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Abstract 

Background We hypothesized that postural instability observed in individuals with Parkinson’s disease (PD) can be 
classified as distinct subtypes based on comprehensive analyses of various evaluated parameters obtained from time-
series of center of pressure (CoP) data during quiet standing. The aim of this study was to characterize the postural 
control patterns in PD patients by performing an exploratory factor analysis and subsequent cluster analysis using 
CoP time-series data during quiet standing.

Methods 127 PD patients, 47 aged 65 years or older healthy older adults, and 71 healthy young adults partici-
pated in this study. Subjects maintain quiet standing for 30 s on a force platform and 23 variables were calculated 
from the measured CoP time-series data. Exploratory factor analysis and cluster analysis with a Gaussian mixture 
model using factors were performed on each variable to classify subgroups based on differences in characteristics 
of postural instability in PD.

Results The factor analysis identified five factors (magnitude of sway, medio-lateral frequency, anterio-posterior 
frequency, component of high frequency, and closed-loop control). Based on the five extracted factors, six distinct 
subtypes were identified, which can be considered as subtypes of distinct manifestations of postural disorders in PD 
patients. Factor loading scores for the clinical classifications (younger, older, and PD severity) overlapped, but the clus-
ter classification scores were clearly separated.

Conclusions The cluster categorization clearly identifies symptom-dependent differences in the characteristics 
of the CoP, suggesting that the detected clusters can be regarded as subtypes of distinct manifestations of postural 
disorders in patients with PD.
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Introduction
Parkinson’s disease (PD) is associated mainly with dys-
function of the basal ganglia, resulting in motor symp-
toms such as tremor, rigidity, bradykinesia, postural 
instability, gait disturbance (PIGD). Although postural 
instability becomes more prominent with the progression 
of PD symptoms [1], postural sway has been shown to be 
abnormal even in the early stages of PD with mild motor 
symptoms [2, 3]. Since postural instability in PD patients 
is associated with risks of falling [4], injury [5], a reduced 
quality of life [6], it is quite important to find ways to 
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precisely evaluate postural instability and improve pos-
tural control strategies in individuals with PD.

In the clinical evaluation of PD patients, a compo-
nent of the Unified Parkinson’s Disease Rating Scale 
(UPDRS), i.e., the pull test, is commonly used to assess 
postural instability. The definition of postural instabil-
ity is a score of three or higher, which categorizes the 
stage of the examine by the Hoehn and Yahr (HY) scale 
as stage 3 [7]. However, the pull test is not sufficient to 
understand the characteristics of postural disturbance [8, 
9]. The center of pressure (CoP), recorded as a trajectory 
in the anterior–posterior and medial–lateral planes, has 
also been used as an evaluation tool for postural disor-
ders including those in PD [10, 11]. However, the CoP 
findings obtained from PD patients have been contro-
versial. For example, some studies have shown increased 
postural sway [12, 13], but others reported a small range 
and a slow component of CoP displacements [14, 15]. 
Although many variables can be calculated from CoP 
time-series data, i.e., the displacement, the velocity, and 
the frequency of sway, it is not easy to interpret these var-
iables as consistent factors that cause postural instabili-
ties [16]. Considering the diversity of postural instability 
in PD patients, it is necessary to conduct comprehensive 
analyses based on various evaluated parameters obtained 
from CoP data during standing.

Physicians and therapists well recognize that there are 
different subtypes in PD comprised of different contribu-
tions of PD-related symptoms, clinical signs, the medical 
history, age at onset, the rate of disease progression, and 

more [17, 18]. As shown in Fig.  1, we performed factor 
analysis based on 23 variables that were calculated from 
CoP time-series data. We hypothesized that the factor 
analysis process could effectively reveal distinct compo-
nents of postural instabilities in PD patients. Given that 
the pathophysiology of postural instability in PD is com-
plex and may be a combination of disease factors due 
to PD and compensatory factors involving aging effects 
[19], we included both young and elderly healthy indi-
viduals’ data in the multivariate component analysis. We 
then performed a cluster analysis with a Gaussian mix-
ture model (GMM) using the factor loading score for the 
identification for subtypes of postural instability in PD.

To the best of our knowledge, this is the first study to 
characterize postural instability in PD by performing a 
comprehensive multivariate analysis based on various 
evaluated parameters obtained from CoP time series 
data during quiet standing. We selected various aspects 
of analytical way for the postural control, for example, 
spatio-temporal parameters, frequency domain, and 
time-series fluctuation analysis, etc. Since the extracted 
factors obtained from exploratory factor analysis (EFA) 
were the result of data compression and multivariate 
analysis, those can be regarded as consisting elements 
of postural control in PD patients. Our factor analysis 
revealed five distinct elements of postural disturbance in 
PD patients, and a cluster analysis then identified six PD 
subtypes that consist of different contributions of those 
five elements. Presumably because the high quality of the 
selection of parameters and data compression process, 

Fig. 1 Framework of the study. Left panel: The experimental set-up and the variables calculated from the CoP time-series data. Upper left pie 
chart shows the percentage of subjects in each clinical categorization. Right shows 23 variables used in the analysis and 17 variables rejected. 
Middle panel: Summary of the results obtained by the exploratory factor analysis (EFA). The color matrix shows the results of the factor loadings 
of each variable on the extracted factors. F1: magnitude of sway, F2: ML frequency component, F3: AP frequency component, F4: high-frequency 
component, F5: closed-loop control. Right panel: Comparison of factor scores by cluster in a Gaussian mixture model (GMM)-based cluster analysis. 
*p < 0.05, **p < 0.01 by post-hoc test (Steel–Dwass test) and Kruskal–Wallis test. Scatterplots shows the EFA in each cluster with 95% confidence 
ellipsoids and ellipses. Upper right pie chart: the percentage of each cluster
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cluster classification based on factor scores clearly identi-
fied symptom-dependent differences among PD patients.

Materials and methods
Participants
The participants were 138 PD patients (age 
71.1 ± 8.1  years, time from onset of PD 6.7 ± 4.9  years) 
from three collaborating hospitals, and 51 healthy older 
adults (elderly: age 72.6 ± 5.6 years) aged 65 years or older 
and 73 healthy young adults (young: age 28.6 ± 5.2 years). 
Data recordings of the PD patients were performed as 
clinical routine of postural assessments at each collabo-
rating hospital while those of the elderly and the young 
subjects were recruited among community livers around 
Kio University. Participants who had a history of cer-
ebrovascular or spinal cord disease or musculoskeletal 
disease, or difficulty holding a quiet standing position for 
30  s without assistance were excluded. Data for 11 PD 
patients, four elderly and two young adults were removed 
by outlier analysis, resulting in a final analysis of 127 
PD patients (age 71.2 ± 8.2 years, time from onset of PD 
6.6 ± 4.7  years), 47 elderly (age 72.4 ± 5.4  years), and 71 
young adults (age 28.2 ± 5.1 years).

The Unified Parkinson’s Disease Rating Scale (UPDRS) 
motor section [20] and HY stage [7] were used as clinical 
scores for PD symptoms at the time of study participa-
tion. We then classified the PD patients into the following 
two groups based on the severity/HY stage: (1) the mild 
PD group  (PDmild n = 48), where were the patients with an 
HY stage < 3 (dysfunction of the postural reflexes by pull 
test is negative); and (2) the severe PD group  (PDsevere: 
n = 79), i.e., the patients with HY stage ≥ 3 (dysfunction of 
the postural reflexes by pull test is positive). Each item in 
the UPDRS motor section was rated from 0 (normal) to 4 
(severe), and the following sub-score items were assessed 
[21]: PIGD, items 27–30; Tremor, items 20 and 21; Rigid-
ity, items 22a–22e; and Bradykinesia, items 23–26 and 
31. The UPDRS and HY stage of the patient population 
were scored by well-trained clinicians of each collaborat-
ing hospital. In case of patients who prescribed levodopa 
were evaluated at an active state after several hours of 
regular medication, and patients who did not prescribed 
levodopa were measured regardless of the effect of the 
medication. Therefore, all patients were evaluated with 
their own averaged state.

Experimental procedures and data analysis
The experimental procedure is depicted in Fig.  1. The 
participant stood on a force platform (BASYS, Tec Gihan 
Co., Kyoto, Japan). During the measurement, the partici-
pant was instructed to place both upper limbs on the lat-
eral side of the trunk and to gaze at an indicator placed 
2  m in front of him/her. Data recordings (sampling 

frequency: 1  kHz) were performed by the experienced 
therapists of three hospitals. All these stuffs had been 
well trained not only for the data acquisition, but also the 
instruction for the participant at the measurement. The 
center of pressure (CoP) time series data were processed 
by a fourth-order Butterworth filter with a low-pass fil-
ter (cut-off frequency 10  Hz). A total of 30 variables 
were calculated from the CoP, including spatial variables 
to estimate the area covered by the CoP and temporal 
variables to indicate the speed of the participant’s sway 
(Table 1).

In this study, we used a single set of 30  s CoP data 
that is recorded as a part of routine clinical assessment. 
While multiple trials are recommended to calculate CoP 
parameters [22, 23], long-time measurements with sev-
eral repetitions are not easy for the patient population, 
especially in cases of severe postural instability [24, 25]. 
Importantly, previous studied confirmed the validity and 
reliability of CoP variables calculated by a single 30-s data 
in subacute [26] and chronic stroke patients [27].

The following 12 variables were calculated as spatio-
temporal parameters: (1, 2) the mean positions of the 
anterior–posterior direction (MeanPosAP) and the 
medio-lateral direction (MeanPosML), (3) the root mean 
square distance of the CoP (RMS), (4) the 95% confi-
dence ellipse area (Area), (5) the angle of the ellipse area 
(Angle), (6) the flattening of ellipse area (Flat), (7) the 
mean triangle area enclosed by the mean CoP position 
and two consecutive points (AreaSW), (8) the total path 
length of the CoP trajectory divided by the 95% confi-
dence ellipse (LNGArea), (9) the mean velocity (MV), 
(10) the standard deviation of velocity, (11) the coefficient 
of variation of velocity, and (12) the average absolute 
maximal velocity [28].

The following four variables were calculated as vari-
ables related to the stationarity of the CoP: (1) the mean 
time interval between successive peaks on the sway den-
sity curve at a radius of 3 mm (MT3) [29], (2) the mean 
peak value on the sway density curve at a 3-mm radius 
(MP3), (3) the mean distance between successive peaks 
in the AP-ML plane on the sway density curve at a 3-mm 
radius (MD3), and (4) the fractal dimension of the CoP of 
planar movement (FD).

Regarding the variables for the frequency analysis, we 
calculated 10 variables in the range of 0–10 Hz by using 
fast Fourier transformation after removing the mean 
value of the CoP time series. The frequency bands were 
classified as follows: 0.15–0.3 Hz for the low frequency, 
0.3–1  Hz for the mid-frequency, and 1–3  Hz for the 
high frequency [30]. The low-frequency range is asso-
ciated with visual control; the mid-frequency range is 
associated with vestibular and somatosensory informa-
tion, and the high-frequency range is associated with 
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intrinsic sensation and muscle activity [31]. We divided 
the power of each frequency band by the total power 
value up to 10 Hz.

Since the ratio of low and mid-frequencies showed a 
strong relationship, we used the mid-frequency (RMF) 
and high-frequency (RHF) variables. The scaling expo-
nents of the power law-shaped power spectral density 
(PSD) in the frequency bands were characterized by 
linear regression against the 0.15–1 Hz (SLPL_AP/ML) 
and 1–5  Hz (SLPH_AP/ML) bands of the calculated 
PSD log plot [32]. The mean frequency (MFreq_AP/
ML) was calculated as a circular motion of the same 
radius as the mean amplitude [33].

We performed a stabilogram diffusion analysis (SDA) 
for the CoP displacement in the planar directions [34]. 
The CoP SDAs were calculated by using the following 
equation:

where ‹∆x2› indicates the calculation of the mean of the 
time series. The calculation is repeated with increasing 
values of Δt in the range of 0–10  s. The resulting diffu-
sion plot shows the mean squared displacement against 

< �x
2 >= �[x(t +�t)− x(t)]2�

the time interval Δt. The short-term (Ds) and long-term 
(Dl) diffusion coefficients were determined by linear 
regression on the diffusion plot. Ds and Dl correspond to 
one-half the slope of the respective linear fit to the SDA. 
The critical time (CriT) and critical displacement (CriD) 
were calculated from the linear intersection of the short- 
and long-term domains. The method of Amoud et al. was 
used to identify the slope [35]. In some cases, the fitting 
was manually modified to maintain a good-quality linear 
fit of the data. MATLAB software (ver. 2018a Mathworks, 
Natick, MA) was used for all analyses. Concerning the 
data reliability in diffusion coefficients in SDA, previous 
study already confirmed those even with a single meas-
urement of CoP at least 30 s under quiet standing [36].

Exploratory factor analysis
Before we conducted the exploratory factor analysis 
(EFA), we performed outlier removal using Hotelling’s 
T-square method, i.e., the statistically abnormal detec-
tion by χ2-distribution [37], and then we removed 17 
variables with p < 0.05 with the Bonferroni test (i.e., 
0.05/n = 0.000190). Hotelling’s T-square was calculated 
using the "pca" function in the MATLAB software.

Table 1 Characteristics of each variable

Variable Description

MeanPos. AP/ML Mean position of sway, cm

RMS Root mean square distance of CoP, cm

Area Area of 95% confidence ellipse,  cm2

Angle Absolute value of angle between major axis and ML axis, degree

Flat Flattening of 95% confidence ellipse

AreaSW Mean triangle area enclosed by mean CoP position and two consecutive points,  cm2

LNGArea Total path length of CoP trajectory divided by 95% confidence ellipse

MV Mean CoP velocity, cm/sec

MV_SD Standard deviation of MV

MV_CV Coefficient of variation of MV

AAMV Average absolute maximal velocity, cm/sec

MFreq, AP/ML Mean frequency of a circular motion with a radius equal to mean amplitude, Hz

RMF, AP/ML Ratio of mid-frequency component (0.3–1 Hz) to total power value (0–10 Hz), %

RHF, AP/ML Ratio of high frequency components (1–3 Hz) to total power value (0–10 Hz), %

SLPL, AP/ML Linear regression against 0.15–1 Hz band in PSD log plot

SLPH, AP/ML Linear regression against 1–5 Hz band in PSD log plot

MT3 Mean time interval between successive peaks on sway density curve at 3-mm radius, sec

MP3 Mean peak value on sway density curve at 3-mm radius, sec

MD3 Mean distance between in AP-ML plane successive peaks on sway density curve at 3-mm radius, mm

FD Fractal dimension of CoP of planar movement

Ds Slope of short-time region in SDA

Dl Slope of long-time region in SDA

CriT Time interval at the intersection of two regression lines on SDA

CriD Mean square value at CriT on SDA
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The EFA was then conducted to evaluate the contribu-
tion of each CoP variable. The variable selection for the 
EFA was performed using correlation criteria, i.e., Pear-
son’s correlation as 0.3 ≤ r ≤ 0.9, and Kaiser–Meyer–Olkin 
(KMO) criteria, i.e., the measure of sampling adequacy 
(MSA) for individual variables in the KMO test at ≥ 0.5. 
The selected variables were used in the subsequent analy-
sis after transformation to z-score. The robust maximum 
likelihood (MLR) with oblique geomin rotation was used 
for factor extraction. The number of factors was deter-
mined as the number with the smallest Bayesian informa-
tion criterion (BIC) value among the number of factors 
estimated by a parallel analysis. If any variables with fac-
tor loadings < 0.4 were included (factor loading-based cri-
teria), these variables were excluded and then the factor 
analysis was performed again.

Statistical analysis
Since the normality of the variables was not confirmed by 
the Shapiro–Wilk test (p < 0.05), the significance of differ-
ences in the patients’ clinical scores and factor scores for 
posturography variables among the groups was examined 
by the Mann–Whitney U-test (comparison between PD 
groups) or the Kruskal–Wallis test, and then a post-hoc 
test (corrected for multiple comparison by the Steel–
Dwass test) was applied for the comparisons of pairs of 
groups. Spearman’s rank correlation coefficient was used 
to correlate the calculated factor scores with the UPDRS 
and the duration of disease.

To classify subgroups based on differences in the char-
acteristics of postural instability in PD, we performed a 
cluster analysis with a Gaussian mixture model (GMM) 
using a factor score. GMM clustering is a probabilistic 
model-based clustering method and is a more robust 
method than other clustering methods [38]. In this clus-
tering approach, the numbers of clusters and differences 
in the distribution and its volume, shape, and orientation 
can also be compared with statistical information crite-
ria such as the BIC and/or the integrated complete-data 
likelihood criterion (ICL) [39]. We defined the following 
criteria for the number of clusters and distribution fea-
tures: the number of clusters is 4 to 30 (the aim was to 
provide a comparable or more detailed classification than 
the categories of Young, Elderly,  PDmild, and  PDsevere). 
The model with high theoretical validity with better BIC 
and ICL values was selected as the optimal model from 
among several models that met these criteria. All clus-
tering procedures were performed by the program R ver. 
3.5.0. We used the mclust5 package (an add-on package 
in R) for GMM clustering. The data are presented as the 
mean ± standard deviation. Significance was accepted at 
p < 0.05.

Results
The results of the clinical evaluations are summarized 
in Table  2. The UPDRS motor symptoms were signifi-
cantly higher in the  PDsevere group (n = 79) compared 
to the  PDmild group (n = 48) for the total score  (PDmild: 
17.7 ± 9.9,  PDsevere: 30.1 ± 12.4; W = 816, p < 0.01), rigidity 
 (PDmild: 4.4 ± 3.2,  PDsevere: 6.5 ± 3.5; W = 1231, p < 0.01), 
PIGD  (PDmild: 3.5 ± 2.5,  PDsevere: 6.8 ± 2.7; W = 687, 
p < 0.01), and bradykinesia  (PDmild: 7.4 ± 5.6,  PDsevere: 
12.5 ± 6.0; W = 953.5, p < 0.01). There was no signifi-
cant between-group difference in tremor score  (PDmild: 
1.2 ± 1.5,  PDsevere: 2.2 ± 2.9; W = 1588, p = 0.11). The 
patient’s age and the duration of disease were nearly 
the same in the  PDmild and  PDsevere groups (age:  PDmild: 
70.8 ± 8.4,  PDsevere: 71.4 ± 8.1, W = 1784, p = 0.58; duration 
of disease:  PDmild: 6.1 ± 3.8,  PDsevere: 7.0 ± 5.1, W = 1776, 
p = 0.63).

Exploratory factor analysis
To extract distinct components of the postural instabili-
ties in the PD patients, we performed an exploratory fac-
tor analysis (EFA) with 23 variables calculated from the 
patients’ CoP time-series data. Four variables and a sin-
gle variable were removed in the correlation and KMO 
criteria, respectively (MeanPos_AP, RMS, AAMV, MD3, 
and MV_CV). In addition, two variables were removed 
in the factor loading criteria (MeanPos_ML and MT3). 
A total of five factors were extracted by the EFA with 23 
accepted variables (Fig. 1).

Figure  1’s middle panel depicts the loading score of 
each variable on the detected factors. Each factor can 
be interpreted as follows: F1 was interpreted as a "mag-
nitude of sway factor," with large contributions such as 
Area, MV, and Ds in the SDA. F2 was interpreted as a 
"ML frequency component factor," with large contribu-
tions from MFreq_ML and SLPL_ML. In contrast, F3 
was interpreted as an "AP frequency component factor" 
with large contributions from MFreq_AP and SLPL_AP. 
F4 was interpreted as a "high-frequency component fac-
tor" with large contributions from SLPH_AP and ML and 
FD. F5 was interpreted as a "closed-loop control factor," 
with large contributions from Dl and CriT in SDA.

The relationship between factor scores and UPDRS 
scores and the duration of disease are shown as a color 
matrix in Fig.  2A. F1 showed a significant positive cor-
relation with the disease duration (ρ = 0.29, p < 0.01) but 
a significant negative correlation with UPDRS rigid-
ity (ρ =  − 0.25, p < 0.01). F4 was positively correlated 
with the UPDRS total score (ρ = 0.31, p < 0.01), rigidity 
(ρ = 0.30, p < 0.01), bradykinesia (ρ = 0.20, p = 0.02), and 
PIGD (ρ = 0.31, p < 0.01). F2, F3, and F5 showed no sig-
nificant correlations.



Page 6 of 14Fujii et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:59 

Ta
bl

e 
2 

C
ha

ra
ct

er
is

tic
s 

of
 th

e 
pa

tie
nt

s 
w

ith
 P

D
 a

nd
 th

e 
he

al
th

y 
co

nt
ro

ls

D
at

a 
ar

e 
m

ea
n 

± 
SD

. *
p 

< 
0.

05
, *

*p
 <

 0
.0

1.
 Y

N
G

 y
ou

ng
, E

LD
 e

ld
er

ly
, n

s n
on

si
gn

ifi
ca

nt
, P

D
m

ild
 P

ar
ki

ns
on

’s 
di

se
as

e-
m

ild
, P

D
se

ve
re

: P
ar

ki
ns

on
’s 

di
se

as
e-

se
ve

re
, P

IG
D

 p
os

tu
ra

l i
ns

ta
bi

lit
y 

an
d 

ga
it 

di
st

ur
ba

nc
e,

 U
PD

RS
 T

he
 U

ni
fie

d 
Pa

rk
in

so
n’

s 
D

is
ea

se
 R

at
in

g 
Sc

al
e

Cl
as

si
fic

at
io

n 
by

 s
ev

er
it

y
Cl

as
si

fic
at

io
n 

by
 C

lu
st

er

YN
G

EL
D

PD
m

ild
PD

se
ve

re
St

at
is

tic
s

Cl
us

te
r 1

Cl
us

te
r 2

Cl
us

te
r 3

Cl
us

te
r 4

Cl
us

te
r 5

Cl
us

te
r 6

St
at

is
tic

s

n 
=

 7
1

n 
=

 4
7

n 
=

 4
8

n 
=

 7
9

n 
=

 3
1

n 
=

 3
2

n 
=

 4
1

n 
=

 3
9

n 
=

 1
0

n 
=

 2
1

M
al

e/
fe

m
al

e
35

/3
6

17
/3

0
27

/2
1

32
/4

7
ns

11
/2

0
12

/2
0

20
/2

1
18

/2
1

3/
7

12
/9

ns

A
ge

, y
rs

28
.5

 ±
 5

.1
72

.4
 ±

 5
.4

70
.8

 ±
 8

.4
71

.4
 ±

 8
.1

YN
G

 v
s. 

EL
D

, 
 PD

m
ild

,  P
D

se
ve

re
**

71
.1

 ±
 7

.2
70

.6
 ±

 8
.1

73
.2

 ±
 6

.1
71

.3
 ±

 7
.5

74
.7

 ±
 7

.6
69

.1
 ±

 7
.8

ns

D
is

ea
se

 d
ur

at
io

n,
 y

rs
–

–
6.

1 
±

 3
.8

7.
0 

±
 5

.1
ns

3.
9 

±
 3

.4
7.

0 
±

 5
.2

5.
9 

±
 3

.5
7.

6 
±

 5
.2

7.
0 

±
 5

.3
8.

4 
±

 4
.4

C
1 

vs
. 4

, 6
*

A
ge

 a
t o

ns
et

,
yr

s
–

–
64

.7
 ±

 9
.3

64
.3

 ±
 8

.9
ns

66
.9

 ±
 7

.6
62

.5
 ±

 1
0.

3
67

.4
 ±

 8
.8

64
.0

 ±
 9

.1
67

.7
 ±

 1
0.

5
59

.0
 ±

 6
.0

C
1 

vs
. 6

*
C

3 
vs

. 6
**

U
PD

RS
To

ta
l

–
–

17
.7

 ±
 9

.9
30

.1
 ±

 1
2.

4
**

25
.2

 ±
 1

3.
2

23
.2

 ±
 1

4.
4

28
.3

 ±
 1

1.
2

28
.3

 ±
 1

4.
6

27
.9

 ±
 8

.8
17

.5
 ±

 1
0.

0
C

3 
vs

. 6
*

U
PD

RS
Ri

gi
di

ty
–

–
4.

4 
±

 3
.2

6.
5 

±
 3

.5
**

5.
6 

±
 3

.2
4.

7 
±

 3
.7

7.
9 

±
 2

.9
6.

2 
±

 3
.5

5.
3 

±
 3

.7
3.

2 
±

 2
.6

C
2 

vs
. 3

*
C

3 
vs

. 6
**

C
4 

vs
. 6

*

U
PD

RS
PI

G
D

–
–

3.
5 

±
 2

.5
6.

8 
±

 2
.7

**
5.

0 
±

 2
.6

4.
7 

±
 2

.7
6.

4 
±

 3
.8

6.
0 

±
 3

.0
6.

1 
±

 3
.1

4.
8 

±
 2

.6
ns

U
PD

RS
Br

ad
yk

in
es

ia
–

–
7.

4 
±

 5
.6

12
.5

 ±
 6

.0
**

10
.8

 ±
 7

.0
10

.3
 ±

 6
.2

10
.8

 ±
 5

.5
11

.8
 ±

 7
.4

12
.4

 ±
 4

.4
7.

3 
±

 5
.0

ns

U
PD

RS
Tr

em
or

–
–

1.
2 

±
 1

.5
2.

2 
±

 2
.9

ns
1.

8 
±

 2
.5

2.
3 

±
 3

.1
1.

3 
±

 1
.7

2.
2 

±
 2

.5
2.

1 
±

 2
.6

1.
3 

±
 2

.5
ns



Page 7 of 14Fujii et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:59  

Gaussian mixture model‑based cluster analysis
Since the comparison of factor scores confirmed that the 
Young healthy group had postural control characteristics 
that were distinctly different from those of the Elderly 
healthy and PD groups, we performed GMM-based 
clustering on the data from the healthy Elderly and PD 
patients (n = 174). The GMM-based cluster analysis clas-
sified the six clusters.

As shown in Fig. 2B, 31 patients (17.8%) were classified 
as Cluster 1, 32 patients (18.4%) as Cluster 2, 41 patients 
(23.6%) as Cluster 3, 39 patients (22.4%) as Cluster 4, 10 
patients (5.7%) as Cluster 5, and 21 patients (12.1%) as 
Cluster 6. The percentage of Elderly and PD patients in 
the clusters are shown in the right panel of Fig. 2B. Clus-
ters 4, 5, and 6 were considered to be PD-specific clusters 
due to the small number of Elderly belonging to them. 
There was no significant difference in the patient’s age of 
each cluster (χ2 = 7.988, df = 5, p = 0.16). The duration of 
disease was significantly longer in Cluster 4 and Cluster 6 
than Cluster 1 (χ2 = 13.353, df = 5, p = 0.02, Fig. 2B, lower 
right panel).

The UPDRS results for each cluster are shown in 
Fig. 2A right panel. The total score was significantly lower 
in Cluster 6 than Cluster 3 (χ2 = 11.37, df = 5, p = 0.04). 
Regarding the sub-scores, rigidity was significantly 
higher in Cluster 3 than Clusters 2 and 6, and the rigidity 
in Cluster 6 was significantly lower than that in Cluster 
4 (χ2 = 22.384, df = 5, p < 0.01). There was no significant 
between-cluster difference in bradykinesia (χ2 = 8.587, 
df = 5, p = 0.13), PIGD (χ2 = 6.378, df = 5, p = 0.27), or 
tremor (χ2 = 4.249, df = 5, p = 0.51).

The results of a detailed comparison of the factor 
scores and the variables representing factors in each clin-
ical classification (A) and cluster-based categorization 

(B) are summarized in Fig. 3. The radar chart at the fig-
ure’s upper right shows the results of the comparison of 
the variables with the largest contribution of each fac-
tor in each group. In the case of clinical classification, 
the factor scores are largely overlapped among groups. 
F1 and F4 showed significantly higher values in Elderly, 
 PDmild, and  PDsevere compared to Young (F1: χ2 = 45.913, 
df = 3, p < 0.01, F4: χ2 = 43.685, df = 3, p < 0.01). The val-
ues were not significantly different in F2 (χ2 = 5.224, 
df = 3, p = 0.16), F3 (χ2 = 3.153, df = 3, p = 0.37), and F5 
(χ2 = 6.908, df = 3, p = 0.07).

In contrast to the clinical classification, the plot of 
each cluster distributed independently. F1 was sig-
nificantly lower for Clusters 1 and 3 than for Clusters 
4 and 5 (χ2 = 85.622, df = 5, p < 0.01). Cluster 1 was also 
significantly lower than Cluster 2. In contrast, cluster 6 
was significantly higher than all clusters excluding clus-
ter 5. In F2, Cluster 5 was significantly higher than the 
other clusters, and Cluster 3 was significantly higher than 
Cluster 2 (χ2 = 40.304, df = 5, p < 0.01). In F3, Clusters 3 
and 5 were significantly higher than Clusters 1, 2, 4, and 
6 (χ2 = 73.777, df = 5, p < 0.01). In F4, Cluster 5 was sig-
nificantly higher than the other clusters, and Clusters 3 
and 4 were significantly higher than Clusters 1, 2, and 6 
(χ2 = 47.148, df = 5, p < 0.01). In F5, Clusters 2 and 6 were 
significantly lower than the other clusters, and Cluster 4 
was significantly higher than Clusters 1 and 3 (χ2 = 103.9, 
df = 5, p < 0.01). The detailed statistical results are pro-
vided in Table 2.

Comparison of CoP parameters
All evaluated parameters were shown in both the clini-
cal classification (Fig. 4, left panel) and the cluster-based 
categorization (Fig.  4, right panel). Although the data 

Fig. 2 Clinical characteristics. A Color matrix: indicating the correlation coefficient between factor scores and UPDRS scores and the duration 
of disease. *p < 0.05, **p < 0.01 by Spearman’s rank correlation coefficient. Plot graphs: the results of the comparison of clinical evaluations in each 
cluster. Data are mean ± SD. *p < 0.05, **p < 0.01 by post hoc test (Steel–Dwass test) and Kruskal–Wallis test. B Percentages of members. Left panel: 
The percentages of Elderly,  PDmild and  PDsevere in each cluster. Percentages of the clusters in the clinical classification. Right panel: The percentages 
of clinical classification in each cluster
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among the four subject groups (Young, Elderly,  PDmild, 
and  PDsevere) widely overlapped, the data in the clus-
ter categorization showed clear separation, which we 
speculate was due to different contributions of elements 
comprising the postural instability. Figure 4A shows the 
data plots of CoP area and mean velocity (MV), which 
are general spatial and temporal evaluation parameters, 
respectively. Both the CoP area and MV were signifi-
cantly higher in the Elderly,  PDmild, and  PDsevere groups 
was compared to the Young group (CoP area: χ2 = 46.937, 
df = 3, p < 0.01, MV: χ2 = 77.058, df = 3, p < 0.01).  PDsevere 
was also significantly higher than Elderly (p = 0.04). There 
was no significant difference in either the CoP area or 
the MV between  PDmild and  PDsevere groups. In the clus-
ter categorization, the CoP area was significantly lower 
in Clusters 1 and 3 than in other clusters and signifi-
cantly higher in Clusters 5 and 6 versus the other clusters 
(χ2 = 80.672, df = 5, p < 0.01). The MV was significantly 
lower in Cluster 1 compared to the other clusters and sig-
nificantly higher in Cluster 5 than in the other clusters. 
Cluster 2 was significantly lower than Cluster 4. Clus-
ter 6 was significantly higher than Clusters 1, 2, and 3 
(χ2 = 85.183, df = 5, p < 0.01).

The logarithmic plots of power spectral density (PSD) 
by the anterior–posterior direction for each group 
are demonstrated in Fig.  4B. The clinical classifica-
tion showed no significant differences in power slopes 
in the low-frequency band down to 1  Hz (SLPL_AP: 
χ2 = 7.806, df = 3, p = 0.05). In contrast, the slope of power 

in the high-frequency band above 1 Hz was significantly 
higher in the PD group (SLPH_AP: χ2 = 34.484, df = 3, 
p < 0.01). In the cluster classification, SLPL_AP was sig-
nificantly higher in Clusters 3 and 5 than in the other 
clusters (χ2 = 66.017, df = 5, p < 0.01). SLPH_AP was sig-
nificantly higher in Cluster 4 than in clusters 2, 3, and 6 
(χ2 = 20.194, df = 5, p < 0.01).

The SDA results for each group and each cluster are 
summarized in Fig.  4C. As shown by the stabilogram 
diffusion plot in the figure’s left panel, each group and 
cluster showed clearly different characteristics in both 
short- and long-term regions. In the clinical classifica-
tion, Ds, which indicates the expansion of the short-
time region, was significantly higher in the Elderly 
and PD groups than in the Young group (χ2 = 46.308, 
df = 3, p < 0.01). CriD was also significantly higher in the 
Elderly and PD groups compared to the Young group 
(χ2 = 43.289, df = 3, p < 0.01). In addition, Dl, which indi-
cates the long-time region, was significantly higher in the 
 PDsevere group versus the Young group (χ2 = 13.41, df = 3, 
p < 0.01). There was no significant difference in Crit 
(χ2 = 1.852, df = 3, p = 0.60).

In the cluster categorization, Ds was significantly 
higher in Clusters 5 and 6 than in other clusters, and sig-
nificantly lower in Cluster 1 than in the other clusters 
(χ2 = 71.736, df = 5, p < 0.01). Dl was significantly higher in 
Cluster 5 than in Clusters 1, 2, and 3 (χ2 = 28.359, df = 5, 
p < 0.01). CriT was significantly lower in Clusters 3, 4, 
and 5 versus the other clusters, and significantly higher 

Fig. 3 Summary of the results of the exploratory factor analysis. A Comparison of factor scores by clinical classification. Data are mean ± SD. 
*p < 0.05, **p < 0.01 by post-hoc test (Steel–Dwass test) and Kruskal–Wallis test. Scatterplots: the FA in each cluster with 95% confidence ellipsoids 
and ellipses. Upper right radar chart: the z-scores of the main variables for each factor. The clinical classification shows that each variable has a large 
overlap in PD severity. B Comparison of factor scores by clusters (as in the right part of Fig. 1). Upper right radar chart: the z-scores of the main 
variables for each factor. For the categories by clusters, the different shapes of the radar chart show the independence and characteristics of each 
cluster
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in Cluster 6 than in Cluster 1 (χ2 = 74.211, df = 5, p < 0.01). 
CriD was significantly higher in Cluster 6 than in the 

other clusters, and significantly higher in Clusters 2 and 

Fig. 4 Comparison of CoP parameters by clinical classification and cluster categorization. Left panel: Comparison by clinical classification. Right 
panel: Comparison of factor scores by clusters. All data are mean ± standard deviation (SD). *p < 0.05, **p < 0.01 by post-hoc test (Steel–Dwass test) 
in the Kruskal–Wallis test. A Comparison of spatiotemporal parameters (Area and MV). B Comparison of power-spectrum parameters by anterior–
posterior direction (SLPL_AP and SLPH_AP). Each left part: PSD log plot from 0.15 to 10 Hz. The blue line is the regression line for 0.15–1 Hz, 
and the red line is the regression line for 1–5 Hz. C Comparison of results of the stabilogram diffusion analysis (SDA). Each left part: Linear 
stabilogram diffusion plots in CoP displacements in the planar direction
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4 than in Clusters 1, 3, and 5 (χ2 = 101.03, df = 5, p < 0.01). 
Cluster 1 was also significantly lower than Cluster 3.

Comparison of four representative cases
To validate the interpretation of each cluster, we carried 
out the characteristics of four representative patients 
(Fig.  5). Each patient had undergone electromyography 
(EMG) of the ankle joint (tibialis anterior and gastrocne-
mius medialis) measured simultaneously with the pos-
turography. Although all four patients were at HY stage 3, 
they belonged to different clusters and showed different 
postural control characteristics.

Patient #1 (Cluster 1)
The patient was a 61-year-old man who had been diag-
nosed for 3 years. His UPDRS motor score was 35 points, 
with high scores mainly for tremor, rigidity, and bradyki-
nesia. His postural alignment showed a dropped head, 
freezing of gait, and easy falling backward in daily life. 
The postural sway characteristics showed a narrow sway 
range (F1) and low-frequency characteristics (F2, F3, 
F4). The tibialis anterior muscle was dominant over the 
medial gastrocnemius muscle in muscle activity. In this 
patient’s case, the postural sway was smaller than that of 
healthy young adults, but this may have been due to com-
pensatory postural control for the easy falling backward.

Patient #2 (Cluster 4)
The patient was a 75-year-old man who had been diag-
nosed for 3 years. His UPDRS motor score was 49 points, 
which was high mainly in the scores of rigidity, bradyki-
nesia, and PIGD. He showed decreased flexibility mainly 
in his trunk. The postural sway characteristics showed 
a rather wide sway range (F1) but low-frequency char-
acteristics (F2, F3, F4). F5 was high compared to other 

patients’ cases. This patient’s muscle activity showed pha-
sic activity of medial gastrocnemius and tibialis anterior 
muscles with an anterior–posterior CoP shift. Gradual 
swaying in the low-frequency band was increased due to 
decreased postural localization by the closed-loop con-
trol (F5).

Patient #3 (Cluster 5)
The patient was a 63-year-old man who had been diag-
nosed for 9 years. The UPDRS motor score was 29 points, 
which was high mainly in rigidity, bradykinesia, and 
PIGD. In daily life, the patient showed easy falling due to 
freezing of gait. The postural sway characteristics showed 
a narrow range of sway range (F1) as in Patient #1 but 
high-frequency characteristics (especially F4). The mus-
cle activity showed co-contraction of the medial gastroc-
nemius and tibialis anterior muscles. In this patient, the 
postural sway was narrowed due to the high ankle joint 
stiffness caused by the co-contraction (shown in F4), sug-
gesting that the postural control was continuous rather 
than intermittent [40].

Patient #4 (Cluster 6)
The patient was a 78-year-old man who had been diag-
nosed for 16  years. His UPDRS motor score was 41 
points, and it was high mainly in bradykinesia and PIGD 
scores. In addition, dyskinesia was observed in the on-
medication state. In daily life, the patient was highly 
active by walking outdoors and engaging in hobby activi-
ties, but he experienced frequent falls. The postural sway 
characteristics showed a wide sway range (F1), high-
frequency characteristics (F2, F3, F4), and low F5. The 
muscle activity showed phasic activity of medial gastroc-
nemius and tibialis anterior muscles with an anterior–
posterior CoP shift. This patient’s dyskinesia caused fast 

Fig. 5 Representative cases. Left panel: The CoP Lissajous figure of CoP, the EMG activity in the gastrocnemius (blue) and tibialis anterior muscles 
(red), and the power spectral density (PSD) log plot in four representative cases are shown. The blue line in the CoP Lissajous figures shows 
the trajectory of the CoP, and the green line shows the 95% confidence ellipse. The PSD log plot showed a range from 0.15 to10 Hz. The blue line 
is the regression line for 0.15–1 Hz, and the red line is the regression line for 1–5 Hz. Right panel: Radar chart of key variables for each factor in four 
representative cases. The cases are shown as individual Z-scores and Young as mean Z-scores
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and large anterior–posterior swaying, which may have 
indicated a time delay in the functioning of the closed-
loop control.

Discussion
We attempted to elucidate elements that comprise the 
postural disturbances in PD patients by conducting 
an exploratory factor analysis and subsequent cluster 
analysis based on 23 variables obtained from CoP time-
series data during quiet standing. Confirming the clini-
cal significance of the cluster-based categorization, factor 
loading scores were demonstrated in both the clinical 
classification (Fig.  3A) and the cluster-based categori-
zation (Fig.  3B). The factor loading scores among the 
four subject groups (young, elderly,  PDmild, and  PDsevere) 
overlapped, whereas those in the cluster categorization 
showed clear separation which was presumably due to 
different contributions of the elements of postural insta-
bility. Based on the five extracted factors, six distinct 
subtypes that can be regarded as subtypes of distinct 
manifestations of postural disorders in patients with PD 
were identified. In the following section, we first interpret 
the results of the multivariate analysis and then discuss 
the clinical importance of the subtype categorization for 
a better understanding of the postural instability in PD 
patients.

Five factors associated with postural control in PD patients
The five factors extracted by the EFA can be reasonably 
interpreted as the magnitude of sway (F1), ML frequency 
(F2), AP frequency (F3), high-frequency component 
(F4), and closed-loop control (F5). The ordinary clinical 
assessment of postural instability using CoP data (so-
called posturography) is evaluated using mainly spatio-
temporal variables and frequency characteristics [33, 
41]. The magnitude of the sway, frequency components, 
and the direction of the sway have also been detected 
in a principal component analysis (PCA) using the CoP 
data of PD patients [42]. Our present findings also dem-
onstrated that the factor loading score of the high-fre-
quency component (F4) in the elderly and PD patients 
was significantly higher than that in the healthy young 
subjects. This is in agreement with the previous finding 
that the high-frequency component is one of the clinical 
manifestations in elderly and PD patients [12, 43].

The high-frequency component may directly reflect the 
problem of postural instability [44] and reflects elements 
of postural tremor in PD, especially in the off-medication 
state [12]. In the present study, the frequency response 
below 1  Hz, explained by the integration of F2 and F3, 
was not affected by the severity of PD. The magnitude 
of the standard deviation in each factor score of the PD 

patients further clarified the presence of subtypes in pos-
tural instability.

F5 could be interpreted as relevant to closed-loop con-
trol because this factor had a higher loading score with 
the SDA-related variables. Dl is related to diffusion in 
closed-loop functions and had a strong negative correla-
tion with joint stiffness in model simulation studies [45], 
and CriT indicates the time interval for stability mainte-
nance as determined by the closed-loop system. Taken 
together with these facts, we speculate that F5 might 
reflect the extent of time delay in the closed-loop system 
and/or reduced stiffness.

As shown in Fig.  3, the clear separation of the distri-
bution of each factor loading score suggests that a factor 
analysis can reliably extract elements comprising postural 
control in PD patients. The factor analysis process was 
designed to break down postural instability into coherent 
profiles among 23 parameters, and we were then able to 
successfully extract distinct five components of postural 
control strategy. Considering the complex interaction of 
elements of postural instability in PD, we speculate that 
certain types of postural control strategy consist of differ-
ent contributions of each of the five components.

Subtypes of postural disturbance revealed by cluster 
analysis
The GMM-based cluster analysis based on the obtained 
factor loading scores was able to identify subtypes of pos-
tural disturbance/instability in PD patients. In contrast 
to the clinical classification, the cluster-based categoriza-
tion enabled us to re-group the distinct types of postural 
instability. More importantly, it is meaningful to discuss 
the contribution of each of the five factors to each clus-
ter for a better understanding of PD-related postural 
disturbance.

Cluster 1 had the shortest post-onset period and was 
similar to the young healthy group in each factor score 
except for the frequency component (F3, F4). There-
fore, Cluster 1 can be interpreted as mild postural insta-
bility. However, almost half of the subjects in Cluster 1 
belonged to the  PDsevere group. This may have included 
patients with excessive narrowing of postural sway, such 
as Patient #1 presented as a representative case. Cluster 
2 was characterized by higher loading of F1 and lower 
loading of F5 compared to Cluster 1. This also reflects 
the profile of SDA, which showed larger Ds and higher 
Crit values, suggesting a delay in the time interval of the 
closed-loop system. Cluster 3 was characterized by lower 
loading of F1, but higher loading of F2 and F3, suggesting 
that the range of sway is narrow but the frequency com-
ponent is different from Cluster 1 (larger SLPL_AP and 
higher Ds in Cluster 3 than Cluster 1). Such characteris-
tics might have relevance to the highest rigidity score in 
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UPDRS. Concerning this point, another study suggested 
that a narrow range of postural sway can be attributed to 
rigidity due to malfunction of the control of muscle stiff-
ness [46].

Cluster 4 showed similar scores to Cluster 1 in many 
factor scores, but F5 showed the highest scores. As 
clearly indicated by the higher Dl, the patients catego-
rized in Cluster 4 had attenuated closed-loop control 
with a large range of postural sway during upright stand-
ing. Cluster 5 was characterized by higher loading of F2 
and F3, which is similar to Cluster 3, but it had signifi-
cantly higher loading of F4 than the other clusters. High 
F4 was suggested to be controlled by co-contraction of 
overactivity of the ankle muscles, as shown in the typical 
data of Patient #2. Such cases may represent a continuous 
control model deviating from intermittent control [40, 
47]. Regarding the high F1, it may reflect the influence 
of MV, which is strongly associated with high-frequency 
components (see the radar chart in Fig. 4C).

Cluster 6 showed higher F1 and lower F5, suggest-
ing greater sway and a delay in the time interval to the 
closed-loop system function. The large Ds and Crit val-
ues in SDA may reflect lower loop gains in the postural 
control model [48]. Interestingly, Cluster 6 showed the 
lowest UPDRS total and rigidity scores compared to the 
other clusters. This result is consistent with studies that 
found no relationship between the UPDRS and the mag-
nitude of sway during quiet standing [12, 49]. Cluster 6 
also had a longer time since onset and a younger age of 
onset. This may indicate a more slowly progressing dis-
ease type of PD with milder motor symptoms [50]. PD 
patients who have been on-medication for a long time 
also often have dyskinesia problems [51]. PD patients 
with dyskinesia have been reported to have increased 
sway velocity and an increased total path length [52, 53]. 
In fact, Patient #4 in Cluster 6 showed dyskinesia in the 
on-medication state. The large F1 shown in Cluster 6 may 
reflect elements of dyskinesia.

The clinical importance of the cluster‑based subtype 
categorization
It is clear that the commonly used parameters of CoP 
alone, i.e., sway area and velocity, are insufficient to char-
acterize postural instability. It is important to focus on 
the selection of the optimal evaluation parameters and 
the most suitable analysis process. We were motivated 
to characterize postural instability in PD patients based 
on a multivariate analysis using CoP data recording dur-
ing quiet standing in healthy young, elderly, and PD 
patients. We performed a factor analysis of 23 variables 
calculated using the subjects’ CoP in order to extract dis-
tinct components underlying postural instabilities in PD 
patients. This analysis process enabled us to understand 

the characteristics and elements that comprise postural 
instability in PD patients. As shown in Fig. 1, the results 
of the factor analysis revealed distinct five elements of 
postural disturbance in PD patients; a similar analysis 
process was used to characterize gait behavior [54] and 
visuospatial cognition [55] in studies that effectively com-
pressed the data and then identified distinct subtypes.

Another important task is to elucidate the complex 
elements of postural disturbance. The clear separation 
observed in this study was largely affected by the meth-
odological constraints of the multivariate analysis which 
aimed to reveal distinct separation of the target behav-
ior, and further comparisons of the clinical classification 
and cluster-based categorization would give us more 
important information for clinical evaluations. That is, 
the problem of insufficiency in the detection of differ-
ences between patient populations is not simply due to 
the evaluation method and parameters; rather, the com-
plexity of the elements comprising neurological behavior 
is also involved.

It can be emphasized that the process of cluster-based 
categorization is a type of causal inference of postural 
instability. As illustrated in Fig. 4, almost all of the CoP-
related evaluated parameters and the SDA profile did 
not show clear differences among the elderly,  PDmild, and 
 PDsevere groups. On the other hand, each cluster showed 
clear separation in most of the parameters, which is pre-
sumably due to different contributions of the elements 
underlying postural instability.

Implications, limitations, and future direction
With regard to the evaluated parameters, the commonly 
used spatio-temporal parameters can be intuitive for 
evaluating the magnitude of the postural sway/distur-
bance of patients. Nevertheless, it is important to pay 
attention to the manner of control behind the postural 
behavior. A SDA is one of the established fractal time-
series analysis of the variability of the sum of the squares 
of the distances between the start and end points of a 
motion over different time ranges. Collins and De Luca 
reported that the behavior of the CoP during quiet stand-
ing is characterized by distinct two components revealed 
by an SDA analysis, namely, the profile of short- and 
long-time intervals [34]. Those authors speculated that 
the CoP shows a spontaneous drift away from the relative 
equilibrium point and persists (i.e., control in an open-
loop system) during short time intervals, whereas during 
long time intervals the CoP behavior is anti-persistent 
and returns to the relative equilibrium point (i.e., con-
trol in a closed-loop system). The transition between the 
short- and long-time regions is interpreted as the critical 
point in the average time interval and its displacement 
where the attitude control switches from an open-loop 
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system to a closed-loop system. Analyses of postural con-
trol characteristics using an SDA can provide insight into 
the different control mechanisms of the diverse postural 
instabilities presented by PD patients. While a SDA is not 
commonly used in clinical evaluations, the SDA profile 
in each cluster in the present study clearly demonstrated 
different contributions of short- and long-time interval 
regions and its contribution.

Since the present study focused on the mechanisms 
underlying postural control we could not directly dis-
cuss about relevance between postural instability and 
risk of fall in PD patients. In the future study, we should 
include whole-body kinematics measurements to achieve 
a more robust understanding of postural instability in PD 
patients and then should discuss the above-mentioned 
point. Differences in postural alignment are expected to 
have a significant impact on postural control [56], such 
as Camptocormia and Pisa syndrome [57]. The effect of 
medication (on/off status) on postural instability should 
also be clarified with the use of the clusters detected in 
this study.

Conclusions
The present study was conducted to identify the com-
ponents of postural control in PD patients by EFA using 
various evaluation parameters obtained from CoP time 
series data during quiet standing. Since the extracted fac-
tors obtained from EFA were the result of data compres-
sion and multivariate analysis, those can be regarded as 
consisting elements of postural control in PD patients. 
Cluster classification based on factor scores clearly 
identified symptom-dependent differences among PD 
patients. Such subtype classification provide useful infor-
mation for the better understanding of postural disor-
ders in PD patients and give clinicians and therapist to 
prescribe appropriate rehabilitation intervention based 
on the clinical manifestation and the type of postural 
disorders.
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