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Abstract 

Background Computerized posturography obtained in standing conditions has been applied to classify fall risk 
for older adults or disease groups. Combining machine learning (ML) approaches is superior to traditional regres‑
sion analysis for its ability to handle complex data regarding its characteristics of being high‑dimensional, non‑linear, 
and highly correlated. The study goal was to use ML algorithms to classify fall risks in community‑dwelling older 
adults with the aid of an explainable artificial intelligence (XAI) approach to increase interpretability.

Methods A total of 215 participants were included for analysis. The input information included personal metrics 
and posturographic parameters obtained from a tracker‑based posturography of four standing postures. Two clas‑
sification criteria were used: with a previous history of falls and the timed‑up‑and‑go (TUG) test. We used three 
meta‑heuristic methods for feature selection to handle the large numbers of parameters and improve efficacy, 
and the SHapley Additive exPlanations (SHAP) method was used to display the weights of the selected features 
on the model.

Results The results showed that posturographic parameters could classify the participants with TUG scores higher 
or lower than 10 s but were less effective in classifying fall risk according to previous fall history. Feature selections 
improved the accuracy with the TUG as the classification label, and the Slime Mould Algorithm had the best per‑
formance (accuracy: 0.72 to 0.77, area under the curve: 0.80 to 0.90). In contrast, feature selection did not improve 
the model performance significantly with the previous fall history as a classification label. The SHAP values also helped 
to display the importance of different features in the model.

Conclusion Posturographic parameters in standing can be used to classify fall risks with high accuracy based 
on the TUG scores in community‑dwelling older adults. Using feature selection improves the model’s performance. 
The results highlight the potential utility of ML algorithms and XAI to provide guidance for developing more robust 
and accurate fall classification models.
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Introduction
Falls are one of the leading causes of accidental injuries 
and deaths among older individuals, and the annual inci-
dence rate of any falls ranges between 16.5 and 32.1% 
among community-dwelling older individuals [1–4]. The 
occurrence of accidental falls is multifactorial and the 
combined results of multiple factors. The intrinsic factors 
include sociodemographic variables, physical activity, 
acute and chronic health problems (dizziness, cognitive 
impairment), mobility, alcohol consumption, and medi-
cations [3, 5, 6]. Increased numbers of risk factors are 
associated with an increased risk of falls, and the changes 
in individual conditions (such as acute illness or hazard-
ous activities) or the presence of environmental hazard is 
associated with the fall risk [1]. Therefore, the prevention 
of falls is challenging for the complexity and dynamic 
nature of contributing factors.

Fall risk stratification is defined as “a single or set of 
assessments performed to grade an individual’s risk 
of falling, to guide what further assessments or inter-
ventions might be necessary” and using a standard 
approach to assess an individual’s estimated level of 
risk for falls facilitates implementation of a propor-
tionate detailed assessment and intervention according 
to the level of risk [7]. Commonly used classification 
methods include self-reported questionnaires, physical 
functional tests, and posturographic parameters. Each 
approach has its pros and cons. For example, the Stay 
Independent Brochure is documented to be a valid and 
reliable screening tool for classifying fall risk [8], but it 
takes several minutes to complete the questionnaire, 
and there is a limitation of use in certain populations. 
Meanwhile, some studies recommend using physical 
tests, such as the Timed-Up-and-Go (TUG) test, Berg 
balance scale or walking speed, as screening tools [7]. 
However, these commonly used mobility tests require 
the examination of specially-trained personnel in per-
sons and may not have sufficient discriminability to 
identify fallers in healthy community-dwelling older 
adults [9]. Another approach is to quantify an indi-
vidual’s intrinsic balance control using computerized 
posturography, which provides objective and quantita-
tive information on body sway with no ceiling or floor 
effect and has the potential for autonomic recording. 
These posturographic parameters could be obtained 
under variable stance conditions to differentiate the 
roles of sensory input on trunk stability and provide 
insights into multiple aspects of postural controls [10]. 
These parameters are also sensitive to subtle changes 

of postural control, such as differentiating the control 
group and multiple sclerosis with minimal fall risk [11]. 
However, the numbers of the computed posturographic 
parameters may be large, and their relative sensitivity 
to detect changes in postural steadiness or discriminate 
normal versus abnormal balance controls vary consid-
erably [11, 12]. Furthermore, these parameters may be 
non-linear and highly correlated [10], in which condi-
tion a traditional analysis, such as a multivariate logis-
tic regression method, has limitations to achieving an 
optimal classification result. As a result, it motivates 
the introduction of artificial intelligence (AI)-based 
approach, such as machine learning (ML), to handle the 
complexity of the data [13].

There have been several studies combining posturo-
graphic data and AI approach for fall risk classification 
in several populations, including the older adults liv-
ing in communities or institutes [14–18], osteoporotic 
elderly [19], parkinsonism [20], and multiple sclerosis 
[11]. The posturographic data are obtained from force 
platforms [11, 17, 20], pressure platforms [16], inertial 
sensors [16, 21], or depth camera [18]. The most com-
monly applied ML algorithms include random forest, 
decision tree, neural network, support vector machine 
(SVM), and k-nearest neighbor, etc. [11, 16, 17]. These 
various ML algorithms can achieve accuracy between 
80 and 99.9% [11, 17, 22, 23], or an area under the curve 
(AUC) between 85 to 88% according to the receiver’s 
operating characteristic (ROC) analysis [16]. The above 
results support the validity of using posturographic fea-
tures to classify or predict fall risk and may be superior 
to personal metrics [16]. Moreover, researchers find 
that feature selection for the minority class method can 
select previously unnoticed balance parameters, which 
may otherwise be disregarded by experts [19].

However, AI methods are criticized for their black-
box framework nature and generally do not provide 
any information about the solution to the various 
problems and the relationships, which lead to the reli-
ability and accountability problem [24]. It can be a sig-
nificant drawback for the underlying trust issue and 
lead to their low use in practice, especially in health-
care [25, 26]. In response to this issue, explainable AI 
(XAI) techniques are proposed to describe AI behav-
ior and present its structural and functional informa-
tion clearly [27, 28]. Although the XAI results do not 
prove a causal relationship, it provides confidence in 
the model’s performance by explaining how the model 
is derived to increase the transparency and allow the 
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users to examine the appropriateness of the model. XAI 
techniques aim to provide insights into how these mod-
els make predictions or classification and to understand 
the reasoning behind their decisions [29]. This issue 
is also critical for using computerized posturographic 
parameters in the evaluation of fall risk. Despite the 
increasing application of center of pressure (COP) 
parameters to predict or classify fall risk in old people, 
the choice of COP trajectory features lacks consensus 
[30]. The weighting for these posturographic features 
to predict or classify fall risk is even more complex 
with inputs from the combination of personal charac-
teristics and various postural manipulation (changing 
standing surface, visual input or foot positions). One 
study used ML algorithms and XAI approach to iden-
tify older individuals at risk of mobility decline in a 
5-year follow-up [31]. Several variables are identified 
as important for the prediction performance accord-
ing to a random forest algorithm and SHapley Additive 
exPlanations (SHAP) values. Therefore, introduction of 
XAI approach with ML algorithms have the potential 
to increases the transparency of models and therefore 
improve targeted preventive programs, which is impor-
tant for fall prevention.

The goals of this study were to implement ML algo-
rithms with posturographic parameters to classify the 
fall risk among community-indwelling older people. We 
explored the effects of feature selections on the perfor-
mance and the contribution of posturographic and per-
sonal metrics on ML models according to XAI analysis. 
We hypothesized that the performance of the ML algo-
rithm to classify fall risks would be better with feature 
selections and superior by using the TUG to using fall 
history as a dependent variable, since posturographic 
data should be correlated with the mobility ability more 
than the risk behaviors. The results would help to under-
stand the relationship between changes of postural con-
trol and fall risks and to develop autonomic screening 
tools in the future.

Subjects and methods
Data collection
Participants and study design
This study was part of a follow-up survey of the fall risks 
in community-dwelling older adults. A convenience sam-
ple of elderly individuals was recruited from seven com-
munity centers, with specific inclusion criteria: being 
above 60 years old, living in the community, and capable 
of walking independently for at least 10 m, either with or 
without walking aids. Participants with significant cogni-
tive impairment to follow the instructions during tests, 
severe visual impairment, significant neurological condi-
tions or major musculoskeletal disorders were excluded 

from the study. This study was approved by the Ethical 
Committee of the National Taiwan University Hospital 
(approval number: 202112114RINA, date of approval: 
1/14/2022), and written informed consent was obtained 
prior to participation.

Procedure and classification output
Two criteria were selected to categorize the fall risk. The 
first one was based on a single question regarding to 
history of fall in the previous year. The second one was 
according to the TUG test, which reflected mobility abil-
ity and had been commonly used to classify fall risks 
in the older adults [32]. All the participants were inter-
viewed to answer a questionnaire about the personal 
metrics and fall history in the previous year. The infor-
mation included age, sex, body weight, body height, and 
use of walking aids. The participants also performed the 
TUG test according to a standardized procedure [33], 
in which the participants stood up from an armed chair, 
walked to a line 3 m away at a safe and comfortable pace, 
turned, and returned to a sitting position in the chair. The 
time required to complete the test was recorded in sec-
onds by a stopwatch.

Data collection with a VIVE tracker‑based posturography
We obtained body sway parameters through a VIVE 
(HTC, Inc. Taiwan) tracker-based posturography. The 
setup included two infrared laser emitter units (SteamVR 
Base Stations V2.0) and three wireless trackers (Steam 
VR Tracking V2.0). The details of the setup and the reli-
ability and validity against a platform system had been 
given in previous study [34]. In brief, trunk displacement 
trajectories were obtained from one tracker positioned 
on the posterior lumbar region at the pelvic level with a 
reference body frame established by two trackers put on 
the floor and lateral to the feet (Fig.  1). The time series 
of trunk displacements of the lumbar tracker  (TDL) were 
recorded in the medial–lateral (M-L) and anterior–pos-
terior (A-P) directions from the VIVE tracker-based pos-
turography as a proxy of trunk sway near the level of the 
center of mass [35], and to compute  TDL parameter as 
input for ML.

The participants were informed of the procedure first 
and then performed bipedal stance under four con-
ditions: feet apart with eyes open (W-EO), feet apart 
with eyes closed (W-EC), feet together with eyes open 
(N-EO), and feet together with eyes closed (N-EC). Dur-
ing the standing tasks, the participants were instructed to 
put their arms down at their sides and remain as stable 
as possible for 30  s. All the standing tasks were stand-
ardized with marking on the floor (Fig.  1). In the EO 
stance, the participants were asked to look at a fixed tar-
get on the wall 2 m ahead. The testing order of the four 
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conditions was randomized, and each posture had two 
trials, yielding a total of eight bi-axis trajectory data for 
each participant.

The time series of the  TDL data were passed through 
a fourth-order zero-phase Butterworth low-pass digital 
filter with a 5-Hz cutoff frequency and used to compute 
31 parameters (Table  1) as the input of ML [10]. These 
parameters were grouped as positional, dynamic, and fre-
quency measures, and the computation was based on the 
equations used for COP trajectory analysis in previous 
studies [10, 12].

Methodology of machine learning
Figure  1 presents an overall framework to classify fall 
risks, which includes data collection, filtering, feature 
extraction, selection, and classification. The evaluation 
process is based on several metrics, and the result is 
explained using the SHAP method [36]. More informa-
tion regarding each step is provided as follows:

Feature extraction
In this step, we computed 31 features from the  TDL tra-
jectories according to previous studies (Table  1) [10, 
12]. Personal metrics (age, sex, height, weight, and body 
mass index (BMI)) were also considered as features since 
they are either risk factors for falls or might influence 
the data recorded by a lumbar tracker. Each participant 
performed two trials for each stance condition (W-EO, 
W-EC, N-EO, N-EC), and the parameters from the two 
trials were averaged for each stance condition. There 
were a total number of 124 features from posturographic 
data. The filtered data were split into three sets: training 
(50%), validation (20%), and test sets (30%). Also, three-
fold cross validation methods on training data were used 
for parameter setting. In the next step, we applied feature 
selection methods to improve the training time and accu-
racy of the models. Finally, the extracted features were 
normalized between 0 and 1 on the training set and test 
set.

Fig. 1 Proposed method for machine learning
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Feature selection
Feature selection is a widely used technique in ML that 
serves to speed up the training time, improve the accu-
racy of models, and reduce overfitting [37]. These feature 
selection methods also helped us identify the most signif-
icant and relevant posturographic parameters as features 
for fall risk classification, thereby improving the accuracy 
of the classifiers, and resulting in a robust solution for fall 
risk classification.

We selected three meta-heuristic algorithms, Har-
ris Hawk Optimization (HHO) [38, 39], Slime Mould 
Algorithm (SMA) [40], and Artificial Bee Colony (ABC) 
[41] to enhance the quality of features for classification. 
HHO is a meta-heuristic optimization algorithm that 
is inspired by the hunting behavior of Harris hawks. 
The algorithm is designed to solve optimization prob-
lems with continuous and discrete variables. One of the 
key advantages of HHO is its simplicity and robustness. 
Additionally, it has the ability to efficiently search in high-
dimensional feature spaces. Also, it is efficient in avoiding 
getting trapped in local optima and can adapt to different 
types of optimization problems [38, 39]. Another feature 
selection method is based on SMA which is a meta-heu-
ristic algorithm based on the oscillation mode of slime 
mold in nature. This algorithm is designed for engineer-
ing problems and continues global optimization and has 
shown reasonable performance for feature selection in 

previous research [42, 43]. The third feature selection 
method employed is ABC, which is based on ants’ behav-
ior in finding food. This algorithm is used as an optimi-
zation technique, demonstrating that a reduced number 
of features can achieve classification accuracy superior to 
that obtained using the full set of features [41].

Fitness function
The results of the classification were then evaluated using 
metrics such as accuracy, sensitivity, specificity, geo-
metric mean (GM), and area under the curve (AUC). In 
feature selection, the fitness function is typically defined 
as the accuracy or performance of a classifier trained on 
the selected features. However, the combination of AUC, 
GM, and the size of selected features is considered a fit-
ness function according to previous research [44]. The 
proposed fitness function is defined as:

where � = 1− (
|X∗|
|X |

) where |X∗| represents the size of 
selected features and |X | denotes the size of input fea-
tures, and AUC denotes the area under the curve, and 
GM is calculated as:

where TP denotes “true positives” which is the number 
of samples that are correctly classified as positive by the 
model, FP represents “false positives” which are the num-
ber of samples that are incorrectly classified as positive by 
the model. TN stands for “true negatives” which are the 
number of samples that are correctly classified as nega-
tive by the model. FN represents “false negatives” which 
are the number of samples that are incorrectly classified 
as negative by the model Hossin and Sulaiman [45].

Classification
The selected features based on the three feature selec-
tion methods of SMA, HHO, and ABC, along with sev-
eral personal metrics, were then used for classification 
using three different algorithms: Easy Ensemble [46], Bal-
anced Bagging [47] and Complement Naïve Bayes (NB) 
[48]. Easy Ensemble creates an ensemble of classifiers 
by under-sampling the majority class, Balanced Bagging 
by re-sampling the training data with replacement, and 
Complement NB by combining the predictions of multi-
ple Naive Bayes classifiers trained on different subsets of 

(1)fitness = w1GM+ w2AUC+ w3�

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(2)GM = Sensitivity× Specificity

Table 1 A complete list of the posturographic parameters for 
feature extraction

We used the computation for center of pressure trajectory analysis [10, 12]

M-L: medial–lateral; A-P: anterior–posterior

Parameters Directions

Time‑domain distance measures

 Mean distance M‑L, A‑P, radius

 Maximal distance M‑L, A‑P, radius

 Root mean square distance M‑L, A‑P, radius

 Range M‑L, A‑P, radius

 Mean velocity M‑L, A‑P, radius

Time‑domain area measures

 95% confidence ellipse area radius

Time‑domain hybrid measure

 Sway area per second radius

 Mean frequency M‑L, A‑P, radius

 Fractal dimension radius

Frequency domain measure

 Total power spectrum density M‑L, A‑P

 50% power frequency M‑L, A‑P

 95% power frequency M‑L, A‑P

 Centroid frequency M‑L, A‑P

 Frequency dispersion M‑L, A‑P
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the feature space. Since the annual prevalence of any falls 
was mostly under 35% among community older adults [1, 
3], an imbalanced data set was expected. The above algo-
rithms were suitable for imbalanced data classification 
to improve classification performance by reducing bias 
toward the majority class [46]. We also compared these 
methods with traditional approaches for feature selection 
and classifiers. Two criteria were used for the classifica-
tion: criteria I: any fall in the previous 1 year, and criteria 
II: requiring 10 s or more to complete the TUG test. Cri-
teria II reflected the current ability of balance. The cutoff 
value of the TUG test was lower than that proposed by 
a recent guideline [7], but was considered of good pre-
dictive validity of fall risks in community-dwelling older 
adults [4]. Previous studies also showed an inadequate 
discriminative ability using 13.5 s [49].

Evaluation metrics
In this study, various evaluation metrics were used to 
assess the performance of our proposed model. These 
included accuracy, sensitivity (recall), specificity, and the 
AUC [45]. These metrics provide a comprehensive evalu-
ation of the model’s performance, providing valuable 
insights into its capabilities. The overall performance of 
the model is deemed to be satisfactory when it exhibits 
high levels of accuracy, sensitivity, specificity, and AUC.

Explainability
Lastly, the results of the evaluation were explained using 
the SHAP method [36]. This method provides an under-
standing of how different features contribute to the final 
classification result [31, 50], providing insight into the 
importance of each feature to classify fall risks accu-
rately in older adults. SHAP is based on Shapley values, 
which explain individual weights from a model. Shapley 

values are defined as a coalition game with players and a 
value function. In the ML approach, the ’players’ repre-
sent input variables or features, and the ’game’ represents 
the prediction of the machine learning models. Shapley 
values were introduced to fairly distribute the payout of 
a cooperative game among its players. Shapley values 
assign a value to each feature by considering its contribu-
tion to different possible coalitions of features.

Results
Collected data of the participants
We recruited 217 participants, but two of them were not 
able to complete the fourth task, N-EC. Therefore, only 
data from 215 participants were included for analysis. 
They were, on average, 72  years old, and around one-
third of them were female. The fall rate in the previous 
year was 22.8%, with 32.7% of the fallers falling more than 
once. The proportion of the participants classified as at 
risk was higher with Criteria II (30.7%) than with Criteria 
I (22.8%). With criteria I, the at-risk group had a higher 
proportion of using walking aids, but similar to low-risk 
group with other personal metrics and TUG scores. With 
criterion II, the comparison between the low-risk and at-
risk groups showed a significant difference regarding age, 
body height, BMI, using walking aids and having multiple 
falls (Table 2).

Initialization and parameters setting
Table  3 shows the hyperparameters for three classifiers 
used for classification, which include Easy Ensemble, 
Balanced Bagging, and Complement NB. For the Easy 
Ensemble classifier, the number of AdaBoost learners in 
the ensemble is set to 9, and the estimator used to grow 
the ensemble is Complement NB. The Balanced Bagging 
classifier has a hyperparameter for the number of base 

Table 2 Personal metrics of all participants and comparison between the low‑risk and at‑risk groups according to two criteria: criteria 
I: according to any fall in the past 1 year, criteria II according to the TUG test

Criteria I Criteria II

Low risk (N = 166) At risk (N = 49) p value Low risk (N = 149) At risk (N = 66) p value

Age 71.2 ± 7.3 72.6 ± 6.7 0.24 70.0 ± 6.6 75.3 ± 7.0 < 0.001

Male 53 (31.9%) 16 (32.7%) 0.92 49 (32.9%) 20 (33.3%) 0.71

Body height (cm) 156.9 ± 8.7 157.4 ± 8.5 0.76 158.2 ± 7.8 154.3 ± 9.7 0.002

Body weight (kg) 61.0 ± 12.5 62.3 ± 19.6 0.50 61.1 ± 12.1 61.7 ± 12.1 0.73

Body mass index (kg/m2) 24.7 ± 4.1 25.2 ± 4.2 0.40 24.3 ± 4.0 25.9 ± 4.1 0.01

Using walking aids 11 (6.6%) 8 (42.1%) 0.04 0 (0%) 19 (28.8%) < 0.001

Timed‑up‑and‑go time (seconds) 8.5 ± 2.9 9.0 ± 3.6 0.28 7.5 ± 1.1 12.8 ± 4.0 < 0.001

Fall history

 Any fall – – – 21 (14.1%) 28 (42.4%) < 0.001

 Multiple falls – – – 3 (2.0%) 13 (19.7%)  < 0.001
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estimators in the ensemble, which is set to 9, and uses 
Complement NB as the base estimator to fit on random 
subsets of the dataset. The hyperparameter for this classi-
fier also includes a setting for whether features are drawn 
with replacement, which is set to True. Finally, the Com-
plement NB classifier has an additive smoothing parame-
ter, which is set to 1.0. These hyperparameters determine 
the behavior of the models and can impact their perfor-
mance on the classification. Also, the population size 
and epoch for three feature selection models based on 
meta-heuristics, SMA and HHO, have been set to 100 
and 100, respectively. All simulations were carried out in 
Python 3.8 using the scikit-learn and mealpy packages on 
a machine equipped with a Core i7 processor running at 
2.70 GHz and 32 GB of memory.

Classification results
Tables 4 and 5 present the results of different combina-
tions of feature selection models (SMA, HHO and ABC) 
and classifiers (Balanced Bagging, Complement NB, and 
Easy Ensemble) for a fall risk classification using two 
criteria. The evaluation metrics include accuracy, recall 
(sensitivity), specificity, and AUC. Overall, using Crite-
ria II achieved higher accuracy (0.66 to 0.78) and AUC 
(0.76 to 0.90) than using Criteria I. The highest AUC 
was achieved by using Criteria II and the SMA feature 
selection model with easy Ensemble. The Complement 
NB classifiers yielded better performance in terms of 
accuracy, recall, and specificity compared to the Bal-
ance Bagging with Criteria II. However, feature selec-
tion resulted in higher accuracy compared to not using 
feature selection with only Criteria II, but not Criteria I. 
Figure 2 displays the AUC plot for three feature selection 
approaches, followed by classification using the Balanced 
Bagging, Complement NB, and Easy Ensemble classifiers.

Figures 3 and 4 demonstrate the confusion matrices for 
fall risk classification based on Criteria I and II, respec-
tively. In Criteria I (Fig.  3), Easy Ensemble classifiers 
using the selected features by ABC stand out with the 

highest TP, correctly identifying individuals at risk of fall-
ing, while Balanced Bagging without any feature selection 
algorithm achieves the highest TN, accurately classifying 
those not at risk. On the other hand, Balanced Bagging 
with ABC and Easy Ensemble with SMA achieve the low-
est FP and FN, indicating superior performance in mini-
mizing misclassifications. In Criteria II (Fig. 4), Balanced 
Bagging with ABC algorithm obtains the highest TP, 

Table 3 initialization parameters

HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm, ABC: Artificial Bee Colony

Classifiers Hyperparameter Values

Easy Ensemble Number of AdaBoost learners in the ensemble 9

Estimator used to grow the ensemble Complement NB

Balanced Bagging The number of base estimators in the ensemble 9

The base estimator to fit on random subsets of the dataset Complement NB

Whether features are drawn with replacement True

Complement NB Additive (Laplace/Lidstone) smoothing parameter 1.0

SMA, HHO, ABC Population size
Epoch

100
100

Table 4 Output using Criteria I, at risk of fall according to fall 
history in the past 1 year, as a classification criterion

AUC: area under the curve; ABC: Artificial Bee Colony; HHO: Harris Hawk 
Optimization; SMA: Slime Mould Algorithm

Feature 
selection

Model Accuracy Recall Specificity AUC 

ABC Balanced Bag‑
ging

0.69 0.73 0.68 0.70

Complement 
NB

0.69 0.67 0.70 0.71

Easy Ensemble 0.69 0.67 0.70 0.71

HHO Balanced Bag‑
ging

0.60 0.47 0.64 0.61

Complement 
NB

0.60 0.40 0.66 0.63

Easy Ensemble 0.60 0.40 0.66 0.63

SMA Balanced Bag‑
ging

0.58 0.40 0.64 0.49

Complement 
NB

0.62 0.53 0.64 0.64

Easy Ensemble 0.60 0.60 0.60 0.66

None Balanced Bag‑
ging

0.71 0.60 0.74 0.72

Complement 
NB

0.71 0.60 0.74 0.72

Easy Ensemble 0.71 0.60 0.74 0.72

Mean Balanced Bag‑
ging

0.65 0.55 0.68 0.63

Complement 
NB

0.66 0.55 0.69 0.68

Easy Ensemble 0.65 0.57 0.68 0.68
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effectively identifying individuals at risk, while Balanced 
Bagging classifier without any feature selection algorithm 
maintains the lead in TN, providing accurate predictions 
for those not at risk. The lowest FP is achieved by Bal-
anced Bagging and Easy Ensemble with ABC, empha-
sizing their effectiveness in avoiding false alarms, and 
Complement NB with SMA achieves the lowest FN, 
showcasing its strength in minimizing missed fall risk 
classifications.

Comparison with traditional feature selection methods
Figures 5 and 6 demonstrate the comparative analysis of 
fall risk classification results obtained through traditional 
feature selection methods, specifically Mutual Informa-
tion (MI) [51] and ANOVA F-value (F-value), combined 
with three classifiers (Balanced Bagging, Complement 
NB, and Easy Ensemble). In Criteria I (Fig.  5), results 
obtained for ABC, HHO, and SMA consistently out-
perform traditional feature selection methods such as 
MI and F-value across various metrics, including accu-
racy, recall, specificity, and AUC. This trend holds true 
for Criteria II (Fig.  6), where metaheuristic algorithms 
ABC, HHO, and SMA showcase superior performance 
compared to traditional methods, emphasizing the effec-
tiveness of the selected algorithms in enhancing fall risk 
classification accuracy.

Table 5 Output using Criteria II, scores 10 s or more with the 
TUG test, as a classification criterion

AUC: area under the curve; ABC: Artificial Bee Colony; HHO: Harris Hawk 
Optimization; SMAl: Slime Mould Algorithm

Feature 
selection

Model Accuracy Recall Specificity AUC 

None Balanced Bag‑
ging

0.69 0.57 0.73 0.76

Complement 
NB

0.69 0.57 0.73 0.77

Easy Ensemble 0.69 0.71 0.69 0.78

ABC Balanced Bag‑
ging

0.74 0.86 0.71 0.85

Complement 
NB

0.75 0.71 0.76 0.82

Easy Ensemble 0.72 0.79 0.71 0.82

HHO Balanced Bag‑
ging

0.71 0.64 0.73 0.79

Complement 
NB

0.72 0.64 0.75 0.81

Easy Ensemble 0.66 0.57 0.69 0.79

SMA Balanced Bag‑
ging

0.72 0.64 0.75 0.80

Complement 
NB

0.78 0.86 0.76 0.89

Easy Ensemble 0.77 0.86 0.75 0.90

Mean Balanced Bag‑
ging

0.72 0.68 0.73 0.80

Complement 
NB

0.74 0.70 0.75 0.82

Easy Ensemble 0.71 0.73 0.71 0.82

Fig. 2 The plots of receiver operating curve analysis according to different classification criteria, feature extraction and classifiers. (ABC: Artificial Bee 
Colony; HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm)
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Comparison with traditional classifiers
The model performance with various classifiers (Bal-
anced Bagging, Complement NB, and Easy Ensemble) 
was compared with traditional models such as SVM, 
Decision Tree, and Multi-layer Perceptron (MLP) 
(Figs.  7 and 8) for the classification of fall risk based 
on Criteria I and II. The above traditional classifiers 
had a high specificity compared to Balanced Bagging, 
Complement NB, and Easy Ensemble. Meanwhile, they 
also exhibited quite low recall values, rending a smaller 
AUC. This trend was observed across both models for 
Criteria I and II, emphasizing the effectiveness of the 
implemented classifiers in handling imbalanced data 
for fall risk classification in this study.

Explainability using SHAP
Figure  9 illustrates representation of the SHAP sum-
mary plots. The features are arranged in descending 
order of significance, while the SHAP values are dis-
played along the x-axis. The greater the distance from 
the vertical line at x = 0, the more significant the influ-
ence on the output prediction. Values situated to the 
left tend to steer the prediction toward an elevated 
risk of falling. The vertical lines, consisting of dots, are 
adorned with various colors. Each participant is rep-
resented by a dot, with pink denoting a high value and 
blue representing a low value. This figure effectively 
depicts the most critical features and their respective 
impact ranges.

Fig. 3 Confusion matrices for different feature selections and classifiers for Criteria I. It displays the number of true negatives (TN) at the left upper 
corner, true positives (TP) at the right lower corner, false positives (FP) at the right upper corner, and false negatives (FN) at the right lower corner, 
according to the model’s predictions (ABC: Artificial Bee Colony; HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm)
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Generally, using SMA showed high SHAP values in 
limited numbers of parameters, while no feature selec-
tion did not highlight the SHAP values among differ-
ent parameters. Several posturographic parameters 
were selected often, such as total A-P and 95% power 
A-P in the W-EC condition, frequency dispersion A-P 
in the N-EO condition, and the RMS M-L in the W-EO 
condition.

For Criteria I, a number of posturography parameters 
was identified as important for fall classification, with 
most of them from W-EO condition and in the M-L 
direction. For personal metrics, age and sex were the 
mostly selected parameters across several models. Older 
age was associated with higher fall risk with Criteria II. In 

contrast, the effect of sex was not consistent. For criteria 
II, the SMA had the largest AUC and the highest accu-
racy. This model had higher weights from personal met-
rics (age, body height, body weight and sex) and several 
posturographic features. It was noteworthy that, unlike 
with criteria I, the posturographic features with high 
SHAP values were from the N-EC condition, the mostly 
challenging task, and also from posturographic param-
eters in the AP direction.

Discussion
Fall risk classification is important to initiate a per-
son-centered approach to fall prevention in commu-
nity-dwelling older adults [52]. Using computerized 

Fig. 4 Confusion matrices for different feature selections and classifiers for Criteria II. It displays the number of true negatives (TN) at the left upper 
corner, true positives (TP) at the right lower corner, false positives (FP) at the right upper corner, and false negatives (FN) at the right lower corner, 
according to the model’s predictions. (ABC: Artificial Bee Colony; HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm)
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posturographic parameters provides a highly quan-
titative and objective measure without ceiling or 
floor effect as a classifier or predictor of falls. This is 
advantages in community-dwelling older adults, who 
may still function well in community despite gradu-
ally declined balance function compared to the young 
adults. Application of ML algorithms showed promis-
ing roles to incorporate these complex, non-linear and 
highly correlated posturographic parameters. How-
ever, the superiority of these parameters is yet to be 
confirmed to increase the discriminative ability in fall 
classification or prediction. Our study design used four 
standing conditions to challenge the trunk controls and 
enhance discrimination. Moreover, the attribution of 
the lumbar tracker trajectory parameters obtained in 
each standing condition to the models was illustrated 
through the XAI approach. We also document that 
choices of feature selection techniques and classifi-
ers help optimize the performance, regarding the high 
numbers of features from four standing conditions and 
imbalance data.

Classification criteria
Our study results showed that the discriminating ability 
of the ML models was related to the classification crite-
ria used to classify fall risk among community-dwelling 
older adults. We chose two criteria, which were either 
an important risk factor for falls or a commonly used 
screening tool for fall risks [8, 49]. As we hypothesized, 
the discriminating ability varied with different criteria. 
Using criteria II according to a TUG test scores had good 
performance, comparable with or even superior to some 
studies with different study designs and ML methods 
[14, 15, 19]. It is not surprising because of multifactorial 
nature of falls, while TUG scores were correlated with 
balance and could be reflected by static posturographic 
features. The results agree with previous studies using 
static parameters to classify at-risk or no-risk groups 
for falls in older adults [53, 54]. The AUC was between 
0.6 and 0.9 with different posturographic parameters 
in a group of community-dwelling older adults, half of 
whom had a TUG larger than 13.5  s [54]. In contrast, 
the AUC was less than 0.7 in a study using future fall 

Fig. 5 Model performance comparison using various feature selection methods for criteria I, illustrated for accuracy (a), recall (b), specificity (c) 
and area under the curve (d). (ABC: Artificial Bee Colony; HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm; MI: Mutual Information)
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events to define fall risks. It is noteworthy that we used 
10  s as a cutoff value, which was lower than the previ-
ously proposed values for high risk of falls. Our rational 
was based on a low proportion of our participants with 
scores higher than 12  s, and the average TUG score for 
the previous fallers was 10 s. The criterion was proposed 
in some studies among healthy community-dwelling 
older adults [4]. Presumably, using 10 s would be associ-
ated with a looser criterion to define fall risk. However, 
our models achieved a good performance, implying the 
effectiveness of the posturographic parameters in classi-
fying these two groups.

In contrast, these posturographic parameters were 
much less effective in classifying fall risk according to a 
previous fall history. Since the nature of dependent vari-
ables for prediction or classification would influence the 
modeling performance [55], it is reasonable to say that 
these posturographic parameters obtained under differ-
ent stance conditions can reflect the mobility balance 
better than a previous fall history through ML models 
[54]. It also echoes the fact that falls are the combined 
results of multiple intrinsic and extrinsic factors, not just 

balance ability [1]. Therefore, it is likely to increase the 
accuracy of ML when more comprehensive information 
related to risk factors for falls can be included.

Comparison with traditional feature selection techniques 
and classifiers
The findings of our study indicated that the incorpora-
tion of feature selection techniques can significantly 
improve the accuracy and overall performance of clas-
sifiers across diverse classification tasks. We employed 
three feature selection models, ABC, SMA and HHO, 
based on meta-heuristic optimization. These models 
have demonstrated promising performance in previous 
research [42], and our results also confirmed their advan-
tages over traditional methods, such as F-value and MI. 
The impact on the improvement of the model perfor-
mance was mainly with criteria II. Using feature selection 
combined with complement NB can increase both TN 
and TP while reducing FP and FN, as demonstrated by 
the confusion matrix. Meanwhile, high FP was more than 
FN with Criteria I using feature selection reduced the TN 
while increasing or reducing TP. This could be attributed 

Fig. 6 Model performance comparison using various feature selection methods for criteria II, illustrated for accuracy (a), recall (b), specificity (c) 
and area under the curve (d). (ABC: Artificial Bee Colony; HHO: Harris Hawk Optimization; SMA: Slime Mould Algorithm; MI: Mutual Information)
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to a lower correlation between a fall history and posturo-
graphic parameters.

Additionally, to mitigate the challenges posed by imbal-
anced data, we employed three distinct classifiers, aiming 
to diminish bias towards the majority class, and thereby 
enhance the classification performance compared with 
traditional classifiers, such as Decision Tree, SVM and 
MLP. These three methods could achieve a high specific-
ity, but a low recall. Notably, the utilization of the Com-
plement NB classifier demonstrated promising potential 
as an effective approach for addressing classification 
problems.

Explainablility
XAI represents a cutting-edge approach that seeks to 
establish transparency and trustworthiness in machine 
learning models [26]. This study contributes to the field 
by documenting the influence of posturographic param-
eters derived from various stance conditions and per-
sonal metrics on the model’s performance. The main 
advantage of using SHAP is the transparency to identify 
which features are driving a model performance and how 

much each feature is contributing to the model. It has 
been used in health care [56], including one document-
ing the important factors attributing to mobility decline 
in the older adults [31]. The contribution of personal 
metrics was mostly in accordance with previous stud-
ies exploring risk factors of falls [2, 57]. This study used 
posturographic data from four stance conditions from 
the combination of stance width and eyes open/closed, 
and the results illustrated the significance of postural 
control strategies when individuals modify their stance 
width and rely on visual information cues. This investiga-
tion provides valuable insights into the role of these fac-
tors in shaping the model’s decision-making process and 
enhances our understanding of the underlying mecha-
nisms governing postural control in different contexts. 
Several posturographic and personal metrics demon-
strated a high contribution to the fall risk classification, 
as determined by SHAP’s output based on different fea-
ture selection approaches. It seemed that the posturo-
graphic parameters obtained during W-EO and W-EC 
conditions attributed more weights to the output with 
criteria I. In contrast, the parameters obtained during 

Fig. 7 Model performance comparison using various classifiers for criteria I, illustrated for accuracy (a), recall (b), specificity (c) and area 
under the curve (d). (MLPl: Multi‑layer Perceptron; SVM: Support Vector Machine; AUC: area under the curve)
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N-EC, the most challenging task, had higher attribution 
to the output with criteria II. It explained that a contribu-
tion of increased body sway in these challenging standing 
tasks, and a declined postural control could be classified 
effectively. The observation of higher SHAP values from 
posturographic parameters in the A-P direction with 
Criteria II was also in accordance with some previous 
studies using COP trajectories [54]. The results highlight 
the potential utility of these features in classifying fall 
risk and provide guidance for the development of more 
robust and accurate fall classification models among 
community-dwelling older adults.

Limitation
Our study sample size was relatively small regard-
ing a moderate effect size to classify falls [55]. The pro-
portion of high-risk participants or actual falls was 
mostly lower than 30%, as observed in our study, and it 
resulted in an imbalanced dataset. Our sample size was 
larger than those in most of the previous studies [18, 19, 
23], but a larger sample size should be aimed to ensure 
robust modeling for ML in the future. Second, this was 

a cross-sectional study, and a prospective and follow-up 
study design would be helpful to determine the predic-
tive validity of these posturographic data. Third, the 
study mainly focused on the discriminative ability of the 
posturographic parameters. Since the mechanism under-
lying fall risk was complex, there were needs to collect 
more information to build models with higher predictive 
ability.

Conclusion
Despite the importance of fall risk screening in the older 
adults, its implementation in the healthcare process is 
challenging [58]. The balance control problem is one of 
the major contributing factors to falls and may change 
with aging, medication, or acute illness. A system such 
as computerized posturography provides higher quan-
titative and objective information about trunk stabil-
ity responding to different stance conditions with easily 
standardized procedures, autonomic recording, and digi-
talized data. The incorporation of an appropriate ML 
algorithm and XAI approach facilitates an autonomous 
evaluation with high accuracy and a transparent model 

Fig. 8 Model performance comparison using various classifiers for criteria II, illustrated for accuracy (a), recall (b), specificity (c) and area 
under the curve (d). (MLP: Multi‑layer Perceptron; SVM: Support Vector Machine)
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Fig. 9 The SHAP summary visualization of the proposed model. The higher SHAP value of a feature corresponds to the higher prediction 
and feature importance for the different machine learning models were listed top‑down
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for balance ability classification. However, it seems that 
using these parameters alone were not adequate for fall 
risk classification.
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