

For researchers interested in developing novel, energy-
efficient, non-invasive sensor technologies appropriate 
for real world data collection and model validation, the 
Biophotonics, Biosensing, and Communications, Cir-
cuits, and Sensing-Systems (CCSS) programs may be in 
scope. Further details of the NSF’s funding opportunities 
for research related to rehabilitation can be found here: 
https:// www. nsf. gov/ eng/ rehab. jsp.

Alternatively, the NSF has topic competitions 
announced via the Dear Colleague Letter (DCL) and the 
Request for Information (RFI) mechanisms that have the 
potential to focus on computational rehabilitation. Since 
2007, the Emerging Frontiers in Research and Innovation 
(EFRI) program [43] has solicited input from the com-
munity every 2  years for their ideas on transformative 
opportunities that would lead to new areas for funda-
mental or applied research, new industries or capabilities 
that result in a leadership position for the United States 
and/or significant progress on a recognized national need 
or grand challenge. Additionally, since 2019, the Con-
vergence Accelerator (CA) program [44] annually gath-
ers ideas from the community and then, based on these 
ideas, hosts workshops on use-inspired applications fed 
by basic science and discovery already performed by 
other NSF directorates. Ultimately, both the EFRI and 
CA programs release solicitations as funding opportu-
nities for the rigorously vetted topics of interest during 
their respective cycles. Thus, these are opportunities for 
the computational neurorehabilitation community to 
heighten the importance of and accelerate the translation 
of the field.

The NIH has identified several priorities related to 
computational modeling for neurorehabilitation, which 
aim to accelerate the development and adoption of inno-
vative technologies to improve rehabilitation outcomes. 
These priorities include advancing the development 
and validation of computational models for predict-
ing the effects of interventions on brain function and 
behavior, integrating multiple sources of data, including 
biological, behavioral, and environmental data, to pro-
vide a more comprehensive understanding of the fac-
tors that influence recovery from neurological injury, 
and developing new technologies, such as virtual reality, 
brain-computer interfaces, and mobile health apps, to 
enhance the effectiveness and accessibility of rehabilita-
tion interventions. Additionally, the NIH recognizes the 
urgent need to develop new methods for data analysis 
and sharing, to promote the integration of data from dif-
ferent sources and enable collaboration across disciplines 
and institutions. By focusing on these priorities, the NIH 
hopes to accelerate the applications of the computational 
approach in neurorehabilitation research and ultimately 
to enhance evidence-based and knowledge-informed 

https://www.nsf.gov/eng/rehab.jsp
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clinical practice. These goals are cross-cutting and highly 
relevant to multiple NIH Institutes and Centers, espe-
cially the missions of the NCMRR [45] (located within 
the NICHD) and the National Institute of Neurologi-
cal Disorders and Stroke (NINDS) [46]. Applicants are 
encouraged to submit applications through the investiga-
tor-initiated notice of funding opportunities.

Conclusion
Computational models are powerful tools for under-
standing complex systems like the human brain–body 
system and how it is impacted by neurological injury 
and disease. Computational modeling has great poten-
tial to improve neurorehabilitation care through insights 
gained about the underlying mechanisms and dynamics 
of recovery in patients. Computational models can also 
integrate large amounts of data from multiple sources, 
providing a comprehensive and holistic view of the 
patient during neurorehabilitation. This can lead to new 
discoveries and insights that would be difficult or impos-
sible to obtain through experimental or observational 
approaches alone, though there are challenges to over-
come before it is translated into the clinic. Overall, data 
science and computational approaches to neuroreha-
bilitation constitute emerging opportunities for exciting 
new research areas. For the benefit of the United States 
and the world, the NSF advances the creation of new 
engineering knowledge enabled by new computational 
capabilities while the NIH advances the development of 
new interventions and therapies for a wide range of brain 
injuries and conditions informed by the field of computa-
tional modeling.
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