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Abstract 

Background Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. 
However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises.

Methods We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations 
and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin 
tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck 
flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve 
healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle esti-
mation and IMU location identification.

Results Results demonstrated average mean absolute spinal angle estimation errors of 2.59◦ and average classifica-
tion accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabili-
tation exercises while demonstrating robustness to individual differences and exercise variations.

Conclusion This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could 
potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient 
outcomes and improve accessibility for spine-related rehabilitation.

Trial registration: No. E2021013P in Shanghai Jiao Tong University.
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Introduction
The widespread use of technology and the omnipresence 
of smartphones have contributed to a sedentary lifestyle, 
resulting in a growing prevalence of spine degeneration 
conditions among individuals who engage in prolonged 
periods of sitting with insufficient physical activity [1–4]. 

Spinal degenerative pathologies, including stenosis, spine 
curvatures, and cervical spondylosis, typically manifest 
with symptoms such as pain, neural disorders, and mus-
cle rigidity [3]. Considering the risks associated with 
surgery and medication, the significance of rehabilita-
tion exercise has gained prominence in recent years as a 
dominant treatment manner [5]. Nevertheless, the prac-
ticality of long-term hospital or rehabilitation center-
based therapy has limitations, including cost and travel 
time, which can severely dampen patient motivation and 
potentially lead to therapy abandonment and inefficacy 
[6]. As a result, there has been a growing focus on devel-
oping telerehabilitation solutions.
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Real-time assessment and feedback for telerehabilita-
tion have emerged as crucial components in ensuring 
that patients can rapidly master the control of key mus-
cle groups and determine the effectiveness of rehabilita-
tion [7]. Two primary techniques, namely camera-based 
and wearable sensor-based solutions, have come to the 
forefront for assessing exercises and providing real-time 
feedback to patients. While camera-based approaches 
[8–10] offer the advantage of non-intrusive monitoring, 
they have limitations related to privacy, lighting, occlu-
sion, computational resources, and cost, which restrict 
their practicality for real-time quantification of reha-
bilitation exercises. In contrast, wearable sensor-based 
solutions [6, 11–15], particularly those utilizing inertial 
measurement unit (IMU) sensors, have shown promise 
by offering low latency, robust accuracy, and minimal 
redundancy in capturing data about body segments.

IMUs have been used to estimate spinal rotation angles 
and joint kinematics for assessing axial spondyloarthritis 
during a set of five easy functional movements: hip flex-
ion, back extension, lateral flexion, cervical rotation, and 
cervical flexion/extension [11]. Furthermore, the robust-
ness of IMU-based assessments in evaluating spine con-
trol and functional movement quality across different 
days has been established through research involving the 
concurrent use of two IMUs during hip flexion/exten-
sion in the sagittal plane, shoulder rotation in the trans-
verse plane, and combined movements [12, 13]. O’Grady 
et al. [14] demonstrated that IMU sensor-based systems 
reliably measure spinal mobility through a comprehen-
sive study involving forty patients diagnosed with axial 
spondyloarthritis during spine flexion/extension, lateral 
flexion, and spine rotation. Additionally, IMUs were suc-
cessfully validated for measuring spine angles in diverse 
daily-life scenarios, including standing, sitting, lifting, 
walking, and jogging, achieving an impressive regres-
sion performance [15]. While others have proposed 
using IMUs for estimating a limited set of spine move-
ments, to date, there are no studies validating IMU spine 
movement estimation during rehabilitation exercises, 
including supine chin tuck head lift rotation, dead bug 
unilateral isometric hold, pilates saw, catcow full spine, 
wall angel, quadruped neck flexion/extension, adductor 
open book, side plank hip dip, bird dog hip spinal flexion, 
and windmill single leg [16–20].

However, within the context of telerehabilitation, the 
intricacies associated with system operation may pose 
challenges, potentially impacting patient motivation and 
self-efficacy [21, 22]. This challenge is particularly pro-
nounced among elderly patients, who may face difficulty 
in wearing a full-body IMU set. A minimum of two IMUs 
is required for spine movement estimation, necessitat-
ing the patient to adjust IMU locations when switching 

exercises. The accurate detection of IMU locations plays 
a part in minimizing erroneous placement.

In this study, a 2-IMU system was proposed to identify 
the IMU locations and implement angle estimation for 
ten commonly prescribed spinal degeneration rehabili-
tation exercises. We hypothesized that angles estimated 
by the IMU-based method could reasonably assess the 
completeness and quality of rehabilitation exercises. 
This comprehensive approach seeks to advance the field 
of telerehabilitation, offering a promising avenue for 
improved patient outcomes and enhanced accessibility to 
professional-grade rehabilitation exercises.

Methods
In this study, a 2-IMU system was designed to automati-
cally identify the IMU locations and estimate crucial 
parameters for each exercise (Fig.  1). During rehabili-
tation exercises, IMU signals will be transmitted to a 
cellphone via Bluetooth. These signals will be utilized 
to identify the IMU locations and estimate the evalu-
ation angle. The angles obtained serve the purposes of 
providing real-time visual feedback to guide the patient 
and counting repetitions, as well as facilitating offline 
evaluation.

Exercises selection
We carefully curated a set of ten commonly prescribed 
rehabilitation exercises for spinal degeneration, including 
supine chin tuck head lift rotation, dead bug unilateral 
isometric hold, pilates saw, catcow full spine, wall angel, 
quadruped neck flexion/extension, adductor open book, 
side plank hip dip, bird dog hip spinal flexion, and wind-
mill single leg (Table 1 and Fig. 2) [16–20]. Each exercise 
specifically targets a distinct spine segment or the entire 
spine from a clinical rehabilitation perspective.

From a kinematic standpoint, each exercise engaged 
one or more movements, with specific human segments 
identified as active components. These active segments, 
coupled with alternative movements, form the founda-
tion for parameter measurement. For instance, in the 
supine chin tuck head lift rotation, the active segment is 
the head, and the two alternative movements are cervical 
spine rotation and flexion/extension.

It’s worth noting that the wall angel exercise engages 
the cervical and thoracic spine, while the active seg-
ment and movement are associated with upper arm 
and shoulder abduction/adductionâ€”segments not 
directly connected to the spine. However, owing to the 
close relationship between shoulder muscle groups and 
the cervical and thoracic spine, the wall angel exercise 
proves beneficial for enhancing upper spine mobility, 
potentially alleviating pain associated with spine degen-
eration [23].
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Movement selection
Before delving into the evaluation of rehabilitation 
exercises, careful consideration of the parameter(s) to 
be measured is paramount. Our choice of a two-IMU 
system strikes a balance between information richness 
and user-friendliness, allowing us to measure at least 
one movement without burdening users with the com-
plexity of multiple sensors during telerehabilitation.

Certain rehabilitation exercises, such as pilates saw, 
wall angel, quadruped neck flexion/extension, and side 
plank hip dip, predominantly involve one movement 
each, while others encompass multiple movements 
(Fig.  2). Selecting the most relevant movement for 
assessing rehabilitation exercises is pivotal for minimiz-
ing the required IMUs.

Our movement selection adhered to the following 
principles:

– The motion range of the movement should be 
extensive enough to be measured by IMUs;

– The movement should be related to the target spine 
segment;

– The movement should be related to the active seg-
ment.

For example, in the case of supine chin tuck head 
lift rotation targeting the cervical spine, the alterna-
tive movements are cervical spine rotation and flexion/
extension. Given the broader motion range of cervical 
spine rotation compared to flexion/extension, we opted 
to measure the neck rotation angle. IMUs strategically 
placed on the head and thorax were used to estimate 
neck rotation angle. Similar considerations guided the 
determination of the kinematic angle to be measured 
(Table 1).

Fig. 1 Proposed IMU-based telerehabilitation system. IMU sensors, worn by the user, connect to the cellphone via Bluetooth. The IMU signal 
serves for both IMU location identification and angle estimation. The estimated angle is then utilized for real-time feedback and offline evaluation. 
Detection of incorrect IMU placement prompts user alerts to ensure accurate monitoring
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Fig. 2 Selected rehabilitation exercises for evaluation. The motion range and primary movement for each exercise were illustrated. Arrows 
and dotted lines indicate the direction of motion and rotation axis, respectively. In supine chin tuck head lift rotation (SCTHLR), two movements, 
neck flexion/extension and head rotation, are performed sequentially. Other exercises feature parallel movements, such as shoulder flexion and hip 
flexion in the dead bug unilateral isometric hold, making transitions between solid and transparent poses. The repetitive nature of all movements 
constitutes a full cycle, encompassing the transition from a solid pose to a transparent pose and back to a solid pose
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Data collection
Measurement system
Xsens MT system (MTw, Xsens Technologies, Nether-
lands) was used as the reference signals [24–26]. Custom-
made IMU sensors (BNO055 IMU and STM32L475RCT6 
MCU) were 9-axis IMUs, comprising a 3-axis accelerom-
eter, a 3-axis gyroscope, and a 3-axis magnetometer. Both 
Xsens MT system and custom-made IMUs recorded data 
at 100Hz. The signal from the Xsens sensors was trans-
mitted to a signal receiver and then sent to a computer 
for storage. Simultaneously, the custom-made IMU sen-
sor was connected to a smartphone via Bluetooth, and 
the data was stored there.

Each sensor sends a 9-axis data frame with a sequen-
tially increasing package number. The package numbers 
are used to synchronize between sensors and to check 
Bluetooth data loss. When two IMUs are connected to a 
smartphone using our custom application, the package 
numbers of both sensors are reset to zero. If the pack-
age number of one frame is not adjacent to the previ-
ous one, it indicates one or several lost frames, which 
are interpolated with the immediately preceding frame. 
The Received Signal Strength Indicator (RSSI) measures 
− 58.8 dBm when the sensor is placed 5 m away from the 
smartphone. The package loss rate at a distance of 3 m is 
0.42%.

Experimental protocol
Twelve healthy subjects (mean age 23.4 ± 1.3 years, 
height 176.7± 6.7 cm, weight 65.4 ± 4.5 kg, all males) 
participated in this study. All subjects provided informed 
consent before the experiment, and the research pro-
tocol adhered to the principles of the Helsinki Declara-
tion. Approval for the experiment was obtained from the 
ethics committee of Shanghai Jiao Tong University (No. 

E2021013P). In this study, subjects were recruited to 
gather data for system development.

Before wearing the IMU sets, all sensors were placed 
on a table for 10 seconds to record gyroscope bias, a 
parameter later compensated during subsequent analysis.

Each IMU was secured by a research facilitator with 
Velcro straps. Before initiating motion in each trial, 
subjects held the initial pose statically for 3 s to estab-
lish IMU-to-segment alignment (Equation  1). Subject 
performed five repetitions of each of the 10 exercises. 
Adequate breaks were provided during trials to prevent 
muscle fatigue.

IMU locations identification
The automated identification of IMU locations reduces 
the likelihood of improper IMU placement, particularly 
during transitions between exercises. Patients with spe-
cific spinal segment degeneration may be prescribed mul-
tiple rehabilitation exercises, necessitating adjustments 
to IMU locations when transitioning from one exercise to 
another (see Table  1). IMU location detection serves to 
remind users when the placement does not align with the 
current exercise being performed.

The process of identifying IMU locations involves 
several steps: sliding window analysis, feature extrac-
tion, feature selection, normalization, and classification 
(Figs. 1 and 4).

Classification model
We employed Linear Discriminant Analysis (LDA) as 
the supervised learning algorithm for IMU location 
identification. LDA functions as a linear classifier, aim-
ing to maximize the separation between the means of 
distinct classes while minimizing the variance within 
each class. Its linear nature demands relatively modest 

Table 1 Spine-related exercises for evaluation

1Columns “Spine Segments”, “Kinematic Angle Estimation”, and “2 IMU locations” indicate the spine segments targeted by each exercise, the angles to be measured, 
and the locations of the 2 IMUs, respectively
2CS cervical spine, TS thoracic spine, LS lumbar spine, WS whole spine

Exercises Spine segments Kinematic angle 2 IMU locations

Supine chin tuck head lift rotation CS Neck rotation Head, thorax

Dead bug unilateral isometric hold LS Hip flexion Thigh, pelvis

Pilates saw TS and LS Thorax rotation Thorax, pelvis

Catcow full spine WS Neck flexion Head, pelvis

Wall angel CS and TS Shoulder abduction Upper arm, thorax

Quadruped neck flexion/extension CS Neck flexion Head, thorax

Adductor open book CS and TS Thorax rotation Thorax, pelvis

Side plank hip dip LS Low back abduction Thorax, pelvis

Bird dog hip spinal flexion LS Hip flexion Thigh, pelvis

Windmill single leg LS Lumbar flexion Thorax, pelvis
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computational resources [27, 28] and facilitates seam-
less implementation and deployment on smartphones 
[29, 30]. The utilization of LDA ensures precision and 
enhances the efficiency of IMU location identification, 
making it a suitable choice for our dynamic real-world 
rehabilitation scenarios. Consequently, we exclusively 
conducted experiments using LDA.

Feature extraction and normalization
Since IMU location identification was intended to occur 
at the initial stage of real-world rehabilitation exercises, 
only the data from the first ten seconds (including the 
calibration process) of each experimental trial were uti-
lized for model training. This approach also ensures a 
balance of samples for various exercises.

The IMU data underwent segmentation into 3-s 
windows, each consisting of 300 data points, with a 
0.01-s stride (equivalent to 1 data point) (see Fig.  4). 
For the initial 10 seconds of a trial, we obtained 
(10− 3)/0.01+ 1 = 701 window. Therefore, a total of 
701× 12× 10× 5 = 420600 windows could be obtained 
for all twelve subjects, ten exercises, and five IMU loca-
tions. This segmentation allows for efficient processing 
without being excessively long or too short for adequate 
information for IMU location identification [31].

Following segmentation, both time-domain and fre-
quency-domain features were extracted from each win-
dow. Time-domain features included mean, standard 
deviation, root mean square, median, skewness, kurto-
sis, waveform length, zero crossings, slope sign changes, 
mean absolute value, interquartile range, and median 
absolute deviation. Additionally, the frequency-domain 
featureâ€”spectral peak frequency and spectral peak 
indexâ€”contributed, resulting in a total of 14 features 
for one IMU channel within a window. Consequently, 
the feature count was 14 × 6 = 84 for one IMU window 
(3-axis accelerometer and 3-axis gyroscope). The labels, 
representing the five IMU locations, were numerically 
encoded from 1 to 5 for classification purposes.

The extracted features were subsequently normalized 
to follow a standard normal distribution, with a mean of 
0 and a standard deviation of 1, facilitating faster training 
and convergence.

Feature selection
Initially, all features were included in the training and 
testing of the classification model. However, recogniz-
ing the imperative for real-time efficiency, we refine the 
feature channels to reduce the time for feature extraction 
and classification. Features with marginal impact on clas-
sification underwent systematic pruning, facilitating a 
streamlined and low-delay classification process.

In pursuit of this efficiency, an eXtreme Gradient 
Boosting (XGBoost) classifier was employed to select 
dominant feature channels. Through its boosting algo-
rithm, XGBoost iteratively constructed a series of weak 
learners, each rectifying its predecessor’s errors. Addi-
tionally, XGBoost’s capability to assign importance scores 
to each feature channel helps to select feature channels. 
This feature ranking ability enabled an assessment of fea-
ture relevance, facilitating the selection of the most influ-
ential channels for our classification task. Leveraging this 
property, less crucial channels were pruned, while those 
with the highest importance were retained, resulting in 
a refined set of feature channels tuned for IMU location 
identification. Although reducing the number of features 
may entail the loss of some useful data information for 
classification, it represents a balance between precision 
and real-time efficiency. In this study, we opted to select 
the most crucial features, whose cumulative impor-
tance contributed to 90% of the total importance, for 
classification.

Training and test strategy
To rigorously assess the performance of the classification 
model, we employed the 80/20 split strategy. Data from 
nine subjects were selected as training data, while data 
from the remaining three subjects were allocated as test 
data. To mitigate accidental biases, we randomly divided 
the subjects into training and test sets ten times.

Evaluation
The classification accuracy was calculated for each IMU 
location, defined as the ratio of correctly classified win-
dows to the total number of windows. The overall classifi-
cation accuracy was determined by computing the mean 
value across all ten iterations and ten exercises. Addition-
ally, confusion matrices were generated to delve deeper 
into the model’s effectiveness at each IMU location.

Angle calculation
Compensating for the gyroscope bias is a prerequisite 
before utilizing the original IMU data, and we achieved 
this through static calibration to calculate the gyroscope 
bias.

The angle calculation procedure unfolds in four steps 
(Fig. 3) [32–34].

First, we computed the orientation quaternions of the 
proximal and distal IMU local coordinate systems at 
each time frame ( GqqqIMU_Proximal and GqqqIMU_Distal ) using 
the accelerometer, gyroscope, and magnetometer data. 
To achieve this, we employed the direct complementary 
filter, a nonlinear observer on SO(3), to effectively fuse 
the IMU data [35, 36].
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Second, the orientation of proximal and distal seg-
ments with respect to the global coordinate system was 
calculated through the equation:

where GqqqSegment is the orientation quaternion of the seg-
ment with respect to the global coordinate system (G), 
GqqqIMU is the orientation quaternion of the adhering IMU 
with respect to the global coordinate system calculated 
in the previous step, IMUqqqSegment is the IMU-to-segment 
alignment transformation, assumed to be invariant dur-
ing an exercise trial. Various methods, such as static 
calibration [37] and functional calibration [38], can be 
employed to calculate IMUqqqSegment . In our study, the ini-
tial pose of each exercise was maintained as static for 3 s, 
during which the data was used to calculate the IMU-to-
segment alignment transformation. This static calibration 
simplified the procedure as it did not require the subject 
to maintain specific poses like N-pose[37] or T-pose [39]. 
The calibration method used didn’t necessitate the user 
to hold a distinct pose and then transition to the initial 
pose. Additionally, this method maintains the initial pose 
as the zero-point, providing an intuitive reference.

Third, the joint quaternion qqqJoint was calculated from 
the relative orientation of adjacent segments:

(1)GqqqSegment =
GqqqIMU ⊗

IMUqqqSegment

(2)qqqJoint = ( GqqqSegmentProximal)
∗

⊗
GqqqSegmentDistal

Here, GqqqSegmentProximal,
GqqqSegmentDistal represent the ori-

entation of proximal and distal segments in the global 
coordinate system (calculated from Eq. (1)).

Finally, we computed the corresponding rotation 
matrix RRRJoint from the joint orientation quaternion qqqJoint , 
and the key parameter of each exercise (i.e., the selected 
kinematic angle to be measured) was obtained from the 
rotation matrix RRRJoint.

The key parameter of each exercise, representing the 
selected movement to be measured, is derived from the 
rotation matrix GRRRJoint by extracting Euler angles using 
the ZXY sequence:

Here, α , β , and γ represent the y-axis yaw, x-axis pitch, 
and z-axis roll angles of the joint connecting the distal 
and proximal segments. Following the coordinate defini-
tion conventions in [40, 41], flexion, rotation, and abduc-
tion correspond to γ , α , and β , respectively.

Deployment
The angle estimation algorithm underwent initial offline 
implementation using MATLAB to validate its feasibil-
ity. Subsequently, it was adapted for real-time imple-
mentation to offer instantaneous measurement for 
telerehabilitation. The offline implementation was con-
ducted on MATLAB 2020a, while the real-time imple-
mentation was performed on Redmi Note 12 (with 
Android 12.0).

The delay in our real-time implementation of angle 
estimation, measured from the collection of IMU data to 
the calculation of the angle (see Fig.  4), was tested and 
found to be 48ms . This delay is even shorter than the 
duration of visual staying (0.1∼0.4s), ensuring the practi-
cality and effectiveness of the system in telerehabilitation 
scenarios. The delay for the IMU location identification, 
measured from the collection of IMU data to the output 
of identified IMU locations (see Fig.  4), was tested and 
found to be 97ms when 36 features were selected.

Following offline training and evaluation, the LDA 
model for the selected features and the corresponding 
feature scaler were deployed on smartphones. To sim-
plify the implementation, the parameters of the LDA 
model (coefficient matrix and intercept vector) and the 
scaler (mean vector and deviation vector) were exported 
and saved in the JavaScript project responsible for gen-
erating the cellphone app. The predicted category y of an 
extracted feature xxx is:

(3)

α = arctan
RRR13

RRR33
,β = arcsin (−RRR23), γ = arctan

RRR21

RRR22
Fig. 3 The procedure for joint angle estimation involves a four-step 
algorithm. Firstly, the orientation of the sensors relative to the global 
coordinate system is estimated. Secondly, calibration is performed 
to determine the relative orientation of human body segments 
in relation to their corresponding IMUs. Thirdly, the relative 
orientation of the distal segment with respect to the proximal 
segment is calculated. Finally, the joint angle is derived 
from the relative orientation. It’s important to note that the fourth 
step is not illustrated in the figure
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Here, xxx,µµµ,σσσ ∈ R
d represent the extracted feature vector, 

mean values of the scaler, and standard variance of the 
scaler, respectively, where d is the dimension value (36 
in this study). WWW ∈ R

l×d ,bbb ∈ R
l denote the weights and 

intercepts of the LDA, where l is the number of output 
categories (5 in this study). p ∈ R

l is a vector where i-th 

(4)
ppp = Softmax W ·

xxx −µµµ

σσσ
+ bbb

y = argmax(ppp)

element represents the probability that xxx belongs to cat-
egory i.

Results
Classification results
To evaluate the LDA model, we employed an 80/20 split 
strategy. In each training and evaluation cycle, data from 
nine subjects were utilized as training data, with the 
remaining data from three subjects serving as testing 

Fig. 4 a Slide window on accelerometer and gyroscope of one IMU. b Delay definitions of angle estimation and IMU location identification
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data. The average results across ten exercises and ten 
random splits were depicted in the form of a confusion 
matrix (Fig. 5). The overall average classification accuracy 
was found to be 95.60%. These results demonstrate a sig-
nificant level of accuracy.

Given the computational load associated with utiliz-
ing all 84 feature channels for real-time classification, 
we opted for XGBoost to identify the most influential 

channels. To account for variance in feature importance 
when datasets change, we employed the entire dataset 
for the XGBoost feature selection process. Following the 
ranking of feature channels based on importance, we 
selected the top 36 channels, whose cumulative impor-
tance amounted to 90%, for retraining and testing the 
LDA model. The effectiveness of XGBoost-selected fea-
tures was compared with 36 randomly selected features 
(see Fig.  6). XGBoost feature selection demonstrates 
competence in identifying dominant feature channels.

A marginal decrease in classification accuracy was 
observed, with the overall mean accuracy dropping from 
95.60 to 92.97% (Fig.  7). Slight decreases were noted 
across all IMU locations. The results of the One-way 
Analysis of Variance (ANOVA) indicated that no signifi-
cant difference was observed in the upper arm and tho-
rax IMUs ( p > 0.05).

The scree plot illustrating the importance of features 
was observed (see Fig.  8). The selected features com-
prised mean absolute value (6 channels), median (6 
channels), mean (5 channels), index of spectral peak (4 
channels), spectral peak frequency (3 channels), root 
mean square (3 channels), waveform length (3 channels), 
slope sign changes (2 channels), interquartile range (2 
channels), median absolute deviation (1 channel), and 
standard deviation (1 channel) (see Appendix).

Incorporating the entire process, encompassing fea-
ture extraction and model prediction, the computational 
time for selected features decreased from 212 to 97ms 
(a 54.2% reduction) on our utilized smartphone. This 

Fig. 5 Normalized confusion matrix illustrating the average 
classification accuracy and standard deviation over ten randomly 
split datasets, encompassing all ten exercises. The mean classification 
accuracy was calculated to be 95.60%

Fig. 6 Normalized confusion matrix illustrating the average classification accuracy based on the selection of 36 features. a Results from the 36 most 
significant feature channels identified by XGBoost. b Results from a randomly selected subset
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enhancement in computational efficiency notably miti-
gated delays, ensuring smoother system operation. Such 
strategic feature selection not only improves the effi-
ciency of real-time exercise classification but also pre-
serves overall accuracy.

Angle estimation results
The angle estimation results obtained from the IMU-
based method were compared against the reference. 
Mean absolute error (MAE) was used as the metric for 
the angle estimation of our proposed system (Fig.  9). 
An example of the angle estimation results (Fig.  10) 

depicts the wall angel during a five-loop trial. The ini-
tial smooth period represents the static pose for about 
3 s, which is crucial for obtaining the initial pose. In 
this trial, the mean absolute error (MAE) for the IMU-
based angle estimation is 2.43◦ . This metric quantifies 
the disparity in the angles estimated by the custom-
made IMUs and the reference.

The collective MAE, peak error, and mean velocity 
error across all trials were 2.59± 0.93◦ , 0.97± 5.62◦ and 
6.90± 4.75◦/s , showcasing overall accuracy. The maxi-
mum and minimum MAE values were 8.60◦ and 0.36◦ 
respectively. These results underscore the high preci-
sion of the IMU-based spine angle estimation method, 

Fig. 7 Comparison of classification accuracy among different feature 
sets. All features, features selected by XGBoost, and features randomly 
selected were used to train the LDA model separately. XGBoost 
reduced the feature channels from 84 to 36, with an average accuracy 
decrease from 95.60 to 92.97%. The accuracy for randomly selected 
36 features was 86.03%

Fig. 8 The sorted importance of feature channels. The thirty-six 
most important feature channels were selected, whose accumulative 
importance was up to 90%

Fig. 9 Mean absolute error (MAE) of angle estimation across all 
subjects and all exercises. The maximum and minimum MAE values 
were 8.60◦ and 0.36◦ respectively

Fig. 10 Representative trial showing the angle estimation of supine 
chin tuck head lift rotation. The mean absolute error (MAE) was 2.43◦
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effectively validating its real-time applicability during 
rehabilitation exercises.

Angle estimation accuracy for each exercise
The accuracy of the IMU-based angle estimation 
method was systematically assessed for each specific 
exercise. Across twelve subjects, the MAEs for each of 
the ten exercises were calculated (Fig.  11). Across all 
ten exercises, the mean and median MAE values were 

2.59± 0.88◦ and 2.2± 0.71◦ respectively, with the maxi-
mum value of and 3.90◦.

ANOVA indicated a non-significant difference in the 
angles estimated by the IMU-based method across the 
diverse set of rehabilitation exercises ( p > 0.05 ). This 
finding underscores the inter-exercise reliability of our 
approach, emphasizing its consistent accuracy across a 
spectrum of rehabilitation exercises.

Angle estimation accuracy for each subject
The accuracy of the IMU-based angle estimation method 
was also individually assessed for each subject to inves-
tigate its precision across diverse individuals. The MAEs 
across ten exercises for each subject were calculated 
(Fig.  12). Across twelve subjects, the mean and median 
MAE values were 2.2± 0.64◦ and 2.59± 0.54◦ respec-
tively, with maximum values of 3.77◦.

ANOVA revealed a non-significant difference in the 
angles estimated by the IMU-based method across sub-
jects ( p > 0.05 ). This highlights our approach’s robust-
ness and inter-subject reliability, emphasizing its 
consistent accuracy across a diverse population.

Discussion
This study introduces an IMU-based telerehabilitation 
system designed for spine degeneration. Initially, ten 
commonly prescribed exercises targeting spine-related 
rehabilitation were chosen, and the specific angle to be 
measured for each movement was identified. The identi-
fication of IMU locations was accomplished through the 
implementation of a LDA model. Additionally, feature 
selection, employing XGBoost, was applied to diminish 
the number of features, thereby reducing computational 
demands.

The performance of our IMUs closely matched the 
reference system [24–26], showing that the system was 
capable of being used for spine angle estimation. The 
consistently high accuracy observed in angle estimation 
across various professional exercises and subjects indi-
cates the reliability and robustness of the angle estima-
tion algorithm. The average MAE across all subjects was 
2.59◦ and the range of errors was 0.42◦ to 8.61◦ , suggesting 
that the IMU system was capable of providing reasonable 
measurements. It is a promising tool for monitoring and 
guiding rehabilitation exercises. The delay of 48ms in our 
real-time implementation of angle estimation ensures 
timely feedback, meeting the criteria for practical use. In 
sum, the IMU-based method emerges as a valuable asset 
for advancing rehabilitation technology.

Fig. 11 MAE of angle estimation for each of the 10 spine-related 
exercises. The overall average MAE across all ten exercises 
was 2.59± 0.88

◦

Fig. 12 MAE of angle estimation for each of the 12 subjects. The 
overall average MAE across all 12 subjects was 2.59± 0.54

◦
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The versatility of our system is further underscored 
in the evaluation of IMU identification classification. 
The LDA model exhibits satisfactory accuracy in distin-
guishing between different IMU locations. In our strate-
gic feature selection process, we reduced the original 84 
channels to the top 36, accounting for 90% cumulative 
importance. This reduction had little impact on the clas-
sification accuracy of most exercises. This computational 
efficiency is crucial for real-world deployment, ensuring 
the system’s practicality.

Instead of using a full-body motion capture system 
[44–47], we opted for a two-IMU system to balance 
information richness and user-friendly application. We 
have endeavored to ensure right placement of the IMUs 
through automated identification of their locations. 
Although this system holds promise for application in 
patient settings, further research is warranted.

In comparison to prior studies using IMU-based 
methods for spine angle estimation [11–14, 42, 43, 48], 
our evaluation extends to a broader range of rehabilita-
tion exercises, including a set of commonly clinically 
prescribed exercises for cervical, thoracic, and lumbar 
spine rehabilitation (Table  2). The real-time implemen-
tation of the angle estimation algorithm and integration 
of a machine learning model for IMU location identifica-
tion further enhance the system’s applicability in real-life 
scenarios.

Despite achieving high overall accuracy in angle esti-
mation, it is crucial to acknowledge the observed vari-
ability in accuracy in several trials. Several factors may 
contribute to this variability: (1) changes in the alignment 
transformation between IMU and segment during the 
exercise, (2) the complexity of the exercise, (3) variability 
in individual performance, and (4) the potential impact of 
sensor placement. Understanding these factors is vital for 
refining the system and addressing challenges associated 
with real-world applications. Additionally, the observed 
variability in the classification accuracy of individual 
exercises suggests that the complexity of the exercise and 

individual performance variations contribute to classifi-
cation challenges. Further exploration and strategies to 
mitigate these variations will be instrumental in enhanc-
ing the robustness and reliability of the classification 
model.

It is essential to acknowledge the limitations of the 
study. The evaluation was conducted with a relatively 
small sample size, and the inclusion of a more diverse 
population could provide additional insights into the 
system’s performance. Additionally, the study focused 
on specific rehabilitation exercises, and the system’s 
generalizability to a broader range of exercises warrants 
exploration. Also, the system’s performance in real-life 
scenarios, such as telerehabilitation for patients, remains 
to be evaluated. The system was built and evaluated 
based on healthy individuals. The performance is likely 
to diminish for patients owing to the distinction between 
patients and healthy people. Transfer to patients requires 
corresponding adjustments for training the classification 
model to suit their characteristics.

Several participant factors could influence system usa-
bility, ease of sensor placement, and ease of software use 
including age, experience with the technology, and famil-
iarity with the sensors which were beyond the scope of 
this study but should be carefully studied in future work.

Conclusion
In conclusion, this study successfully validated the real-
time IMU-based spine angle estimation approach dur-
ing rehabilitation exercises. The proposed 2-IMU system 
effectively estimated critical parameters for a diverse 
range of rehabilitation exercises and provided real-time 
IMU location identification. The angle estimation algo-
rithm showcased low delay and high accuracy across 
various exercises and subjects, positioning it as a prom-
ising tool for monitoring and guiding rehabilitation pro-
tocols. The integration of a machine learning model for 
IMU location identification further enhances the system’s 
adaptability to real-life scenarios.

Table 2 Comparison of IMU-based spine angle estimation studies

Study Real-time? How many exercises? Rehabilitation exercises?

Franco1 et al. [11] No 3 Functional movements

Graham et al. [12] No 3 Functional movements

Beange et al. [13] No 1 Functional movement

Oâ€™Grady et al. [14] No 3 Functional movements

Petropoulos et al. [42] Yes 1 Functional movement

Darragh et al. [43] No 1 Rehabilitation movement

Proposed study Yes 10 Rehabilitation movements (Fig. 2)
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Moving forward, the system holds potential for refine-
ment and expansion to encompass a broader spectrum 
of rehabilitation exercises, catering to the diverse needs 
of patient populations. Collaborative endeavors with 
healthcare professionals and integration into telerehabili-
tation platforms could facilitate its seamless adoption in 
clinical settings. The proposed system could be a valuable 
asset in advancing rehabilitation technology.

Appendix A: feature channels selected by XGBoost

Importance rank Sensor Axis Feature

1 Gyroscope y Spectral peak frequency

2 Gyroscope y Mean absolute value

3 Gyroscope x Median

4 Gyroscope y Root mean square

5 Gyroscope x Mean absolute value

6 Gyroscope z Interquartile range

7 Gccelerometer y Spectral peak frequency

8 Accelerometer z Waveform length

9 Gyroscope y Spectral peak index

10 Gyroscope z Median absolute devia-
tion

11 Accelerometer z Spectral peak frequency

12 Accelerometer y Spectral peak index

13 Accelerometer y Root mean square

14 Gyroscope z Root mean square

15 Accelerometer z Mean absolute value

16 Gyroscope z STD

17 Gyroscope z Median

18 Gyroscope z Waveform length

19 Accelerometer z Median

20 Gyroscope x Mean

21 Accelerometer x Mean absolute value

22 Accelerometer x Median

23 Accelerometer y Median

24 Gyroscope z Spectral peak index

25 Accelerometer y Mean absolute value

26 Gyroscope x Slope sign change

27 Gyroscope y Slope sign change

28 Accelerometer x Waveform length

29 Gyroscope z Mean absolute value

30 Gyroscope x Spectral peak index

31 Accelerometer z Mean

32 Accelerometer y Interquartile range

33 Accelerometer y Mean

34 Gyroscope y Mean

35 Accelerometer x Mean

36 Gyroscope y Median
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