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Abstract
Background In the practical application of sarcopenia screening, there is a need for faster, time-saving, and 
community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in 
community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could 
potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted 
from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel 
feature importance estimation method.

Methods A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through 
the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, 
participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six 
forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% 
MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features 
plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), 
a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic 
participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance 
during classification.

Results Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic 
participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity 
and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and 
GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet 
transform coefficients (CWT_kurtosis) had the highest feature impact scores.

Conclusion This study proposed a method for community-based sarcopenia screening using sEMG signals of 
forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the 
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Introduction
With the advancements in science, healthcare technol-
ogy, and socioeconomic development, people worldwide 
are experiencing increased lifespans [1]. In 2019, approx-
imately one billion individuals globally were over the age 
of 65, and it is projected to reach 1.4 billion by 2030 and 
2.1  billion by 2050 [2]. Unfortunately, older individuals 
are often assumed to be frail or dependent and a bur-
den on society. The increase in the elderly population 
has generated a growing demand for healthcare services, 
leading to difficulties in allocating medical resources [3]. 
Consequently, there has been a significant emphasis on 
understanding age-related chronic diseases and devel-
oping innovative approaches to tackle these challenges, 
thereby alleviating the strain on healthcare systems. One 
of the age-related musculoskeletal diseases is sarcopenia, 
which is characterized by a progressive and generalized 
loss of skeletal muscle, resulting in accelerated loss of 
muscle mass and physical function [4]. It has been dem-
onstrated by researchers that sarcopenia leads to serious 
healthcare issues since it is associated with increased 
adverse outcomes including falls, functional decline, 
frailty, and mortality [5]. Current research indicates that 
the global prevalence of sarcopenia ranges from 10 to 
16% [6] and even up to 29% in some communities [7]. 
Among individuals aged 80 years and above, this rate can 
be up to 50% [8].

According to the revised consensus published by the 
Asian Working Group for Sarcopenia in 2019 (AWGS 
2019) and the European Working Group on Sarcopenia 
in Older People (EWGSOP), the diagnosis of sarcope-
nia requires measurements of a combination of muscle 
mass, muscle strength, and physical performance [5, 9]. 
Currently, there are four commonly used techniques for 
estimating muscle mass: bioelectric impedance (BIA), 
dual-energy X-ray absorptiometry (DXA), computed 
tomography (CT), and magnetic resonance imaging 
(MRI) [10–12]. However, DXA and BIA are more widely 
used [4], and DXA is considered the gold standard for 
measuring lean body mass [13]. The need for profes-
sional operation, high cost, and lack of portability with 
DXA restricts its practical application in community set-
tings. On the other hand, due to its low cost and ease of 
use, BIA is the most widely used technique in scientific 
research and clinical practice, as well as being a por-
table tool that can be used in various settings, including 
community settings [14]. Nevertheless, when estimating 
muscle mass using BIA, there is a significant individual 
prediction error [15, 16]. Different from AWGS, the 

EWGSOP uses low muscle strength as the primary diag-
nostic criterion for sarcopenia [5]. It is recommended to 
use a handgrip test to evaluate skeletal muscle strength 
in individuals with sarcopenia [9]. The shift in focus from 
low muscle mass to low muscle strength sarcopenia diag-
nosis is supported by evidence including that low grip 
strength is associated with repeated falls [17], low grip 
strength is shown to be a stronger predictor of cardiovas-
cular mortality than blood pressure [18], and that both 
low grip strength and leg extensor strength were associ-
ated with impaired mobility [19]. However, the accuracy 
of the grip strength test results can be easily influenced 
by factors such as the devices used and measurement 
protocols [9]. In conclusion, the current diagnosis pro-
cess of sarcopenia is cumbersome, time-consuming, and 
susceptible to various factors that impede its wider appli-
cations, especially in community settings. Additionally, it 
is not feasible to dynamically monitor and predict mus-
cle function in real-time, limiting its potential in early 
screening and timely diagnosis of sarcopenia.

Sarcopenia is associated with a decrease in muscle 
fiber number along with a reduction in the size, which 
particularly affects type-II fibers [20–22], and is accom-
panied by intramuscular and intermuscular fat infiltra-
tion [23, 24]. Denervation significantly contributes not 
only to the loss of the motor unit (MU) but also to the 
loss of muscle fibers, and with the decrease in the num-
ber of MUs found in aged muscle, there is an increase 
in the size of the remaining MUs, which is an accepted 
mechanism of sarcopenia [25–27]. Activated by effer-
ent neural drive, a motoneuron generates a series of MU 
action potentials (MUAPs), which propagate down to the 
neuromuscular junction (NMJ) and then transmit to the 
muscle fibers. The number of MUs [28], the function of 
NMJ propagation [29], and the innervation of muscle 
fibers [30] are all crucial factors that influence the for-
mation of APs, the special and temporal summation of 
which are also referred to as electromyography (EMG) 
signals. It has been observed that during aging, there is 
preferential denervation of fast fibers with reinnervation 
via axonal sprouting from slow motor neurons, resulting 
in a conversion from type II (fast) fibers to type I (slow) 
fibers [31], and further changes in electrophysiological 
properties [32]. A recent study investigated the MU fir-
ing pattern in pre-sarcopenic senior individuals with low 
skeletal muscle mass but normal physical functions. The 
results showed that MUs of the pre-sarcopenic individu-
als exhibited an abnormal neural input pattern yet other-
wise normal hierarchical pattern [33], which is consistent 

sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP 
model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.
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with the size principle proposed by Hennenman et al. 
[34]. Hu et al. [35] reported that there was no difference 
in MU number and mean firing rate of lower extremity 
muscles among individuals with risk-sarcopenia, healthy 
elderly, and healthy young participants, but the slope of 
mean MU firing rate was significantly higher in the risk-
sarcopenia group compared to the young group. MU 
properties related to MUAP shape variability, such as jit-
ter and jiggle, have been used to evaluate the stability of 
NMJ propagation [36]. Gilmore et al. [37] demonstrated 
that MU number estimates in the lower limb muscles 
were similar between pre-sarcopenic and sarcopenic sub-
jects. However, the level of near fiber jitter and jiggle was 
higher in sarcopenic subjects compared to pre-sarcope-
nic subjects. Overall, EMG could theoretically be used 
to identify electrophysiological abnormalities associated 
with sarcopenia.

Following this approach, if there is discriminative infor-
mation in EMG signals between sarcopenic and healthy 
muscle, machine learning (ML) methods can be applied 
for sarcopenia screening, even detection [38]. However, 
to the best of our knowledge, there is limited research on 
this topic. And our literature search didn’t find an sEMG 
sarcopenia study with upper-extremity muscles, as of 
March 2024. Most related EMG research suffers from 
small sample sizes [38]. Typically, only less than 50 par-
ticipants were investigated in previous sarcopenia detec-
tion research [39], with an obvious imbalance between 
the groups, which would lead to poor reliability of the 
algorithm [38–41]. Hence, for generalization purposes, a 
sufficiently large sample size is necessary. In addition, ML 
methods used in current studies are “black-boxes”, with 
poor or even no interpretability, which further limits 
their clinical value.

Thus, to provide better reliability and interpretability 
of EMG-based sarcopenia screening algorithms, the pri-
mary purpose of this study was to perform sarcopenia 
screening in community-dwelling older adults with a size 
of more than 100 participants and investigate whether 
surface EMG from hand grip could potentially be used to 
detect sarcopenia in the elders using ML methods with 

reasonable features extracted from sEMG signals during 
the community hand grip trials. The secondary aim is to 
provide interpretability of the obtained ML models using 
a novel feature importance estimation method.

Methods
Participants
Community-dwelling older residents (≥ 60 years old) 
were recruited continuously in four different commu-
nities in Chengdu city through recruitment advertise-
ments, from February 2023 to August 2023. The four 
communities were socioeconomically diverse, providing 
educational, economic, and social inclusivity of the par-
ticipant pool. Briefly, inclusion criteria included being 
able to walk without any walking aid; and no treatment 
for sarcopenia before the study. Exclusion criteria were as 
follows: (1) A self-reported history of cancer; (2) Uncon-
trolled or unstable diabetes, (3) Uncontrolled or unstable 
high blood pressure (> 150/90 mmHg); (4) Chronic organ 
failure in the last 5 years; (5) Cognitive disabilities; (6) 
Suffering from severe osteoarthritis. Finally, a total of 
158 participants (Table 1) were included and completed 
all the experimental procedures. After being informed 
of the experimental procedures and associated risks, all 
participants provided written informed consent, and 
the study was conducted in accordance with the decla-
ration of Helsinki and approved by the ethics subcom-
mittee of West China Hospital of Sichuan University 
(WCHSCU_2023_317).

Sarcopenia screening
The diagnostic criteria of AWGS 2019 were applied to 
screen eligible participants [9]. Briefly, the cutoffs for low 
skeletal muscle mass are as follows: < 7.0 kg/m2 in men 
and < 5.7 kg/m2 in women by BIA measurement (InBody 
770, Seoul, Korea). The cutoffs for low muscle strength 
are as follows: < 28 kg in men and < 18 kg in women by 
handgrip strength test using a standard electronic hand-
grip dynamometer (CAMRY, Guangzhou, China). Two of 
the four communities had limited space for testing, and 
to ensure consistency across the experimental protocol, 
the 5-times chair sit-to-stand test was chosen to evaluate 
physical performance, instead of tests that require more 
space. A cutoff of ≥ 12  s was considered to indicate low 
physical performance. A participant would be considered 
to be sarcopenic when he or she has low muscle mass, 
and one or both the other two conditions: low muscle 
strength, and low physical performance. In our study, 
participants were included in the healthy group when 
their muscle mass, muscle strength, and physical perfor-
mance were all within the normal range.

Table 1 Descriptive statistics of all participants represented as 
mean (±SD)
Total (n=158) Male (n=49) Female (n=109)
Age (year) 71.9±7.4 74.2±7.0 70.9±7.4
Heigth (cm) 155.6±8.8 163.5±7.3 152.2±7.1
Weight (kg) 56.6±10.2 62.8±10.3 53.9±9.0
BMI (kg/m2) 23.3±3.1 23.4±2.9 23.2±3.1
GS (kg) 21.8±6.9 29.0±5.8 18.5±4.4
5 TCST (s) 10.7±3.1 10.2±3.0 10.9±3.1
5 MI (kg/m2) 6.1±1.0 7.0±0.8 5.7±0.8
BMI: body mass index; GS: grip strength; 5 TCST, times chair stands test; SMI: 
skeletal mascle index: SD, standard deviation
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Experimental protocol
At the beginning of the experiment, the forearm skin 
of the participant was shaved lightly and wiped with an 
alcohol pad to provide a good condition of sEMG sig-
nal acquisition. Six Ag/AgCl electrode pairs (Kendall 
H124SG, CardinalHealth Inc., Dublin, Ohio, USA) were 
attached to the muscle abdomen of the brachioradia-
lis (BRA), flexor carpi radialis (FCR), flexor digitorum 
superficialis (FDS), flexor carpi ulnaris (FCU), extensor 
carpi ulnaris (ECU), and extensor digitorum (ED), see 
Fig. 1A. The distance between the electrodes was 2 cm. 
A wireless sEMG system (Ultium EMG, Noraxon Inc., 
Scottsdale, USA) was used to record the sEMG signals at 
a sampling rate of 2000 Hz and a gain of 1000.

During the experiment, the participants were seated 
comfortably on a chair facing a computer screen to 
receive visual feedback. The experiment was divided into 
two sessions (Fig. 1B and Fig. 1C). In session 1, the par-
ticipants were instructed to place their arms at the sides 
of their bodies naturally and perform maximal voluntary 
contraction (MVC) by gripping the hand-held dynamom-
eter. The maximum grip force that the participant could 
maintain steadily for 3–5 s was recorded. And each par-
ticipant would repeat MVC contractions three times, 
with sufficient resting between them. The mean force 
value out of the three MVC contractions was considered 
to be the MVC force value of the participant. After a rest-
ing period, session 2 of the experiment would begin. The 
participants were asked to perform a series of sub-max-
imal contractions and track the target force which was 
displayed on the computer screen. At the beginning of 
each sub-maximal contraction, there is a resting period 
of 10 s, with a digital count-down displayed on the com-
puter screen. Data in this resting period served as the 
baseline data with which data from subsequent ‘active’ 
periods would be referenced. A number, either 20% 

MVC or 50% MVC would be displayed next to the count-
down, indicating the target force level to be reached in 
the coming sub-maximal contraction. When the count-
down expired, the participant would then compress the 
dynamometer, reach either 20% MVC force and 50% 
MVC force, and maintain the force level for 10  s. Each 
participant would perform four sub-maximal contrac-
tions at the two levels in random order. And additional 
rest periods between contractions would be provided 
upon requests from the participants to avoid short-term 
fatigue. An entire experiment would last no longer than 
30 min, a duration well-tolerated by all participants.

Data processing and feature extraction
An experienced surface EMG expert inspected the 
acquired data to determine if there were abnormal chan-
nels with excessive noise and data from two participants 
were discarded. The acquired sEMG signals were digitally 
filtered by notch filters of integral multiples of 50 Hz and 
bandpass 3rd order Butterworth filter between 10 Hz and 
500  Hz. A three-second segment from each sub-maxi-
mal contraction was selected for subsequent analysis by 
visual inspection for stationarity. Then, 200-ms data win-
dows were extracted with an increment step of 50 ms. A 
total of nine representative features were extracted from 
the data windows. Six of which were the typical Hudgins 
time-domain features, including root mean square 
(RMS), mean absolute value (MAV), integrated EMG 
(iEMG), waveform length (WL), zero crossing (ZC), and 
slope sign change (SSC) [42]. These features are widely 
used in sEMG signal analysis due to their computational 
simplicity and effectiveness in extracting time-domain 
information. In addition, to encode more comprehen-
sive time and frequency domain information at the same 
time, three time-frequency features were also extracted 
from continuous wavelet transform (CWT) coefficients, 

Fig. 1 Experimental Protocol. (A) The location of the electrodes. (B) Experimental process. (C) Experimental protocols. MVC, maximal voluntary contrac-
tion; BRA, brachioradialis; FCR, flexor carpi radialis; FDS, flexor digitorum superficialis; FCU, flexor carpi ulnaris; ECU, extensor carpi ulnaris; ED, extensor 
digitorum
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namely the absolute power (CWT_power), kurtosis 
(CWT_kurtosis), and wavelet entropy (WE) [43]. First, 
CWT coefficients Ca,b were computed according to 
Eq. (1) at each scale a and time step b [44]:

 
Ca,b = CWT (a, b) =

1√
a

∫ +∞

−∞
x (t)ψ ∗

(
t− b

a

)
dt(a > 0, b ∈ R) (1)

where x (t) is the EMG signal, a function of time t , ψ (t) 
represents the chosen mother wavelet function, and the 
asterisk ∗  indicates the complex conjugate. In this study, 
the Morlet wavelet described in Eq.  (2) is chosen as the 
mother wavelet function for its computational simplicity 
and effectiveness in EMG and EEG signal processing [44]:

 ψ (t) = eiω0te−t22  (2)

where ω0 is the mother wavelet center frequency, and i 
indicates the imaginary part. To capture the distribution 
features of the computed CWT coefficients, at each scale 
a, power is calculated using Eq. (3), then averaged over all 
scales.:

 
CWT_powera =

1

n

n∑

b=1

|Ca,b|2 (3)

where n is the total number of sampling points. 
The scale factor a for this study is chosen as the set: 
{3.6, 4.6, 5.6, . . . , 62.6} to represent effective frequency 
ranges (10–500  Hz) in our study [44]. Using the calcu-
lated CWT_power, wavelet entropy at each scale is com-
puted according to Eq. (4):

 
WE = −

∑

a

halog (ha) , ha =
CWT_powera∑
a CWT_powera

 (4)

and then averaged over all scales. Besides the above com-
monly used CWT features, since the MU activation is 
closely related to the probability distribution of sEMG 
signals [45], we further calculated the kurtosis of the 
probability density function (PDF) of CWT coefficients. 
First, empirical PDF is estimated using the KernelDensity 
function in the scikit-learn package in Python, and then 
the kurtosis of the PDF is computed according to Eq. (5):

 

CWTkurtosis =

[
m(m + 1)

(m− 1)(m − 2)(m− 3)

m∑

i=1

(
Xi − X̄

S

)4
]

− 3(m− 1)2

(m− 2)(m − 3)

 (5)

where m is the total number of discrete points used to 
estimate the PDF (which is 100 in typical settings), Xi  
represents the i-th PDF value, −

X  indicates the sample 

average of PDF values, and S is the sample standard devi-
ation of all X.

After the initial feature extraction, all features were 
channel-specifically normalized using MVC-normaliza-
tion [45]. Specifically, the sEMG features extracted from 
each channels at each contraction level (20% MVC and 
50% MVC) were normalized using the average feature 
values obtained from three MVC tests of the same chan-
nel in session 1.

Statistical analysis
Since unequal variances and deviations from the Gauss-
ian distribution were observed in most of the features 
between two groups based on Levene’s Test for unequal 
variances and Kolmogorov-Smirnov Test for goodness-
of-fit, parametric tests such as the t-test were not appli-
cable. Hence, non-parametric tests were utilized in this 
study. Firstly, to compare the differences in sEMG signal 
characteristics between the sarcopenic group and the 
healthy group, the average of each feature was computed 
across all six channels and all four trials. Then, statistical 
analyses were performed employing the Mann-Whitney 
U Test with a significance level of 0.05. Additionally, to 
compare the differences in sEMG signal characteristics 
at different contraction levels within each group, statis-
tical analyses were performed employing the Wilcoxon 
Matched Pairs Signed Rank Test with a significance level 
of 0.05. All analyses were performed with SPSS version 
25.0 (SPSS Inc., United States).

Classification using machine learning model
To efficiently identify sarcopenic patients using sEMG 
signals, we implemented a voting classification model 
with binary labels: sarcopenic versus healthy [40]. The 
voting classifier is an ensemble ML model that makes 
inferences based on majority voting of several chosen 
ML methods [46]. The advantage of a voting classifier is 
to avoid potential limitations and biases of any single ML 
model by combining the results of several ML models 
through a voting strategy [46]. In this study, a linear ker-
nel support vector machine (SVM) [47], a random forest 
(RF) [48], and a gradient boosting machine (GBM) [49] 
were chosen to ensemble the voting classifier. SVM is a 
classic ML method that classifies data by finding the best 
hyperplane in the feature space that divides the groups; 
it is friendly to small-sized and linearly-dividable samples 
[40]. RF is a tree-based method employing the bagging 
technique; it is also stable against small samples [48]. 
In contrast, GBM is an ensemble learning method that 
employs the gradient boosting technique; it typically per-
forms better on large enough datasets with proper set-
tings of hyperparameters such as the learning rate [49]. 
To combine the merits of these three different ML mod-
els, a weighted soft voting ensemble (SVE) scheme [46] 
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according to Eq. (6) was implemented to predict the out-
put label ŷ  using the above three classifiers, in which the 
voting weight wi for the i-th classifier was determined by 
the Grid-Search method to achieve the highest sensitivity 
in the training process:

 
ŷ = argmax

j

3∑

i=1

wiP i,jwherej = {0,1}  (6)

here, Pi,j  is the predicted probability of the j-th class 
using the i-th classifier. In this task, j = 0  represents 
the healthy group, while j = 1  represents the sarcopenia 
group. Training and testing were done using the five-fold 
cross validation (CV) method on 93 subjects, introduced 
in the next section.

Evaluation and model interpretability
The performance of the voting classifier is evaluated 
using a subject-level five-fold cross-validation scheme to 
assess the stability of the classification model across the 
participant pool [50]. For computational efficiency and 
stability purposes, a Shuffle Split was first employed to 
divide 93 participants into five folds; within each fold, 
the number of sarcopenic participants and the number of 
healthy participants only differed by one or less. Then a 
leave-one-out CV method was performed on each fold. 
Evaluation metrics include accuracy, sensitivity, speci-
ficity, F1-score, and the area under the receiver operat-
ing characteristic (ROC) curve (AUC) [51]. Formulae 
of these indices can be found in references [51], and the 
ROC curve is obtained by pairs of the false positive rate 
versus the true positive rate for different levels of dis-
cretized decision thresholds, which were often set as the 
set of distinct values of predicted probability scores using 
the model, in the range between zero and one [51]. Addi-
tionally, to evaluate the advantages of the voting classi-
fier on performance, each single classifier that ensembles 
the voting was trained and tested alone, and then we 
compared the results with our voting classifier. In addi-
tion to accuracy performance, model interpretability 
and the importance of features are essential for clinical 

applications to interpret the classification model, making 
it more understandable. Recently, the SHapley Additive 
exPlanations (SHAP) method for model interpretation 
was proposed by Su-In Lee et al. [52], using the Shap-
ley value to estimate the impact score of each feature on 
the classification outcomes. By using SHAP method, the 
internal classification process is taken out of the ‘black 
box’, and the contribution of discriminative information 
of different features is analyzed and interpreted. All the 
analysis in this study was implemented using Python ver-
sion 3.11.3, Scikit-learn version 1.3.0, PyWavelets version 
1.4.1, and Shap version 0.42.1.

Results
Participants characteristics
After the data quality check, data from two partici-
pants were excluded (one in each group). Subsequently, 
participants in the non-sarcopenic group with normal 
values for muscle mass, muscle strength, and physical 
performance were assigned to a healthy group (n = 45). 
For some elderly partcipants (n = 64) who meet only one 
of the AWGS diagnostic criteria, although we cannot 
diagnose them with sarcopenia, they cannot be classi-
fied as healthy individuals either, as they have functional 
impairments in terms of muscle strength or muscle mass. 
Data from these 64 participants was not further analyzed 
in the current study. See Table 2 for further details.

sEMG features analysis
The violin plot (Fig. 2) was applied to represent all sEMG 
features between the sarcopenic group and the healthy 
group in both MVC conditions. The Levene?s test con-
firmed the non- homogeneity of the variance (all the 
p-values were > 0.05), and the Mann-Whitney U test 
revealed that statistically significant differences were 
found between the sarcopenic group and the healthy 
group in all sEMG features in both MVC conditions 
with one exception: the WE in 20% MVC level (Fig. 2C). 
Meanwhile, the Wilcoxon Matched Paired Signed Rank 
test revealed that statistically significant differences were 
found within the sarcopenic group and the healthy group 
in all sEMG features between 20% MVC and 50% MVC 

Table 2 Descriptive statistics of the sarcopenia group and the healthy group represented as mean (±SD)
Healthy group (n=45) Sarcopenia group (n=48)
Total (n=45) Male (n=16) Female (n=29) Total (n=48) Male (n=17) Female (n=31)

Age (year) 68.6±5.8 69.7±5.6 67.7±5.9 75.3±7.7 77.9±6.6 73.8±8.0
Heigth (cm) 160.3±8.5 168.5±7.4 155.8±4.9 151.8±9.0 59.5±6.1 147.4±7.1
Weight (kg) 63.7±10.3 70.7±12.1 59.8±6.7 51.7±8.3 57.9±5.0 48.4±7.9
BMI (kg/m2) 24.7±2.9 24.8±2.9 24.7±2.9 22.4±2.5 22.6±1.8 22.2±2.9
GS (kg) 26.6±6.9 34.1±5.4 22.4±3.0 17.7±5.2 23.8±2.2 14.4±2.8
5 TCST (s) 9.9±2.0 10.3±2.7 9.7±1.5 10.6±3.2 10.1±3.3 10.9±3.2
5 MI (kg/m2) 6.9±0.9 7.7±0.7 6.4±0.6 5.6±0.8 6.5±0.3 5.1±0.4
BMI: body mass index; GS: grip strength; 5 TCST, times chair stands test; SMI: skeletal mascle index: SD, standard deviation
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Fig. 2 The violin plot depicting all sEMG features between the sarcopenia group and the healthy group in both MVC conditions. CWT_power (continu-
ous wavelet transform coefficients power), WE (wavelet entropy) CWT_kurtosis (continuous wavelet transform coefficients kurtosis), RMS (root mean 
square), MAV (mean absolute value), iEMG (integrated electromyography), WL (waveform length), SSC (slope sign change), ZC (zero crossing), * p < 0.05. 
The mean and standard deviation of each feature are shown through the circle makers and error bars, respectively
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with exceptions: WE (Fig. 2C) and SSC (Fig. 2H). Inter-
estingly, WL behaved differently from other features that 
reflect EMG energy and complexity, including CWT_
power (Fig. 2A), RMS (Fig. 2D), MAV (Fig. 2E), and 
iEMG (Fig. 2F). The average WL value was higher in the 
healthy group than in the sarcopenic group in both con-
ditions and was also higher in the 20% MVC than in the 
50% MVC within both groups (Fig. 2G). But obviously, 
the sarcopenic group showed a tendency of higher com-
plexity in sEMG signals during muscle contraction, and 
this trend increased with the contraction levels.

Machine learning results
Channel selection and feature selection were first 
employed to improve the model performance. A com-
bination of channels two and three was selected while 
dropping the three least important features that had 

the lowest SHAP values. Then, Grid-Search was imple-
mented to determine optimal hyperparameters and vot-
ing weights. Using the five-fold CV described in Sect. 2.7 
across all 93 participants, the performances of SVM, RF, 
GBM, and the voting classifier are summarized in Table 3 
in the form of mean (±  standard deviation). In general, 
the voting classifier achieves the highest accuracy and 
sensitivity among all the models included. The accuracy 
and sensitivity were 0.73 ± 0.07 and 0.79 ± 0.07, respec-
tively. The ROC curve result of the voting classifier is pre-
sented in Fig. 3 with an AUC score reaching 0.78. In the 
ROC curve, the more the curve approaching the upper-
left corner, making the area under the curve larger, the 
more accurate our model can predict. Since the primary 
goal is to develop an early screening tool, high sensitiv-
ity should be prioritized when considering the balance 
between sensitivity and specificity. As such, the optimal 
operating point (OOP) of ROC was chosen by the rule 
that it has the highest sensitivity while specificity is above 
the 0.65 threshold [39].

Model interpretability
Feature impact scores of the voting classifier estimated by 
the SHAP method using all 93 participants are summa-
rized in (Fig. 4). In the SHAP summary plot, each point 
represents a computed SHAP value for one feature and 
one subject. Features were ordered by their importance 

Table 3 Classification results with five-fold CV represented as 
mean (±SD)

Accuracy Sensitivity Specificity FI-score
SVM 0.67 (±0.04) 0.69 (±0.04) 0.64 (±0.03) 0.67 (±0.02)
RF 0.70 (±0.06) 0.73 (±0.06) 0.64 (±0.03) 0.70 (±0.04)
GBM 0.70 (±0.06) 0.75 (±0.08) 0.62 (±0.04) 0.70 (±0.06)
Voting 0.73 (±0.07) 0.79 (±0.07) 0.67 (±0.07) 0.73 (±0.06)
SVM, support vector machine; RF random forest; GBM, gradient boosting 
machine; CV, cross validation; SD, standard deviation

Fig. 3 ROC-AUC result of the voting classifier. The blue dotted line indicates the chance level (i.e., random guessing), and the red solid line represents the 
ROC result curve of the model. The black point indicates the optimal operating point (OOP) for the model
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score from top to bottom along the vertical axis. Feature 
values were denoted by the color, with higher feature val-
ues being deeper shades of red while lower feature values 
being deeper shades of blue. As mentioned in the pre-
vious section, three features that had the lowest SHAP 
scores were removed to improve the model performance: 
CWT_power at 20% MVC, WE at 20% MVC, and SSC at 
50% MVC. As shown in the graph, WL and CWT_kur-
tosis at both MVC levels acquired the highest impact 
score with an obvious leading gap for predicting the out-
come using our Voting classifier. Notice that WL also had 
the lowest p-value between the groups in our statistical 
analysis. The SHAP result aligns with recent studies on 
how the motor unit activation of abnormal elders can dif-
fer from that of healthy populations, and the difference 
could be visualized in the core shape of the probability 
density function (PDF) of sEMG signals [45]. The inter-
pretation of this result relating to motor units is further 
discussed in the Discussion section below.

Discussion
This study aimed to investigate the possibility of using 
sEMG as an early screening tool for sarcopenia in com-
munity-dwelling settings. A set of features of sEMG have 
been investigated, and significant differences between 

the two groups of community-dwelling older adults were 
identified using some of these features. Hence, it can be 
concluded that these features have the potential to cap-
ture sarcopenia-related differences. Furthermore, a vot-
ing classifier ML model was implemented with these 
features to perform the sarcopenia screening task. Mod-
erate results were presented in identifying sarcopenic 
patients through these features, including a high sensitiv-
ity and acceptable accuracy, which are desirable proper-
ties for early-screening applications. Lastly, the SHAP 
method was performed to estimate features’ impacts on 
predicting classification outcomes.

The current studies on using sEMG for diagnosing sar-
copenia almost focused on lower limb and trunk muscles. 
Habenicht et al. [53] found that the instantaneous median 
frequency (IMDF) values of back muscles changed more 
rapidly with time in younger than in older individuals. A 
smaller percentage of fast fatiguing MUs had resulted in 
the less pronounced IMDF slope change in older indi-
viduals. Tian et al. [54] observed that the RMS of sEMG 
in lower extremity muscles was significantly higher in 
the young compared to the elderly only at 75% of MVC, 
while there was no significant difference at 25% and 50% 
MVC. Our study found that no matter in 20% MVC or 
50% MVC, the time-domain features of forearm muscles 

Fig. 4 SHAP summary plot. Each point represents a SHAP value for a feature and a subject. Vertical axis is the features and horizontal axis is the SHAP 
values. Redder color indicates higher feature values
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in the sarcopenic group were significantly different from 
those of the healthy elderly group. To the best of our 
knowledge, this is the first study to investigate sarcope-
nia through sEMG in forearm muscles. It is worth men-
tioning that during the screening process for sarcopenia, 
we noticed that the decline in upper limb function (i.e., 
GS) in elderly individuals was more significant than the 
decline in lower limb function (i.e., 5 TCST). This may 
suggest that the sEMG signals of upper limbs are more 
sensitive to sarcopenia compared to lower limbs.

With typical adult aging, the number of functional 
MUs is diminished and is likely coupled with incom-
plete compensatory reinnervation of muscle fibers [55]. 
Thus, neuromuscular deficits with aging may be related 
in part to the loss of MUs but also to deficits in neuro-
muscular transmission and MU stability secondary to 
the denervation process [56]. Our findings revealed that 
the sarcopenia group exhibited greater signal complexity 
compared to the healthy elderly group. The higher signal 
complexity may be attributed to altered MU properties, 
resulting in decreased stability of NMJ propagation and 
increasing variation in MUAP size and shape. And fur-
ther may indicate that MUs during sarcopenia have more 
muscle fibers, leading to a higher proportion of innerva-
tion. These findings are consistent with the previously 
described pathological mechanism of sarcopenia [25]. 
However, to provide solid evidence of morphological 
changes in sarcopenia, either invasive EMG techniques 
(such as needle or fine-wire EMG) or high-density sur-
face EMG (HD-sEMG) techniques need to be employed. 
Imrani et al. [57] demonstrated that analysis of HD-
sEMG data from the rectus femoris during sit-to-stand 
trials enables the assessment of muscle aging. Consider-
ing the frail conditions of sarcopenia patients, invasive 
EMG is not practical. Additionally, the current HD-
sEMG electrodes’ conformability and skin preparation 
requirements make their use challenging. Therefore, it is 
imperative to explore novel HD-sEMG electrode materi-
als with enhanced conformability and simplified deploy-
ment procedures [58–60].

Regarding the interpretable ML results, WL and 
CWT_kurtosis turned out to be the most impactful ones 
in our voting classification model among all features. 
The WL mainly reflects amplitude information of the 
signal while the CWT_kurtosis represents the deviation 
from Gaussian distribution after wavelet transformation 
[43]. As in other studies that used ML methods for sar-
copenia screening, amplitude features tend to perform 
well in models like SVM and tree-based models [38, 39]. 
Additionally, the voting classifier combined these mer-
its and even performed better than each of the single 
classifiers regarding sensitivity scores. Besides tradi-
tional time-domain features, differences observed in the 
CWT_kurtosis could be caused by the relation of how 

MU activation patterns affect the probability distribution 
of sEMG signals [45]. As discussed above, sarcopenic 
participants tend to have distinct MU properties during 
contractions compared to healthy participants, and thus 
these property differences could be reflected in the shape 
of PDF of sEMG signals. Our results indeed indicated 
that sarcopenic participants tend to have higher kurtosis 
values, meaning that the PDF deviates further from the 
Gaussian distribution and exhibits a higher level of signal 
complexity.

However, we acknowledge that some limitations of this 
study still exist. Firstly, according to the diagnostic crite-
ria of AWGS, sarcopenia and severe sarcopenia should be 
distinguished, we classified both as sarcopenia, so only a 
binary classification was implemented. Another limita-
tion was the simplified protocol. To perform sarcopenia 
early screening in community circumstances, our experi-
mental protocol was designed to be relatively simple, 
only including upper-limb contraction data. While this 
embraced the benefits of convenient and speedy tests in 
communities, sEMG signals detected through this proto-
col could suffer from homogeneity and low quality, mak-
ing the ML classification task more difficult. Secondly, 
due to strictly screening community-dwelling older 
adults for sarcopenia according to the AGWS diagnos-
tic criteria, there was indeed a significant age difference 
between the healthy group and the sarcopenic group. 
However, the clear age differences between the two 
groups were due to the nature of the disease rather than 
any methodological age-bias. The EMG-based approach 
we proposed, along with the AWGS, is merely used to 
identify differences in muscle mass and muscle function, 
both of which are age-agnostic in nature. Thirdly, for bet-
ter interpretability purposes, complicated deep learning 
methods that can potentially achieve higher classification 
accuracy through learning the features themselves were 
not implemented in this study [38, 39]. Although deep 
learning methods exhibit generally better performances 
in classification, the data size and quality requirements 
exceed those of the currently collected data in communi-
ties. Plus, deep learning methods will sacrifice interpret-
ability since the features are to be learned and extracted 
themselves, providing much less insight into the clini-
cal importance of certain features. Instead, we manually 
extract time-frequency domain features and investigate 
their importance in our classification task. Compared to 
deep learning models for sarcopenia classification, our 
methodology would have lower accuracy performance 
in general [61]. To improve, more potentially sensitive 
features such as complexity, orderliness, and core shape 
modeling could be further investigated and utilized in 
ML. Besides, data augmentation is a great tool to enhance 
and expand the dataset to fit into deep learning methods. 
Despite of lack of interpretability, data augmentation 
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combined with deep learning models might be beneficial 
in achieving better accuracy. Many of the aforementioned 
limitations regarding extracting sarcopenic information 
from EMG stem from the cross-sectional data acquisi-
tion approach. If EMG data could be collected over a lon-
ger time span and outside laboratory conditions, the full 
potential of EMG could be realized. This would necessi-
tate the use of flexible sensing technologies, such as com-
fortable wearable electronics and mobile health devices, 
among others [62, 63].

Conclusions
In the practical application of sarcopenia screening, there 
is a need for faster, time-saving, and community-friendly 
detection methods. This study proposed a method for 
community-based sarcopenia screening based on sEMG 
signals of forearm muscles. The dataset consists of 45 
healthy elderly individuals and 48 elderly individuals with 
sarcopenia. Using a voting classification ML model, the 
accuracy exceeds 70% and the sensitivity exceeds 75%, 
indicating moderate classification performance. Inter-
pretable results obtained from the SHAP model suggest 
that MU activation mode may be a key factor affecting 
sarcopenia.
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