
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Keough et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:61 
https://doi.org/10.1186/s12984-024-01349-2

Journal of NeuroEngineering 
and Rehabilitation

*Correspondence:
Adam Kirton
Adam.kirton@ahs.ca

1Departments of Pediatrics and Clinical Neurosciences, Cumming School 
of Medicine, University of Calgary, Calgary, AB, Canada
2Faculty of Medicine, University of British Columbia, Vancouver, BC, 
Canada

Abstract
Background Brain-computer interface (BCI) technology offers children with quadriplegic cerebral palsy unique 
opportunities for communication, environmental exploration, learning, and game play. Research in adults 
demonstrates a negative impact of fatigue on BCI enjoyment, while effects on BCI performance are variable. To 
date, there have been no pediatric studies of BCI fatigue. The purpose of this study was to assess the effects of 
two different BCI paradigms, motor imagery and visual P300, on the development of self-reported fatigue and an 
electroencephalography (EEG) biomarker of fatigue in typically developing children.

Methods Thirty-seven typically-developing school-aged children were recruited to a prospective, crossover study. 
Participants attended three sessions: (A) motor imagery-BCI, (B) visual P300-BCI, and (C) video viewing (control). The 
motor imagery task involved an imagined left- or right-hand squeeze. The P300 task involved attending to one square 
on a 3 × 3 grid during a random single flash sequence. Each paradigm had respective calibration periods and a similar 
visual counting game. Primary outcomes were self-reported fatigue and the power of the EEG alpha band both 
collected during resting-state periods pre- and post-task. Self-reported fatigue was measured using a 10-point visual 
analog scale. EEG alpha band power was calculated as the integrated power spectral density from 8 to 12 Hz of the 
EEG spectrum.

Results Thirty-two children completed the protocol (age range 7–16, 63% female). Self-reported fatigue and 
EEG alpha band power increased across all sessions (F(1,155) = 33.9, p < 0.001; F = 5.0(1,149), p = 0.027 respectively). No 
differences in fatigue development were observed between session types. There was no correlation between self-
reported fatigue and EEG alpha band power change. BCI performance varied between participants and paradigms as 
expected but was not associated with self-reported fatigue or EEG alpha band power.

Conclusion Short periods (30-mintues) of BCI use can increase self-reported fatigue and EEG alpha band power to a 
similar degree in children performing motor imagery and P300 BCI paradigms. Performance was not associated with 
our measures of fatigue; the impact of fatigue on useability and enjoyment is unclear. Our results reflect the variability 
of fatigue and the BCI experience more broadly in children and warrant further investigation.
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Background
Cerebral Palsy (CP) is a group of heterogeneous move-
ment disorders and the leading form of lifelong disability. 
In Canada alone it is projected that there will be nearly 
100,000 individuals living with CP by 2031 [1]. In its most 
severe form, quadriplegic CP, individuals lack muscular 
control in all limbs, the head, neck and trunk [2, 3]. Chil-
dren with quadriplegic CP are often cognitively capable 
but have extremely limited ability to move or speak, a 
condition analogous to “locked-in syndrome” [4]. Intel-
lectual disability is thought to occur in approximately 
50% of children with CP, with higher rates for those with 
spastic quadriplegic CP [5]. However, many individu-
als with this severe movement disorder are highly aware 
and capable. It is important to consider that cognitive 
impairments are likely overestimated, and deficits may be 
compounded by decreased opportunities for meaning-
ful environmental interaction [6]. Children with CP are 
an exemplar group to consider given the nature of the 
syndrome and the prevalence within the population how-
ever, children with other neurodevelopmental disabilities 
such as spinal muscular atrophy in addition to other neu-
rological conditions acquired in childhood may experi-
ence similar barriers. There is a critical need to develop 
alternative means of connection, communication, and 
play for children who experience this type of cognitive 
motor dissociation, and brain-computer interface (BCI) 
technology has the potential to meet this need [7, 8].

A BCI translates a user’s brain activity to directly con-
trol an effector device such as a game, wheelchair, or 
computer [9]. BCI research is dominated by studies in 
adult populations [10], but recently it has been demon-
strated that children, both typically developing and those 
with CP, can learn to control BCI systems [11–14]. Fac-
tors by which the young brains of children can achieve 
optimal BCI performance are unstudied but must be 
identified to improve such potentially life-changing 
interventions. In adults, operating a BCI has been asso-
ciated with increased self-reported fatigue [15, 16], and 
fatigue may negatively impact BCI signal feature detec-
tion and operator performance [17]. Fatigue is also an 
important functional consideration for children with CP 
[18, 19]. Increased fatigue levels following BCI use have 
been anecdotally observed in our clinical BCI program 
working with children on a regular basis but the effects 
of fatigue on BCI performance remain undefined in 
children.

The feeling of fatigue is common and universal, yet 
hard to define. For this research, fatigue will be defined 
as “a sensation of tiredness, often accompanied by altera-
tions in behaviour or performance, which can arise from 
sustained performance in a cognitively or physically 
demanding task” [19–21]. In addition to self-reported 
metrics and performance changes, adult BCI studies have 

identified electroencephalography (EEG) biomarkers 
of fatigue [22, 23] most notably increases in alpha band 
power [24, 25].

BCIs can increase the ability of children with quadri-
plegic CP and locked-in-syndrome to actively participate 
in daily life. Research is needed to optimize such neuro-
technology specifically for children. An exploration of 
fatigue is not only useful for user-centered design of pedi-
atric BCI systems but may contribute to the generation 
of early fatigue detection tools, mitigation strategies, and 
adaptive BCIs in the future. The aims of this study were 
to assess (a) if children experience greater fatigue using 
a BCI compared to an active non-BCI task as well as to 
assess any differences in development of fatigue between 
two commonly used BCI paradigms, motor imagery 
(MI) and visual P300, and (b) if resting-state neurophysi-
ological measures of fatigue correlate with self-reported 
fatigue in typically developing children. We hypothesized 
that (a) fatigue would be greater in the BCI tasks com-
pared to the control and that the MI-BCI would be more 
fatiguing than the P300-BCI, and (b) that there would be 
an increase in EEG alpha band power as self-reported 
fatigue increased.

Methods
Participants
Thirty-seven typically developing children, recruited 
from the community via HICCUP, the Health Infants 
and Children Clinical Research Program [26], partici-
pated in this study (median age 10, mean 9.8, range 6–16, 
58% female sex, 54% identify as women). Inclusion cri-
teria were age 6–17 years, absence of any neurologi-
cal or neurodevelopmental conditions or medications, 
and informed consent/assent. The study protocol was 
approved by the Conjoint Health Research Ethics Board, 
at the University of Calgary (ID: REB22-0044).

A priori power analysis was performed using the 
power.mmrm function in the longpower R package [27] 
with an estimated one-tailed standardized effect size of 
0.7, alpha = 0.05, beta = 0.8. An N of 33 participants was 
required to detect this effect.

Protocol
Participants attended three sessions on separate days at 
the Alberta Children’s Hospital BCI4kids laboratory: two 
BCI sessions (one MI task and one P300 task), and an 
additional film viewing session (control condition). The 
session order was balanced using a Latin square design. 
The length of time between sessions was at least 24 h. The 
longest time between session was 53 days with an average 
of 14 days between each session. The protocol was identi-
cal in all three sessions before and after the unique ses-
sion task. A protocol schematic is outlined in Fig. 1.
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Experimental set-up and BCI system
Participants were seated in a chair in front of a 27” 
LG27GL850 (LG Corporation, Seoul, South Korea) com-
puter monitor for the duration of each session. The moni-
tor has a refresh rate of up to 144 Hz, and a pixel response 
time of 1 ms. The DSI24-C (Wearable Sensing, San Diego, 
USA) system was used for EEG monitoring. The DSI24-C 
is a child size dry electrode EEG headset with 19 active 
EEG electrodes. Data from this headset was sampled at 
300 Hz. The DSI24-C has electrodes with preconfigured 
positioning. Electrode static positions: Fp1, Fp2, F7, F3, 
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, P4, T6, O1, O2. Fpz 
was the ground electrode, and the left ear clip (A1) was 
used as reference to substantially reduce the occurrence 
of electrical and motion artifacts [28]. The DSI streamer 
software was used to establish connection during set up. 
For optimal connection, we aimed to have impedance 
between 0.1-5MΩ, RMS Noise < 20µV, and baseline DC 
shift < +/- 5000µV. Lab streaming layer (LSL) [29] was 
used with a custom Unity (San Francisco, USA) applica-
tion and python backend during the data collection.

Questionnaires
Before each session, participants responded to pre-
defined questions regarding potential factors affecting 
performance including, mood, sleep quality and duration, 
exercise, and time since their last meal in the Prelimi-
nary BCI Assessment. They also completed the Ped-
sQL™ Multidimensional Fatigue Scale (MFS; acute scale, 
version 3.0) [30]. During the first session, participants 
also completed the Edinburgh Handedness Inventory. 

Assessments and questionnaires at the end of each ses-
sion were an adapted Pediatric Motivation Scale [31], 
the Child-Adapted NASA-Task Load Index (TLX) [32], 
and the BCI Tolerability Assessment. A visual analog 
scale for fatigue (VASF) was included in the Preliminary 
BCI assessment and in the BCI Tolerability Assessment. 
Additional fatigue assessments were done with the VASF 
immediately before the BCI or film task and immediately 
after (see timing in Fig. 1) as well as in 5-minute intervals 
throughout the session task. In the film viewing sessions, 
to ensure participants were paying attention to the film, 
they were asked additional questions about the content of 
the film. They were informed at the start of the task that 
there would be questions.

Resting state (eyes-open)
RS was completed immediately before and after the ses-
sion task (pre-task and post-task). This was a 2-minute 
EEG recording period where participants were instructed 
to relax their body and face, refrain from speaking and 
moving, clear their mind, and look at a target on the 
computer screen.

BCI applications
MI Application Training Participants trained the classi-
fier for 5 min. The MI task was an imagined hand squeeze. 
During the standard training, participants were presented 
with two boxes side by side on a black screen (see Fig. 2A). 
Boxes alternated between being the standard size or a 
larger size. The larger box was the “train target”. They were 
asked to perform their imagined squeeze with the hand 

Fig. 1 Protocol Schematic for All Three Sessions. Session tasks were balanced using a Latin square design. Sessions lasted 60 to 90 min. MI = motor 
imagery
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on the same side as the “train target” (i.e., if the right box 
was larger, they performed right hand motor imagery). 
After one trial on each hand, they were given feedback 
in the form of the boxes changing colour. The right box 
became brighter orange when right hand MI was detected 
while the left box became brighter blue when left MI was 
detected. Figure 2A – top left panel - depicts the MI train-
ing task. EEG was collected for 12  s with 2  s windows 
and there was a 6  s break between trials. MI alternated 
between left and right hand for the entire training period. 
There was a total of 18 training selections. This training 
design was modified from mindBEAGLE SMR training 
[33] based on in lab pilot testing.

For MI classification, each 2 s window during MI was fil-
tered with a 5th order Butterworth bandpass filter with 
corner frequencies of 5 and 30 Hz. A covariance matrix 
was calculated for each 2 s window. Tangent space map-
ping was used to get a feature vector from the covariance 
matrix [34]. A logistic regression classifier was trained 
using the tangent space feature vectors with the corre-
sponding window labels. This classifier, retrained from 
scratch every two training selections, was used to provide 
feedback to the user. k-fold cross validation was used in 
MI training to help avoid overfitting.

P300 application training Participants trained the classi-
fier for 5 min. During the standard training, a 3 × 3 grid 
of grey boxes was displayed on the computer screen, as 
seen in Fig. 2C – bottom left panel. The participants were 
instructed to focus their attention on the box where a 
target cursor would appear. They were instructed to only 
focus on the target box as they all began to flash red in 
random order. Boxes would turn red for 100 ms followed 
by a 75 ms pause before the next flash. Participants were 
instructed to count how many times the box they were 
focused on flashed. After a random flashing sequence 
of 15 single flashes per box, there would be a 2 s pause, 
before the target would appear in a new box, and they 
were instructed to shift their attention and repeat the 
above instructions. There was a total of 9 training selec-
tions (all the grid boxes). This training design was modi-
fied from Guger and Colleagues [35].

Throughout the training period, for each flash a win-
dow in the EEG, including the 600 ms from immediately 
when the flash goes on, was saved. All windows were 
then filtered with a 5th order Butterworth bandpass filter 
with corner frequencies of 0.1 and 15 Hz and then were 
ensemble averaged to yield one window per box per trial. 
The window corresponding to the trials target box was 
labeled target and the rest are labeled non-target. XDawn 
covariance matrices were calculated from each ensemble 
average windows. Tangent space mapping was used to 
get a feature vector from the covariance matrix. Shrink-
age Linear Discriminant Analysis (sLDA) was used to 

classify between target and non-target. The combination 
of XDawn, Riemannian geometry, and sLDA was based 
on recommendations in [36]. This trained a binary clas-
sifier. To make a selection, the posterior probability that 
each box is the target was calculated. The box with the 
greatest posterior probability was selected. k-fold cross 
validation was also used for P300 training.

Common MI/P300 game - fruit market frenzy This appli-
cation was designed in-house using Unity (San Francisco, 
USA). Participants watch a fruit stand animation with 
moles bobbing in and out of holes in the ground. The 
moles were throwing around common fruit on the screen. 
During the MI version, children were asked to determine 
if there was more of a certain kind of fruit (ex. apples) 
being thrown from the left of the right of the screen. They 
would verbalize their answer and then try and enter it 
using the BCI, doing their imagined hand squeeze action 
to move a cursor in the center of the screen to the left or 
right (Fig.  2B). A net of four classifier selections in one 
direction were required to make a selection. Thus any 
selection in the opposite direction needed to be com-
pensated for with an equal number of correct selections. 
This continued until a selection was made. During the 
P300 version, the same animation was used and children 
were asked to count the number of a certain kind of fruit 
being thrown around. After verbalizing, they then entered 
their answers on a 3 × 3 grid of numbers 1 through 9 by 
attending to the number they were trying to select as the 
board went through a random flash sequence, 15 flashes/
square, similar to the P300 training (Fig.  2D). Windows 
corresponding to each possible selection were ensembled 
averaged and classified. The window with the highest pos-
terior probability of being the target was selected.

Participants played these games for 25  min or until 
they requested to stop. Participants were free to termi-
nate at any time for any reason. While the Fruit Market 
Frenzy Game involved counting, the “correct” answer for 
the BCI and the feedback that was given to participants 
was based on what they shared verbally to the individual 
collecting the data. This person entered the participants 
verbal answer with the mouse before participants went 
on to make their BCI selection.

Control condition
Viewing a film (https://www.youtube.com/
watch?v=Mik9iDj0seY): Participants watched 30  min of 
a YouTube film about nature and animals titled The Most 
Amazing Master Builders in the Animal Kingdon (linked 
above). Participants were free to terminate the video at 
any time for any reason.

https://www.youtube.com/watch?v=Mik9iDj0seY
https://www.youtube.com/watch?v=Mik9iDj0seY


Page 5 of 13Keough et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:61 

Data analysis
Primary outcomes included self-reported VASF and the 
RS alpha band power pre- and post-task. Electrodes with 
impedance greater than 5MΩ were removed. Across 106 
sessions a total of 13 electrodes were excluded on a ses-
sion-by-session. If an electrode was excluded it was just 
for the one session due to noise. The integrated power 
spectral density (iPSD) was calculated using Welch’s 
method with 10 s windows and 5 s overlap between win-
dows [37]. iPSD was calculated for the entire 120  s RS 
window for frequency resolution < 0.01 Hz. The trapezoi-
dal rule for integration was used to get absolute power of 
the classic alpha band (8–12 Hz). Alpha band power val-
ues greater than 99 µV2/Hz were excluded from analysis.

Composite scores for motivation, workload, and BCI 
tolerability questionaries were calculated for use in sta-
tistical models described below. Motivation was divided 
into two groups based on the range of participant scores. 
Scores ranged from 26 to 45. There was a higher (36–45) 
and a lower (26–35) motivation group that participants 
were categorized into. Workload was dived into four 
groups based on the range of the scale from 0 to 100. The 
performance question was excluded. Low to high work-
load groups were split as follows: 0–24, 25–49, 50–74, 
75–100. Tolerability measure used in the statistical 
models was the pain question rated from 0 to 5. Partici-
pants were grouped into low to no discomfort (0–2) and 
higher discomfort (3–5). BCI metrics, accuracy, preci-
sion, recall, and the confusion matrix were recorded from 
the BCI training periods. Overall game performance was 
also calculated as number of trials correct/number of tri-
als total in the Fruit Market Frenzy Game. Due to limited 

sample size, raw age values were divided into an upper 
and a lower half by date of birth.

Statistical analysis
Statistical analyses were performed using R program-
ming language (version 4.1.2) using the Jamovi software 
application (2.3.21.0), and the rm_corr library in python 
(3.8.13). Linear mixed modeling fit with restricted maxi-
mum likelihoods was used to assess differences in the 
two primary outcomes. The main models for both self-
reported fatigue (i.e. VASF) scores and alpha band power 
included session and time (pre/post) as factors and par-
ticipants as the cluster variable. The random factor was 
participant intercepts. Age, sex, session length, time of 
the session, MFS score, workload score, headset toler-
ability, and motivation score covariates/factors were 
included in the secondary models and model quality was 
compared using the Akaike information criterion (AIC) 
and examination of the fixed effects omnibus tests. Two 
additional models for VASF included (a) age and sex as 
factors, and (b) age and sex as factors and MFS score as 
a covariate. One additional model for alpha band power 
included motivation score and time of day as covariates.

In both primary outcome models, significant fixed 
effects omnibus tests underwent further post-hoc analy-
sis with holm correction. Normality of the data was con-
firmed with visual inspection of Q-Q normality plots and 
density histograms. For the alpha iPSD model, outliers 
were also identified by visual inspection of residual his-
tograms. To ensure outliers did not unduly influence sta-
tistical models, models were rerun with outliers removed. 
The threshold for rejecting the null hypothesis was 

Fig. 2 BCI training and fruit marking frenzy game applications. A. Motor imagery training scene. B. Motor imagery game scene. C. P300 training scene. 
D. P300 game scene
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p < 0.05. Error in measurement or absolute reliability was 
calculated for the main outcome measures, alpha band 
power and VASF score. The calculation methods can be 
found in Hopkins work [38]. Repeated measure correla-
tions were performed to assess relationships between 
both primary outcomes as well as relationships between 
primary outcomes and secondary outcomes.

Results
Three of the 37 children consented for participation in 
this study were subsequently realized to have a diagno-
sis of attention deficit hyperactivity disorder, and their 
data was excluded from analysis. One participant chose 
to withdraw from the study part way through their first 
session and another individual did not fit our headset and 
thus could not participate. This left a final study popula-
tion of 32 participants. Two of the final 32 had remote 
prior concussion. Three participants had a MFS score of 
less than 50 consistent across sessions.

Self-reported fatigue
There was a main effect of time on self-reported fatigue 
(F(1,155) = 33.9, p < 0.001), but no main effect of session 
(F(2,155) = 2.5, p = 0.086) or interaction effect of session 
and time (F(2,155) = 1.4, p = 0.250) on self-reported fatigue. 
The estimated marginal mean VASF score across all ses-
sions was 3.4 (95% CI 2.8–4.1) pre-task and 4.6 (95% CI 
4.0-5.2) post task. The mean VASF pre- and post-task for 
each session is in Table  1 (Fig.  3). The statistical model 
AIC value was 748.

An additional model with inclusion of age and sex 
(model 2) as factors demonstrated an interaction effect of 
age and time (F(1,140) = 4.5, p = 0.036). The younger half of 
participants had a larger change in VASF from pre to post 

across all sessions. The addition of MFS score into the 
model with age and sex (model 3) found an effect of MFS 
scores (F(1,129.2) = 6.6, p = 0.012). Those with MFS scores 
greater than one standard deviation from the mean had 
lower VASF values and those with scores one standard 
deviation lower than the mean had higher VASF values. 
Further information on secondary models is included in 
supplemental material Table 1; Fig. 1 in Additional File 1. 
There was no effect of time of day, session length, work-
load, motivation, headset tolerability, or BCI game per-
formance on VASF.

Electroencephalography alpha band power
Before statistical analysis, EEG alpha band power val-
ues were excluded from 6/96 sessions. There was a main 
effect of time on alpha band power (F(1,149) = 5.0, p = 0.027) 
but no effect of session (F(2,149) = 1.2, p = 0.319) or interac-
tion effect (F(2,149) = 0.2, p = 0.842). The estimated mar-
ginal mean across all session was 29.4 µV2/Hz (95% 
CI = 22.6–36.1) during pre-task RS and 32.2 µV2/Hz (95% 
CI = 25.5–39.0) during post-task RS. The mean alpha 
band power pre- and post-task for each session is in 
Table 1 (Fig. 4). The AIC value was 1447. There was no 
effect of age, sex, session length, time of day, motivation, 
workload, headset tolerability, or game performance on 
the alpha band power change.

BCI performance
BCI training scores are shown in Tables 2 and 3 and BCI 
Fruit Market Frenzy performance is in Table 2; Fig. 5. For 
reference, during the Fruit Market Frenzy game, MI clas-
sification is binary with chance accuracy of 50%. P300 is 
a one in nine selection with a chance accuracy of 11%. 
Regardless of training scores, all participants played the 

Fig. 3 Self-Reported Fatigue. A. Fatigue visual analog scale values reported across the session at time 0,10,15,20,25, and 30 min. B. Fatigue visual analog 
scale values pre-task and post-task for each session. Post-task was at time 30 for most participants, but for those who did not complete the full protocol 
post-task is not at time 30. Boxplot lines indicate quartiles. Orange lines indicate the median and black diamonds are sample mean. Bars are plus or minus 
1.5x the interquartile range. MI: motor imagery; VID: video
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Table 1 Fatigue visual analog scale values and alpha band power pre- and post-task
Session Time Self-Reported Fatigue (10 pt scale)

(95% Confidence Interval)
Alpha Band Power (µV2/Hz)
(95% Confidence Interval)

MI Pre 3.4 (2.6–4.1) 30.0 (22.9–37.1)
Post 4.5 (3.8–5.3) 31.8 (24.6–39.0)

P300 Pre 3.5 (2.8–4. 3) 30.3 (23.2–37.5)
Post 5.1 (4.3–5.8) 33.5 (26.4–40.7)

Video Pre 3.4 (2.7–4.2) 27.8 (20.6–34.9)
Post 4.2 (3.5–4.9) 33.1 (24.2–38.5)

Legend: Values are estimated marginal means. MI: motor imagery

Table 2 BCI training and game performance scores
Performance Outcome Mean Range 95% Confidence

Interval
Training accuracy
MI 0.61 0.43 0.57–0.64
P300 0.94 0.15 0.93–0.95
Training precision
MI 0.61 0.44 0.57–0.64
P300 0.91 1.0 0.80–1.01
Training recall
MI 0.61 0.54 0.57–0.65
P300 0.48 1.00 0.36–0.59
Game performance
MI 0.60 0.61 0.56–0.64
P300 0.55 0.84 0.48–0.61
Legend: Training accuracy is the ratio of correct predictions over total predictions made by the model. Training precision is the ratio of true positives over all 
positive classifications (true and false positives). Training recall is the ratio of true positives over all actual positives (true positive and false negatives). Training scores 
computed by game performance was calculated by total trials correct/total trials. MI: motor imagery

Fig. 4 Alpha Band Power. pre-task resting-state and post-task resting state alpha band power for each session. Boxplot lines indicate quartiles. Orange 
lines indicate the median and black diamonds are sample mean. Bars are plus or minus 1.5x the interquartile range. MI: motor imagery; VID: video
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Fruit Market Frenzy game. During MI training, only 3 
individuals achieved a training accuracy above 70% (14 
above 60%), but 7 individuals achieved greater than 70% 
during the MI Fruit Market Frenzy game following train-
ing (12 above 60%). All participants achieved training 
accuracy above 70% for P300 training. Eight individuals 
achieved this percentage in the P300 Fruit Market Frenzy 
game (16 above 60%). Comparisons for P300 training and 
game are more difficult because the training is a binary 
classification between 2 classes, target and non-target, 
and the game online accuracy is comparing posterior 
probabilities of that classification for each of the 9 boxes 
(chance = 11%). MI game performance ranged from 39 to 
100%. P300 game performance ranged from 13 to 97%. 
Across the participants there was no significant increase 
or decrease in performance over time.

Questionnaires: mood, workload, motivation, and 
tolerability
During 69% of the 96 sessions, participants came in with 
positive moods: ‘excited’, ‘chill’, ‘pleasant’, ‘calm’, ‘happy’, 

‘content’, ‘comfortable’, ‘lively’, ‘fulfilled’. In the other 31% 
of sessions, participants came in with more neutral or 
negative mood states: ‘neutral’, ‘sleepy’, ‘tired’, ‘nervous’, 
‘hurt’, and ‘bothered’. Ratings from the Pediatric Moti-
vation Scale were similar across all sessions (Fig.  6A; 
Table 4). Mental demand, temporal demand, effort, and 
frustration were all similar between both BCI sessions 
and tended to be higher compared to the control session 
(Fig.  6B; Table  4). Physical demand was often higher in 
the MI BCI session compared to the P300 BCI session 
and the control (Fig.  6B; Table  4). BCI tolerability rat-
ings were similar between MI and P300 sessions (Fig. 6C; 
Table 4). The majority of participants found the headset 
uncomfortable (72% during MI, 59% during P300, 53% 
during control). There was an increase in the number of 
individuals who reported discomfort across the three ses-
sions, 56% during the first session, 59% during the second 
session, and 72% during the third session. 22% of partic-
ipants did not report discomfort in any session. 25% of 
participants were unable to complete the whole protocol 
due to discomfort part way through the sessions.

Table 3 Confusion matrix for motor imagery and P300 training
Requested Selection

Participant Selection
P

Motor Imagery Mean Motor Imagery Range
Target Non-Target Target Non-Target

Target 21 33 6–35 19–48
Non-Target 33 21 24–48 3–36
P300 Mean P300 Range

Target Non-Target Target Non-Target
Target 5 0 0–9 0–3
Non-Target 4 72 0–9 27–69

Legend: Confusion matrix contains all classifications made in training. From left to right top to bottom of each quadrant they are true targets, false targets, false 
non-targets, and true non-targets

Fig. 5 BCI Fruit Market Frenzy game performance. Performance calculated by total trials correct/total trials for each session. Boxplot lines indicate quar-
tiles, and all participant data is plotted. Bars are plus or minus 1.5x the interquartile range. BCI: Brain-computer interface; MI: motor imagery
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Repeated measures correlation analysis revealed a 
negative correlation between change VASF and motiva-
tion (r = -0.28, p = 0.022). The VASF change was also posi-
tively correlated with the self-reported mental demand 
(r = 0.28, p = 0.027) but not temporal demand or physi-
cal demand. Change in VASF was correlated with effort 
(r = 0.25, p = 0.044). Mental demand, temporal demand, 
and physical demand correlated with frustration (r = 0.45, 
p < 0.001; r = 0.28, p = 0.023; r = 0.35, p = 0.005 respec-
tively). Motivation negatively correlated with frustration 

(r = -0.33, p = 0.01). Measured game performance was 
negatively correlated with self-reported performance 
evaluation (r = -0.47, p = 0.006). There was no correlation 
between change in self-reported fatigue and change in 
alpha band power (r = 0.08, p = 0.532).

Discussion
The aim of this research was to better understand the 
effect of different BCI paradigms on self-reported fatigue 
and EEG biomarkers in children. In all conditions, there 
was an increase in self-reported fatigue post-task com-
pared to pre-task. The difference was small, roughly a 
1.5 pt difference on a 10 pt scale. There was also a small 
increase in alpha band power in all conditions. Contrary 
to our hypothesis, our sample was unable to demonstrate 
differences in self-reported fatigue or RS EEG alpha 
band power related to BCI tasks between watching a 
video, P300, and MI tasks. There was also no correlation 
between the change in self-reported fatigue and alpha 
band power as described in adults. We demonstrated 
that short periods of both MI and P300 BCI operation 
increase self-reported fatigue in children, but our results 
do not support the use of EEG generic alpha band power 
during pre-and post-task RS as a sensitive biomarker for 
fatigue.

The increase in VASF during the P300 session was 
greater than the increase during the video session. There 
were also significant increases in VASF from pre- to post-
task in the MI and P300 sessions but not the video session 
(Fig. 3). Prior adult BCI studies looking at self-reported 
fatigue during BCI use have found increases of above 3 
pts on a 10 pt scale [15, 39], and between 1 and 3 pt on 
a 20 pt scale [16]. The standard error of measurement of 
the VASF scale for our data was 1.1 pts. Calculated with 
this error, the minimum detectable change is predicted 
at 3.2 pts on the 10 pt scale, much larger than what we 
observed. Our hypothesis regarding self-reported fatigue 
for this study was built off unpublished work in our lab 
(Kelly et al. in review). This work demonstrated vari-
able fatigue with multiple BCI paradigms and MI-BCI 
was more fatiguing than P300-BCI with a roughly 1.5 pt 
VASF increase. In contrast we found that P300-BCI ses-
sions had the greatest increase in VASF, P300-BCI was 
not associated with any increase in VASF in this unpub-
lished work (Kelly et al. in progress).

This previous pediatric BCI study by Kelly et al. (in 
review) was a different experimental set up than the 
present study, and any number of differences may have 
impacted user experience and fatigue. In Kelly and Col-
leagues work P300 and MI tasks were completed on the 
same day in a randomized order and tasks were 8–20 min 
in length. The training, the task, and the BCI hardware/
software were also not consistent between our two stud-
ies. In the prior study, the age of participants was slightly 

Fig. 6 Self-Reported Post-Task Questionnaire Metrics. A. Pediatric Moti-
vation Scale from not true at all (0 pts) to definitely true (5 pts) B. Child 
Adapted NASA Task-Load Index from low demand (0 pts) to high demand 
(20 pts). C. BCI Tolerability Scale from not true at all (0 pts) to definitely true 
(5 pts). BCI: Brain-computer interface; MI: motor imagery; VID: video
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higher with a mean age of 11.3. The primary research 
question was about BCI control in children, with self-
reported fatigue as a secondary outcome. Even though 
the task length was longer in the current study, pres-
ent results from self-reported fatigue indicate P300 was 
fatiguing even at 10 and 15 min. We found similar num-
bers of participants had reported an increase by one 
or more points on the VASF in the P300-task and the 
MI-task by these time points (10  min: 8 participants in 
P300, 6 in MI; 15 min: 13 in P300, 12 in MI). Particularly 
in the P300 session, however, younger participants had 
a VASF increase of over two points while older partici-
pants did not even have a one-point increase at this time. 
The slightly older participants in Kelly and Colleagues 
work may have contributed the difference in fatigue with 
P300 that we observed. The VASF score change observed 
across time in all sessions was greater for the younger 
children in this present study. We found that older chil-
dren and adolescents were better able to handle 30-mint-
ues of a BCI task without significant fatigue and generally 
did not find the video session fatiguing (supplemental 
Fig.  1, Additional file 1). It is also likely that having the 
tasks in the same study session, as Dion and Colleagues 
did, had a different impact on self-reported fatigue than 
having the tasks on separate days. Additional pediatric 
BCI fatigue studies considering these many variables are 
required.

Day-to-day chronic fatigue was assessed using the 
acute PedsQLTM-MFS before each session in the pres-
ent study. As expected, children with lower MFS scores 
(i.e. higher fatigue) reported higher VASF values pre- and 
post-task. The impact of more chronic and pathological 
fatigue will be an important consideration for under-
standing BCI fatigue in children with CP, who typically 
have higher chronic fatigue [19]. Further pediatric work 
is needed to draw conclusions on the impact of more sig-
nificant fatigue at baseline and its impact on BCI perfor-
mance and behavioural changes. We suggest that simple, 
validated measures like the PedsQLTM-MFS, for which 

CP-specific versions are also available, be employed pro-
spectively in BCI studies in such clinical populations to 
better characterize the role of fatigue in performance and 
other outcomes.

To our knowledge, this was the first trial to investigate 
EEG biomarkers of fatigue in children during BCI use. 
While adult studies show promise in tracking these bio-
markers and associating them with self-reported fatigue, 
more work may be needed in children to refine these 
measures. During analysis some electrodes were excluded 
due to signal artifacts or noise. This was either from sub-
optimal connection at known specified electrode sites or 
from participants touching an electrode or moving the 
headset forehead strap. Identification of individualized 
alpha bands was unsuccessful with existing python algo-
rithms for use with eyes-open RS. Pipelines were applied 
but resulted in non-physiological interparticipant and 
intraparticipant variability. Comparison of alpha band 
power results from the present work to past literature 
was also difficult due to variable units, use of undefined 
units, lack of values given, and use of both relative and 
absolute metrics. From our data, the standard error of 
measurement of this band power was 5.0 µV2/Hz. Cal-
culated with this error, the minimum detectable change 
is predicted at 13.8 µV2/Hz. A change near this magni-
tude was not detected. Change in alpha band power mag-
nitude in many prior adult studies is significantly larger 
and often correlates with self-reported fatigue [15, 16, 
23]. Prior EEG studies have found that changes in EEG 
are not apparent until an individual is highly fatigued 
[40] and perhaps our interventions were not long or hard 
enough or lacked appropriate difficulty to reach such a 
threshold. Age-dependent developmental differences in 
EEG neurophysiology may also have affected our ability 
to detect fatigue-related changes.

Despite a broad acceptance of EEG band metrics as 
fatigue biomarkers, there is still inconsistency in the lit-
erature. Particularly in research looking at driver fatigue, 
several studies have found no change in alpha band 

Table 4 Average questionnaire scores
Questionnaire Mean Median Range 95% Confidence Interval
Motivation Scale (possible range = 0–50)
MI 29.3 29.5 13 28.4–30.3
P300 28.4 29.0 20 27.4–29.4
Video 30.3 31.0 13 29.2–31.3
NASA – Task Load Index (possible range = 0–120)
MI 41.4 43 71 36.4–46.4
P300 35.8 31 59 31.6–40.0
Video 22.2 20 57 18.6–25.8
BCI Tolerability Scale (possible range = 0–30)
MI 19.2 20 11 18.4–19.9
P300 18.4 19 14 17.7–19.2
Legend: MI: motor imagery
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power or even a decrease in alpha band power [41]. As 
an alternative metric, EEG entropy has been calculated 
as a biomarker for fatigue including during sustained 
attention cognitive tasks [42, 43] and high stress cogni-
tive tasks [44]. In a driving simulator study, changes in 
sample entropy were more consistent during fatigued 
states than band metrics [45]. Peng and Colleagues also 
found that a multiscale entropy metric better distinguish 
fatigue states than the classic bands during a steady-state 
visually evoked potential BCI task [41]. Entropy may 
therefore be a useful measure in children to help avoid 
difficult individual frequency band calculations or use of 
generalized bands which may be less accurate [46–49]. 
Evaluation and comparison of pre- and post-task RS is 
complex as post-task RS brain activity can be modulated 
by other elements of the prior task outside of just fatigue 
[50]. A combination of band metrics, from the frequency 
domain, and entropy, from the time or the time-fre-
quency domain [51], may be more useful for a deeper 
understanding of these complexities [50]. Such dual met-
ric analysis should be investigated in children using BCIs.

Performance varied in both the P300 game and the MI 
game from 100% or nearly 100% to essentially no control 
at all considering chance accuracies for each paradigm 
(< 11% in P300; <50% in MI). Interestingly, those who 
performed better tended to report feeling that they did 
worse than those who performed poorly although this 
was purely correlational. Performance did not decline 
across the BCI sessions. The larger their change in 
fatigue, the lower participants rated their session enjoy-
ment. Correlational analysis also revealed that children 
who felt the tasks were more mentally, physically, and 
temporally demanding also reported being more frus-
trated. A link between frustration and workload was 
also noted in end users with motor impairments during 
BCI gaming [52]. This study had a small sample of four 
individuals, but interestingly, this association existed for 
those who had less severe motor impairment [52]. Due 
to potential EEG changes with frustration, it has been 
suggested that EEG signal, BCI classification, and perfor-
mance may be impacted [53]. However, a previous study 
looking at the performance-frustration relationship did 
not report significant influences of frustration on perfor-
mance [54]. Anecdotal reports from an additional study 
with Amyotrophic Lateral Sclerosis patients also noted 
that frustration did not seem to impact motivation [55], 
but we found a negative correlation between frustration 
and motivation. Psychological factors such as frustration 
and motivation are clearly influenced by age and devel-
opment and need to be considered carefully in pediatric 
populations.

Limitations
Our calculated but modest sample size is a potential 
limitation for this work. The present study was not ade-
quately powered to draw conclusions about differences 
between sessions since changes in both primary out-
comes were minimal. This is particularly true given the 
variation observed in EEG data for our participant. The 
broad age range (7–16), with inconsistent samples at each 
age, also presented additional challenges to age-based 
analysis that was overcome by splitting the sample into 
just an upper and a lower half by date of birth. Additional 
limitations include low headset tolerability that reduced 
the number of our participants completing the full study 
protocol. Time on task is accepted as a key predictor of 
fatigue for physical and cognitive tasks [56–59], and this 
inconsistency introduced more variability into the study. 
There is a relationship with fatigue and pain or discom-
fort and while self-reported pain and comfort ratings for 
the headset were controlled in the statistical models, dis-
comfort is another potentially confounding variable that 
may have impacted participants attention throughout the 
study.

Future studies should continue to evolve our under-
standing of BCI fatigue in children using larger samples, 
and/or smaller age ranges to overcome challenges of a 
highly variable population. Studies should also investi-
gate longer durations of BCI use with a system that will 
be more broadly tolerated by children. It will be impor-
tant to consider BCI experience and performance as not 
all children have good BCI control in one session with 
no prior training. An initial training session may be ben-
eficial to ensure only those with adequate BCI control go 
forward and are involved with research questions sur-
rounding fatigue. For those with lower BCI performance, 
future studies will also be needed to investigate predic-
tors of performance as well as strategies to promote BCI 
learning. A limitation of any task-based study with atten-
tion related outcomes is the impact of natural interest 
variability among participants. Finally, and most impor-
tantly, studies on typically developing children should 
guide the development of similar studies in children with 
CP, the intended end users of this technology.

Conclusion
We found that 30 min of BCI task increased self-reported 
fatigue and the power of the EEG alpha band. There 
was no correlation between the change in self-reported 
fatigue and the change alpha band power. Differences in 
fatigue development across sessions were not clear with 
our sample. Large variations in children’s experiences 
with BCI systems including tolerability, motivation, per-
ceived workload, ability to control the applications, and 
feelings of fatigue were apparent in this study. Future 
studies are needed to look at longer time-on-task, 
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additional EEG fatigue biomarkers in children, and 
importantly, to ask similar questions in clinical popula-
tions who may use BCI as an access technology.

Abbreviations
BCI  Brain-computer interface
CP  Cerebral palsy
EEG  Electroencephalography
iPSD  Integrated power spectral density
MFS  Multidimensional fatigue scale
MI  Motor imagery
RS  Resting-state
TLX  Task-load index
VASF  Visual analog scale for fatigue

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12984-024-01349-2.

Supplementary Material 1: Secondary models from linear mixed model 
analysis of primary outcomes. Figure of self-reported fatigue data segre-
gated by participant age.

Acknowledgements
We would like to gratefully acknowledge Araz Minhas for supporting data 
analysis.

Author contributions
JK: conceptualization of research question and study protocol, participant 
recruitment and data collection, data analysis, figure development, and 
manuscript writing. BI: created the software for the BCI applications backend 
in python, wrote the electroencephalography analysis code, and assisted in 
writing the manuscript methods. DK: helped develop the study methods 
including protocol, pre- and post-task questionnaires, and P300 and MI BCI 
training applications. JW: assisted with conceptualization of research question 
and study protocol and provided guidance for the statistical analysis. DCM: 
assisted with generating the manuscript figures. EKL: conceptualization of 
research question, study design, and protocol. Designed the BCI applications 
for this study within Unity, project troubleshooting, provided guidance during 
participant data collection, data analysis, and writing. AK: conceptualization 
of research question and study protocol, project troubleshooting, guided 
analysis, and writing. All authors read, edited, and approved the final 
manuscript.

Funding
The Alberta Children Hospital Research Foundation Funded this study 
(#1052360).

Data availability
The dataset supporting the conclusion of the article is available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Ethics approval for this study was granted by the University of Calgary 
Conjoint Health Research Ethics Board (CHREB). Ethics ID: REB22–0044.

Consent for publication
Not applicable.

Competing interests
Authors DK, EKL, and AK are co-founders of Possibility Neurotechnologies, a 
start-up company developing personalized BCI solutions for children with 
disabilities. None received any compensation for the work submitted, and the 
company played no role in the study design, execution, or interpretation of 
results. The authors declare no other competing interest.

Received: 17 April 2023 / Accepted: 25 March 2024

References
1. Amankwah N, Oskoui M, Garner R, et al. Cerebral palsy in Canada, 2011–2031: 

results of a microsimulation modelling study of epidemiological and cost 
impacts. Health Promot Chronic Dis Prev Can. 2020;40:25–37.

2. Patel DR, Neelakantan M, Pandher K, et al. Cerebral palsy in children: a clinical 
overview. Transl Pediatr. 2020;9:S125.

3. Vitrikas K, Dalton H, Breish D. Cerebral palsy: an overview. Am Fam Physician. 
2020;101:213–20.

4. Vidal F. Phenomenology of the Locked-In syndrome: an overview and some 
suggestions. Neuroethics. 2020;13:119–43.

5. Gulati S, Sondhi V. Cerebral palsy: an overview. Indian J Pediatr. 
2018;85:1006–16.

6. Stadskleiv K. Cognitive functioning in children with cerebral palsy. Dev Med 
Child Neurol. 2020;62:283–9.

7. Kinney-Lang E, Kelly D, Floreani ED, et al. Advancing brain-computer interface 
applications for severely disabled children through a Multidisciplinary 
National Network: Summary of the Inaugural Pediatric BCI Canada Meeting. 
Front Hum Neurosci. 2020;14:593883.

8. Jadavji Z, Zewdie E, Kelly D, et al. Establishing a clinical brain-computer 
interface program for children with severe neurological disabilities. Cureus. 
2022;14:e26215.

9. Wolpaw JR, Millán J, del Ramsey R. Brain-computer interfaces: definitions and 
principles. Handbook of clinical neurology. Elsevier B.V.; 2020. pp. 15–23.

10. Orlandi S, House SC, Karlsson P, et al. Brain-computer interfaces for Children 
with Complex Communication Needs and limited mobility: a systematic 
review. Front Hum Neurosci. 2021;15:643294.

11. Jadavji Z, Zhang J, Paffrath B, et al. Can children with Perinatal Stroke use a 
simple Brain Computer. Interface? Stroke. 2021;52:2363–70.

12. Jochumsen M, Shafique M, Hassan A, et al. Movement intention detec-
tion in adolescents with cerebral palsy from single-trial EEG. J Neural Eng. 
2018;15:066030.

13. Vařeka L. Evaluation of convolutional neural networks using a large multi-
subject P300 dataset. Biomed Signal Process Control. 2020;58:101837.

14. Zhang J, Jadavji Z, Zewdie E et al. Evaluating if children can use simple brain 
computer interfaces. Front Hum Neurosci; 13. Epub ahead of print 1 February 
2019. https://doi.org/10.3389/fnhum.2019.00024.

15. Käthner I, Wriessnegger SC, Müller-Putz GR, et al. Effects of mental workload 
and fatigue on the P300, alpha and theta band power during operation of an 
ERP (P300) brain-computer interface. Biol Psychol. 2014;102:118–29.

16. Li S, Duan J, Sun Y et al. Exploring Fatigue Effects on Performance Variation of 
Intensive Brain–Computer Interface Practice. Front Neurosci; 15. Epub ahead 
of print 2 December 2021. https://doi.org/10.3389/fnins.2021.773790.

17. Cao T, Wan F, Wong CM et al. Objective evaluation of fatigue by EEG spectral 
analysis in steady-state visual evoked potential-based brain-computer inter-
faces. Epub ahead of print 2014. https://doi.org/10.1186/1475-925X-13-28.

18. Taherian S, Selitskiy D, Pau J, et al. Disability and Rehabilitation: Assistive 
Technology are we there yet? Evaluating commercial grade brain-computer 
interface for control of computer applications by individuals with cerebral 
palsy. Disabil Rehabil Assist Technol. 2015;12:165–74.

19. Wrightson JG, Zewdie E, Kuo HC, et al. Fatigue in children with perinatal 
stroke: clinical and neurophysiological associations. Dev Med Child Neurol. 
2020;62:234–40.

20. Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologi-
cillnesses. Neurology. 2013;80:409–16.

21. Robert Hockey. The Psychology of Fatigue. Cambridge University Press, 
https://doi.org/10.1017/CBO9781139015394 (2013, accessed 3 June 2022).

22. Sengupta A, Tiwari A, Routray A. Analysis of cognitive fatigue using EEG 
parameters. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2017; 2554–7.

23. Seo S-P, Lee M-H, Williamson J et al. Changes in fatigue and EEG amplitude 
during a longtime use of brain-computer interface. 7th Int Winter Conf 
Brain-Comput Interface. Epub ahead of print 2019. https://doi.org/10.1109/
IWW-BCI.2019.8737306.

24. Lal SKL, Craig A. Reproducibility of the spectral components of the electroen-
cephalogram during driver fatigue. Int J Psychophysiol. 2005;55:137–43.

25. Li G, Huang S, Xu W et al. The impact of mental fatigue on brain activity: 
A comparative study both in resting state and task state using EEG. BMC 

https://doi.org/10.1186/s12984-024-01349-2
https://doi.org/10.1186/s12984-024-01349-2
https://doi.org/10.3389/fnhum.2019.00024
https://doi.org/10.3389/fnins.2021.773790
https://doi.org/10.1186/1475-925X-13-28
https://doi.org/10.1017/CBO9781139015394
https://doi.org/10.1109/IWW-BCI.2019.8737306
https://doi.org/10.1109/IWW-BCI.2019.8737306


Page 13 of 13Keough et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:61 

Neurosci; 21. Epub ahead of print 12 May 2020. https://doi.org/10.1186/
S12868-020-00569-1.

26. Paediatrics HICCUP| University of Calgary |. http://www.ucalgary.ca/paediat-
rics_hiccup/ (accessed 24 June 2016).

27. Lu K, Luo X, Chen P-Y. Sample size estimation for repeated measures analysis 
in randomized clinical trials with missing data. Int J Biostat; 4. Epub ahead of 
print 2008. https://doi.org/10.2202/1557-4679.1098.

28. Sellers EW, Turner P, Sarnacki WA, et al. A Novel Dry Electrode for Brain-
Computer Interface. In: Jacko JA, editor. Human-Computer Interaction. Novel 
Interaction methods and techniques. Berlin, Heidelberg: Springer; 2009. pp. 
623–31.

29. Kothe C. Lab Streaming-Layer, https://github.com/sccn/labstreaminglayer 
(2023, accessed 14 April 2023).

30. Varni JW, Burwinkle TM, Katz ER, et al. The PedsQL™ in pediatric cancer. Cancer. 
2002;94:2090–106.

31. Tatla SK, Jarus T, Virji-Babul N, et al. The development of the Pediatric Motiva-
tion Scale for rehabilitation: Le développement De La « Pediatric Motivation 
Scale » en réhabilitation. Can J Occup Ther. 2015;82:93–105.

32. Laurie-Rose C, Frey M, Ennis A, et al. Measuring perceived mental workload in 
children. Am J Psychol. 2014;127:107–25.

33. Guger C, Spataro R, Allison BZ, et al. Complete locked-in and locked-in 
patients: command following Assessment and Communication with 
Vibro-Tactile P300 and motor imagery brain-computer interface tools. Front 
Neurosci. 2017;11. https://doi.org/10.3389/fnins.2017.00251. Epub ahead of 
print.

34. Barachant A, Bonnet S, Congedo M, et al. Multiclass brain–computer 
interface classification by Riemannian geometry. IEEE Trans Biomed Eng. 
2012;59:920–8.

35. Guger C, Daban S, Sellers E, et al. How many people are able to control a 
P300-based brain–computer interface (BCI)? Neurosci Lett. 2009;462:94–8.

36. Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms 
for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 
2018;15:031005.

37. Welch P. The use of fast Fourier transform for the estimation of power spectra: 
a method based on time averaging over short, modified periodograms. IEEE 
Trans Audio Electroacoustics. 1967;15:70–3.

38. Hopkins WG. Measures of reliability in Sports Medicine and Science. Sports 
Med. 2000;30:1–15.

39. Talukdar U, Hazarika SM, Gan JQ. Motor imagery and mental fatigue: inter-
relationship and EEG based estimation. J Comput Neurosci. 2019;46:55–76.

40. Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active 
individual. Int J Neurosci. 1990;52:29–37.

41. Peng Y, Wong CM, Wang Z, et al. Fatigue evaluation using Multi-scale Entropy 
of EEG in SSVEP-Based BCI. IEEE Access. 2019;7:108200–10.

42. Chuckravanen D. Approximate Entropy as a measure of cognitive fatigue: an 
EEG pilot study. Int J Emerg Trends Sci Technol. 2014;1:1036–42.

43. Sengupta A, Study of Cognitive Fatigue using EEG Entropy Analysis. 2020 Int 
Conf Emerg Front Electr Electron Technol ICEFEET 2020. Epub ahead of print 
1 July 2020. https://doi.org/10.1109/ICEFEET49149.2020.9186989.

44. Zhang H, Wang J, Geng X, et al. Objective assessments of Mental fatigue dur-
ing a continuous long-term stress Condition. Epub Ahead Print. 2021. https://
doi.org/10.3389/fnhum.2021.733426.

45. Tran Y, Thuraisingham RA, Wijesuriya N et al. Detecting neural changes 
during stress and fatigue effectively: a comparison of spectral analysis and 
sample entropy. In: 2007 3rd International IEEE/EMBS Conference on Neural 
Engineering. 2007, pp. 350–353.

46. Debnath R, Buzzell GA, Morales S, et al. The Maryland analysis of develop-
mental EEG (MADE) pipeline. Psychophysiology. 2020;57:e13580.

47. Marshall PJ, Bar-Haim Y, Fox NA. Development of the EEG from 5 months to 4 
years of age. Clin Neurophysiol. 2002;113:1199–208.

48. Colon EJ, de Weerd JPC, Notermans SLH, et al. EEG spectra in children aged 8, 
9 and 10 years. J Neurol. 1979;221:263–8.

49. Marek S, Tervo-Clemmens B, Klein N, et al. Adolescent development of corti-
cal oscillations: power, phase, and support of cognitive maturation. PLOS Biol. 
2018;16:e2004188.

50. Hongye Wang, McIntosh AR, Kovacevic N, et al. Age-related Multiscale 
changes in Brain Signal variability in pre-task versus post-task resting-state 
EEG. J Cogn Neurosci. 2016;28:971–84.

51. Monteiro TG, Skourup C, Zhang H. Using EEG for Mental fatigue Assessment: 
a Comprehensive look into the current state of the art. IEEE Trans Hum-Mach 
Syst. 2019;49:599–610.

52. Holz EM, Höhne J, Staiger-Sälzer P, et al. Brain–computer interface controlled 
gaming: evaluation of usability by severely motor restricted end-users. Artif 
Intell Med. 2013;59:111–20.

53. Nijholt A, Bos DP-O, Reuderink B. Turning shortcomings into challenges: 
brain–computer interfaces for games. Entertain Comput. 2009;1:85–94.

54. Reuderink B, Poel M. Affective Pacman: A Frustrating Game for Brain-Com-
puter Interface Experiments. In: 3rd International Conference on Intelligent 
Technologies for Interactive Entertainment (INTETAIN 09). Springer, pp. 
221–227.

55. Nijboer F, Birbaumer N, Kubler A. The influence of psychological state and 
motivation on brain–computer interface performance in patients with amyo-
trophic lateral sclerosis – a longitudinal study. Front Neurosci; 4. Epub ahead 
of print 2010. https://doi.org/10.3389/fnins.2010.00055.

56. Ament W, Verkerke GJ. Exercise and fatigue. Sports Med. 2009;39:389–422.
57. Cameron C. A theory of fatigue. Ergonomics. 1973;17:633–48.
58. Head JR, Tenan MS, Tweedell AJ, et al. Cognitive fatigue influences Time-On-

Task during Bodyweight Resistance Training Exercise. Front Physiol. 2016;7. 
https://doi.org/10.3389/fphys.2016.00373. Epub ahead of print.

59. van der Hulst M, Meijman T, Rothengatter T. Maintaining task set under 
fatigue: a study of time-on-task effects in simulated driving. Transp Res Part F 
Traffic Psychol Behav. 2001;4:103–18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1186/S12868-020-00569-1
https://doi.org/10.1186/S12868-020-00569-1
http://www.ucalgary.ca/paediatrics_hiccup/
http://www.ucalgary.ca/paediatrics_hiccup/
https://doi.org/10.2202/1557-4679.1098
https://github.com/sccn/labstreaminglayer
https://doi.org/10.3389/fnins.2017.00251
https://doi.org/10.1109/ICEFEET49149.2020.9186989
https://doi.org/10.3389/fnhum.2021.733426
https://doi.org/10.3389/fnhum.2021.733426
https://doi.org/10.3389/fnins.2010.00055
https://doi.org/10.3389/fphys.2016.00373

	Fatigue in children using motor imagery and P300 brain-computer interfaces
	Abstract
	Background
	Methods
	Participants
	Protocol
	Experimental set-up and BCI system
	Questionnaires
	Resting state (eyes-open)
	BCI applications
	Control condition
	Data analysis
	Statistical analysis

	Results
	Self-reported fatigue
	Electroencephalography alpha band power
	BCI performance
	Questionnaires: mood, workload, motivation, and tolerability

	Discussion
	Limitations

	Conclusion
	References


