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Abstract

Background Restoring hand functionality is critical for fostering independence in individuals with neurological
disorders. Various therapeutic approaches have emerged to address motor function restoration, with music-based
therapies demonstrating notable advantages in enhancing neuroplasticity, an integral component of neurorehabilita-
tion. Despite the positive effects observed, there remains a gap in the literature regarding implementing music treat-
ments in neurorehabilitation, such as Neurologic Music Therapy (NMT), especially in conjunction with emerging fields
like wearable devices and game-based therapies.

Methods A literature search was conducted in various databases, including PubMed, Scopus, IEEE Xplore, and ACM
Digital Library. The search was performed using a literature search methodology based on keywords. Informa-

tion collected from the studies pertained to the approach used in music therapy, the design of the video games,
and the types of wearable devices utilized.

Results A total of 158 articles were found, including 39 from PubMed, 34 from IEEE Xplore, 48 from Scopus, 37
from ACM Digital Library, and 35 from other sources. Duplicate entries, of which there were 41, were eliminated. In
the first screening phase, 152 papers were screened for title and abstract. Subsequently, 89 articles were removed

if they contained at least one exclusion criterion. Sixteen studies were considered after 63 papers had their full texts
verified.

Conclusions The convergence of NMT with emerging fields, such as gamification and wearable devices designed
for hand functionality, not only expands therapeutic horizons but also lays the groundwork for innovative, personal-
ized approaches to neurorehabilitation. However, challenges persist in effectively incorporating NMT into rehabilita-
tion programs, potentially hindering its effectiveness.
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Introduction

Neurological disorders are a group of heterogeneous
diseases, some of which contribute to gait, balance, and
strength problems that result in a lower quality of life.
They affect nearly one billion people globally and com-
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deterioration in hand function, one of the most complex

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-024-01379-w&domain=pdf

Urbina et al. Journal of NeuroEngineering and Rehabilitation

anatomical structures, and crucial in the human capacity
for executing activities of daily living [3]. Particularly in
individuals with these conditions, due to the significant
deterioration in hand function, the ability to reach, grasp,
release, and move objects effectively is frequently affected
as a result of impairments of upper extremity function:
reduced muscle strength, sensory loss, increased muscle
stiffness, and a lack of motor control [4].

One of the primary methods of recovery after a neu-
rological injury is neuroplasticity [5]. This phenomenon
is defined as the capacity of the human brain to adapt
and reconfigure its neuronal connections in response to
diverse experiences [6]. When changes in the brain are
connected to dysfunctional outcomes for the individual,
it is termed maladaptive neural plasticity [7], such as
neurological disorders. Conversely, when alterations in
the brain are correlated with enhancements in an indi-
vidual’s behavioral capabilities, this phenomenon is
termed adaptive neural plasticity [7]. Some examples of
the appearance of adaptive neural plasticity are during
brain development [8] and motor skills learning [9]. As a
result, ongoing research is dedicated to devising innova-
tive treatments that can enhance neuroplasticity to reha-
bilitate patients with neurological disorders.

Evidence supports the effectiveness of including inten-
sive, repetitive, challenging, and task-specific practices
in interventions aimed at fostering neuroplasticity and
augmenting sensorimotor recovery [10-13]. Further-
more, Petzinger et al. [12] underscore the significance of
cognitive engagement as another critical component for
enhancing plasticity. These authors suggest that cogni-
tive engagement might be improved by feedback, atten-
tional demand through cueing, and motivation. Cueing is
described as utilizing external temporal or spatial stimuli
to aid in initiating and sustaining movement [14].

Standard neurorehabilitation techniques for upper
limb movement primarily depend on physical therapy
[15]. This therapy involves targeted exercises designed
to restore the functioning of the affected portion of the
motor system [16]. Unfortunately, traditional occu-
pational therapy in its current form is a process that
patients dislike going through [17], as it proves difficult
for them to sustain interest in repetitive exercise routines
while simultaneously focusing on the precision of their
movements (e.g., speed, precision, fluidity, and posture)
[18, 19] and assumes greater significance considering that
a patient’s attitude during physical therapy sessions is
closely related to their compliance and success [20]. Chil-
dren are significantly more problematic in this area since
it is challenging to maintain their motivation throughout
protracted therapy sessions [21]. Moreover, heightened
patient motivation in their ultimate objective is a cru-
cial facet of neuroplasticity [22]. Therefore, based on the
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reviewed literature, it can be inferred that effective strat-
egies for improving neuroplasticity in neurorehabilita-
tion should involve elements such as intensity, repetition,
challenges, task-specificity, and cognitive engagement,
among others.

Consequently, in upper limb neurorehabilitation, many
therapy options have emerged. Lin et al. [23] realized a
review of experimented training programs designed to
enhance motor recovery following a stroke; these include
Constraint-Induced Movement Therapy, Electromyogra-
phy biofeedback, Motor imagery therapy, Robot-assisted
training, Virtual reality or gaming, etc. These treatment
options must incorporate the abovementioned compo-
nents to promote neuroplasticity in patients.

In the quest to provide hand neurorehabilitation with
intensive, repetitive, and task-specificity practices for
the patient, taking into account their limitations and
strengths, it is of paramount importance to assess hand
functionality during therapies, as it enables the identifi-
cation of changes indicating neurological decline or the
tracking of responses to treatments [24]. In this regard,
motion capture devices gain greater significance. Cam-
era-based systems and keyboard-based methods, such
as the Musical Instrument Digital Interface (MIDI), are
widely used for movement assessment in rehabilitation.
Notable studies include those employing the leap motion
controller, such as a 2019 study on PD by Ferndndez-
Gonzdilez et al. [25] and a study on stroke by Shah et al.
[26]. Additionally, studies have used keyboards by Alten-
miiller in 2009 [27] and Villeneuve in 2013 [28]. However,
wearable devices distinguish themselves by assessing user
movement and providing assistance during rehabilita-
tion. For instance, wearable robotic devices outperform
traditional therapy due to their ability to provide a higher
number of repetitions in each session, objectively assess
the patient’s performance, reduce the physical strain on
therapists, and enable the monitoring of the patient’s
active participation in the training regimen [29]. In the
same way, non-robotic wearable devices, such as data
gloves, are effective instruments for tracking hand move-
ments and evaluating hand functionality within hand
rehabilitation systems [30].

One practical approach to enhancing cognitive engage-
ment involves the use of auditory cueing. One emerging
rehabilitation process that uses auditory cues is music
therapy, specifically neurological music therapy (NMT)
[31]. NMT is one of the few clinical interventions utiliz-
ing music as a primary rehabilitative stimulus to evoke
diverse brain and motor responses [32]. Additionally,
evidence suggests that musical treatments provide a
therapeutic strategy for recovering functional capacities
in the upper extremities of individuals with neurologi-
cal disorders [33]. This is accentuated by its reliance on
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a research-based system of standardized clinical tech-
niques for sensorimotor, speech/language, and cognitive
training [34].

Thaut and Hoemberg [35] have classified NMT into
twenty techniques, from which three address motor
rehabilitation: Rhythmic Auditory Stimulation (RAS),
Patterned Sensory Enhancement (PSE), and Therapeutic
Instrumental Music Performance (TIMP). RAS enhances
motor control by applying rhythmic sensory stimulation
in rehabilitating movements with inherent biological
rhythmicity, such as gait [35]. Although RAS has been
extensively studied for gait neurorehabilitation, espe-
cially on PD [36], it is also applied to upper limb rehabili-
tation. Ghai et al. [37] realized a systematic review and
meta-analysis to analyze the effects of rhythmic auditory
cueing on arm function recovery post-stroke, in which
beneficial effects on the Fugl Meyer test, Action reach
arm test and Wolf motor time test were reported. PSE
is utilized for movements that do not inherently follow a
rhythm, such as typical arm and hand motions. Besides
employing rhythm and timing as cues for movement, like
RAS, PSE utilizes intricate patterned structures in music
to organize multiple smaller motions to accomplish a
more extensive sequence of movements [35]. An investi-
gation led by Wang et al. [38] within a home-based pro-
gram employing PSE reveals significant enhancements in
the gross motor capacity of children with cerebral palsy.
Likewise, in a recent study by Fan et al. [39], individuals
with PD demonstrated enhanced speed and functional-
ity in upper-limb movements by integrating PSE. Finally,
TIMP uses musical instruments to assist patients in
regaining effective movement patterns and exercising
compromised motor function [35]. According to Pascual-
Leone, playing a musical instrument demands extensive
procedural and motor learning that results in the plastic
reorganization of the human brain, which further sup-
ports the potential of music therapy in rehabilitation [40].
A systematic review performed by Yang et al. in 2022
summarizes the effect of NMT in patients with cerebral
palsy. It suggests the effect of TIMP in enhancing both
gross and fine motor skills, with a particular focus on
improving hand function and the power associated with
piano key pressing [41].

A growing aspect highlighted in Lin et al’s [23] review
of neurological rehabilitation is the incorporation of
gaming, specifically the integration of gamification. Gam-
ification is characterized as implementing game-related
components in settings that extend beyond traditional
gaming contexts [42]. It is suggested that incorporating
gamification into neurorehabilitation has the potential
to tackle various challenges related to the implementa-
tion of intensive, engaging, and cost-effective therapeutic
exercises [43], even promoting motivation [44]. Games
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introduce challenges to patients, transforming rehabilita-
tion into a dynamic and appealing journey [45]. Numer-
ous research groups have advocated integrating video
games as a supplementary tool alongside traditional neu-
rorehabilitation therapy [46].

In summary, there is a need to develop innovative
approaches for delivering therapeutic exercises, espe-
cially for hand neurorehabilitation. Gathering evidence
in rehabilitating neurological disorders and enhancing
neuroplasticity and patient adherence underscores that
interventions integrating repetitive, intensive, challeng-
ing, and motivational tasks are highly likely to improve
functional recovery. For this reason, this narrative review
aims to investigate the effectiveness of music and game-
based approaches, hand functionality assessment, and
assistance by wearable devices in achieving neuroplasti-
city for successful hand neurorehabilitation.

Methods

Literature search methodology

The PRISMA [47] guidelines were followed for this litera-
ture review. This search includes refereed peer-reviewed
journal papers and articles published in conference pro-
ceedings in English from 2000 to 2023, detailing the
utilization of wearable devices, along with video games
incorporating music therapy, to aid in rehabilitating the
hand for individuals with neurological disorders. Four
databases were used to conduct a literature search: Pub-
Med, IEEE Xplore, ACM, and Scopus. The comprehen-
sive search strategy involved a collection of primary
keywords associated with “music’, “rehabilitation”, “hand’,
and “game” (Table 1). Filters were applied for ACM
(research articles) and Scopus (articles and conference
papers).

Eligibility criteria

The inclusion criteria for this review were meticulously
tailored for journal and conference articles. For journal
studies, the focus was on those that delved into neu-
rorehabilitation, featuring interfaces that incorporated
gamification approaches and were tested on defined

Table 1 Literature search methodology

Music musicx OR music-based OR music therapy
AND

Rehabilitation rehabilitation OR physical therapy
AND

Hand hands OR wrist OR fingerk OR upper limb
AND

Game gamesx OR interface OR simulation OR vir-

tual environment
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populations, with an essential component involving
music therapy. On the other hand, for conference papers,
similar criteria were applied, emphasizing the incorpo-
ration of innovative gamification interfaces, empirical
testing on specific populations, and integration of music
therapy in the context of neurorehabilitation. The exclu-
sion criteria, standard to journal and conference articles,
pertained to studies that had not undergone peer review
for publication, were published in languages other than
English, took the form of books or reviews, or deviated
from the primary focus on hand rehabilitation. If multiple
articles by the same author or research group cover simi-
lar topics, only the most recent one will be considered.

Studies selection

The PRISMA guidelines were used to guide the article
selection process. After eliminating duplicates, the titles
and abstracts of the remaining articles were reviewed.
The full texts were read and selected based on the inclu-
sion/exclusion criteria.

Data extraction

The extracted data included author name(s) and year, the
number of test subjects, participant category (with or
without a neurological disorder), details on the technol-
ogy used, and specific information on the type of neu-
rological disorder (such as PD, stroke, etc.). Notably, the
analysis also encompassed the extraction of insights into
incorporating gamification elements and using music
therapy approaches. Wearable technologies reviewed in
the articles were further classified into sensor-based and
robotic devices. Music therapy approaches were further
analyzed to organize into RAS, PSE, or TIMP.

Results

We initially identified 158 articles through our com-
prehensive database search and 35 additional articles
from other sources or secondary searches conducted
by examining reference lists from the articles of interest
and identifying studies that have cited them. After the
initial screening, 41 duplicate entries were eliminated.
Subsequently, we meticulously examined the titles and
abstracts of the remaining 152 articles. Out of these, 89
articles were excluded due to at least one exclusion cri-
terion. In cases where reviewers could not identify any
exclusion criteria during the title and abstract screening,
a thorough full-text review of the article was conducted.
The total number of articles subjected to full-text assess-
ment for eligibility was 63. Following this detailed review,
47 articles were excluded from the study. The remain-
ing 16 articles [48—63] met inclusion criteria and were
included in this systematic review (see Fig. 1 for PRISMA
flowchart). The reviewed studies were eleven journals
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[48-51, 54, 57-60, 62, 63] and five international confer-
ences [52, 53, 55, 56, 61]. A summary of bibliographic
details and key findings from all studies is presented in
Table 2. The main findings feature functional hand move-
ment assessment tests, comprising Box and Block, 9 Hole
Peg, Motor Activity Log Quality of Movement, Jebsen
Test of Hand Function, and Wolf Motor Function Test.
Additionally, Table 3 presents the demographic details
of the studies, while Table 4 provides information on the
technologies utilized.

Participant characteristics

The mean sample size of the included studies was 12
participants (ranging from 1 to 30 participants). Among
these, ten studies exclusively involved participants with
neurological disorders (PwND). Specifically SCI [49]
and stroke [48, 50, 51, 53, 54, 59, 60, 62, 63]. Conversely,
five studies, which were conference articles, exclusively
enrolled participants without neurological disorders
(PwoND). Specifically, two of these studies delved into
upper limb motor impairment [52, 55] and two into
stroke [56, 61]. Only two studies encompassed PwND
and PwoND participants, and they centered around
stroke [57, 58].

Of the eleven studies reporting participants’ ages, those
involving PWND had an average age of 57, while the
PwoND study reported an average age of 30. Notably, the
average age of PwoND participants was lower than that
of PwND participants.

Rehabilitation environment

Most studies were conducted in outpatient rehabilitation
settings for data collection, principally in laboratories
[50, 53, 59] and home-based settings [48, 49, 51]. Moreo-
ver, three studies mention the device’s possible usage in
home settings [55, 56, 62]. Seven studies did not state or
explain the environment in which the research was con-
ducted [52, 54, 57, 58, 60, 61, 63].

Rehabilitation devices
The wearable devices in these studies have a controller
role, as the user’s movements are translated into game
commands that enable user control by accurately detect-
ing and monitoring the motion of patients during exer-
cises. Figure 2 illustrates how the wearable devices were
categorized based on the findings from the studies.
Sensor-based devices utilize various sensors to monitor
and collect data on a user’s motor movements or physi-
cal activities. The primary goal of such devices is to cap-
ture and analyze relevant biomechanical information,
allowing healthcare professionals to assess and track the
progress of individuals undergoing motor rehabilitation.
Most studies employed wearable sensor-based devices:
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Additional records identified through other

sources (n = 35)

Duplicates removed (n =41)

Records excluded by title and abstract

screening (n =89)

Studies excluded (n =47) with reasons

Fig. 1 Prisma flowchart of the results from the literature search

seven employed the data gloves [48-51, 53, 56, 61] and
one an instrumented strap [52]. MusicGlove is the most
frequently used device, and its functionality was assessed
in diverse neurological disorders [48-51, 53]. Mawase
et al. designed a hand-shaped keyboard that allowed
participants to place their hands on the keys, with each
finger gently touching a key. The setup included straps
securing the wrists to a wrist rest and foam armrests sup-
porting the forearms. This arrangement meant that the
only way to generate isometric forces at the fingertips
was through activating the finger muscles [63].

Wearable robotic devices are believed to enhance
therapy with features like intensified sessions, feedback
mechanisms, and tailored patient-specific interventions
[64]. However, the rigid materials, primarily metals, used
in conventional robotics to provide a rigid framework for
assisting in motor function may constrain user motion.
In contrast, soft robotics, crafted from deformable mate-
rials, reduce constraints on motion and joint alignment
issues [64]. Their flexibility and simplicity make them

M
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e |
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—
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w
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Q
3 Studies included in review (n =16)
£
—

lighter and more portable. As robotic devices can assess
hand functionality and assist user movements, they can
be categorized as active or passive. An active system
necessarily includes an actuator and aids the user in per-
forming specific movements. In contrast, passive robotic
devices do not actively assist or resist user movements;
instead, they are often used to support or stabilize a body
part during rehabilitation exercises. Given this definition,
sensor-based devices can be classified as passive since
they primarily monitor user movement and can offer sta-
bility through static supports, though less intricate than
exoskeletons. For instance, the device developed by Eng-
lish et al. [55] is a passive robotic system that employs a
soft exoskeleton to guide the user in focusing solely on
wrist movement. While the arm remains stable, the
device supports and stabilizes the user during wrist exer-
cises. On the other hand, the FINGER (Finger Individu-
ating Grasp Exercise Robot) device is primarily active,
functioning as a rigid exoskeleton. Still, its dual assistive
function will be discussed later.
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References Year Sample size Sex Age Target population
Friedman et al. [53] 2011 10 NR NR Chronic stroke
Friedman et al. [50] 2014 12 F:5, M7 57 +30.5SD Chronic stroke
Sanders et al. [48] 2020 11 NR NR Subacute stroke
Sanders et al. [49] 2022 10 F:2, M8 513+234SD SCI
Zondervan et al. [51] 2016 17 F:7,M:10 59.5 Chronic stroke
Adamovich et al. [54] 2009 4 NR 515 Chronic stroke
Tingzhang et al. [56] 2014 3 (PwoND) NR NR Stroke
Sunetal. [61] 2017 10 (PwoND) NR NR Stroke
English et al. [55] 2017 11 (PwoND) F:5,M:6 25+523SD Upper limb impairment
Xiao et al. [52] 2018 1 (PwoND) NR NR Upper limb impairment
Taheri et al. [57] 2014 16/4 (PwoND) F:5 M:11/F:1,M: 3 578+ 125SD/33.5 +9.4 SD Stroke
Taheri et al. [58] 2012 8/4 (PwoND) F:2, M:6/F: 1, M: 3 56.5+ 13.8SD/335+94SD Stroke
Rowe et al. [59] 2017 30 F: 10, M: 20 57 +13SD Chronic stroke
Thielbar et al. [60] 2014 14 F:5 M:9 57 Stroke
Merians et al. [62] 2002 3 Fi1,M:2 65.3 Stroke
Mawase et al. [63] 2020 18 F:5 M:13 613 +2.1SD Stroke
Table 4 Technical data from wearable devices
References Year Rehabilitated Wearable device Sensor technology System type
target member

Friedman et al. [53] 2011 Fingers MusicGlove (Data Glove) Electrical leads Passive
Friedman et al. [50] 2014
Sanders et al. [48] 2020
Sanders et al. [49] 2022
Zondervanetal. [51] 2016
Adamovich etal. [54] 2009  Fingers CyberGlove(data glove) Bend sensors and motion tracking  Active

and CyberGrasp (exoskeleton)
Tingzhang et al.[56] 2014  Fingers DG5-Vhand (Data Glove) Bend sensors and IMU Passive
Sun et al. [61] 2017  Fingers Data Glove Bend sensors and motion tracking  Passive
English et al. [55] 2017 Wrist Exoskeleton Potentiometer Passive
Xiao et al. [52] 2018 Fingers Instrumented strap FSR and IMU Passive
Taheri et al. [57] 2014  Fingers FINGER - Passive and active
Taheri et al. [58] 2012
Rowe et al. [59] 2017
Thielbar et al. [60] 2014 Fingers Pneuglove (pneumatically actuated glove) Bend sensors Active
Merians et al. [62] 2002 Fingers CyberGlove(data glove) and Rutgers Master  Infrared and Hall sensors Active

II-ND (exoskeleton - pneumatically actuated)
Mawase et al. [63] 2020 Fingers Hand-shaped keyboard FSR Passive

In the literature search, two studies employed soft
robotics devices: one employed an exoskeleton [55],
and one used a pneumatically actuated glove, an active
device. It can be used to extend (or prevent flexion) a
specified digit by inflating an air chamber located on
the palmar side of the digit [60]. Four studies employed
rigid robotic devices: the FINGER robotic exoskeleton

[57-59], and the RMII (Rutgers Master II) pneumati-
cally actuated exoskeleton [62]. The devices developed
by Adamovich et al. [54] and Merians et al. [62] were
the only studies that employed a data glove (Cyber-
Glove) for hand tracking, as well as an exoskeleton
(CyberGrasp [54] and RMII [62]) for haptic effects.
Despite not initiating user movement on their own,
these devices are classified as active because they assist
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Wearable devices

Sensor-based
devices

‘ Data Gloves ’

-MusicGlove
[48-51,53]

-Data Strap [52]

- Hand-shaped
keyboard [63]

- DG5-Vhand [51]
-[61]

-CyberGlove and
CyberGrasp [54]
-CyberGlove and
RMII[62]

Robotic Devices

( Soft Robotics ) ( Rigid Robotics )
- Exoskeleton [55] ‘ FINGER [57,58,59] }
-Pneuglove [60]

Fig. 2 Wearable devices classification

the user by restricting finger flexion, except for the tar-
geted finger, thereby facilitating rehabilitation.

Sensing technologies

Three categories could be used to group the involved
sensing techniques: motion tracking sensors (gyroscope,
magnetometer, accelerometer, infrared and Hall sensors
or inertial measurement unit (IMU)) [52, 54, 56, 61, 62],
flexible sensors [54, 56, 60, 61] and others. The first cat-
egory measures complicated body posture, joint range of
motion, and kinematic characteristics, including orien-
tation, location, and velocity [65]. Regarding the second
category, this sensor’s degree or radius of deformation
results in a proportional resistance output. The last cat-
egory includes: electrical leads [48—-51, 53], force sensing
resistors (FSR) [52, 63], and a potentiometer [55]. Con-
cerning the rigid robotic devices, the FINGER device
[57-59] incorporates an accelerometer, not for assessing
user hand movement, but as an integral component of
the robot control system. This device indirectly measures
the force the subjects apply, capturing the force exerted
against the robot. Furthermore, eight studies employed
more than one sensing technology [52, 54, 56-59, 61, 62].

Gamification approaches

Between the studies, the most commonly used video
games are similar to Guitar Hero®. This popular
rhythm-based video game lets players simulate guitar
playing using a specialized guitar-shaped controller.
Through a scrolling interface showing colored notes

matching different frets on a virtual guitar neck, play-
ers must press corresponding buttons and strum in
sync with the flowing notes, mirroring the rhythm of
songs. The aim is to accurately hit notes to earn points
and progress through songs, with advancing levels
offering more challenging tracks that test players’ coor-
dination, timing, and musical skills. Video games devel-
oped based on Guitar Hero include Frets on Fire (FOF)
[48-51, 53], RoboRockNRoll [55], and games used by
the FINGER robot [57-59] and by Thielbar et al. [60].
These games were adapted to users’ capabilities and
the target rehabilitation member. The RoboRockNRoll
video game is the only one that aims to encourage wrist
movement by encouraging flexion and extension.
Another commonly employed method involved the
use of virtual pianos. Xiao et al. [52], Zhang et al. [56],
and Mawase et al. [63] designed virtual pianos with
comparable attributes, providing visual and auditory
feedback by incorporating markers on the pressed keys
and corresponding musical cues. In contrast to the pre-
viously presented video game-based studies, Adamov-
ich et al. [54], Thielbar et al. [60], Merians et al. [62],
and Sun et al. [61] stand out as the only studies adopt-
ing a virtual reality approach. Adamovich et al. crafted
a piano simulation featuring virtual hands from a first-
person perspective, asserting its superior intuitive-
ness compared to the third-person perspective [54]. It
integrates visual and auditory feedback, such as studies
employing a virtual piano. However, it uniquely incor-
porates haptic feedback facilitated by its exoskeleton.
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Discussion

This paper reviews the featured technologies developed
over the recent years, focusing on music-based games
using wearable devices for rehabilitation. The studies
included in this review demonstrate differences in terms
of the age of participants, target population, sample size,
and sensor technologies employed. Given the lack of
studies that complemented wearable devices with music-
based games for motor rehabilitation therapies, such
diversity in participant characteristics was anticipated.

Home-based rehabilitation and wearable devices
The literature review reveals that a substantial portion of
these investigations have been executed with the aim of
outpatient rehabilitation settings. Their explicit focus on
developing and assessing rehabilitation devices to cater
to home-based usage sets many of these studies apart.
This shift towards a home-based context augments user
engagement and commitment to the therapeutic process
and transcends the spatial limitations imposed by tradi-
tional clinic-centric rehabilitation methodologies [66],
thereby enhancing long-term adherence and fostering a
sense of autonomy in the rehabilitation journey.
Furthermore, it is noteworthy that the rehabilitation
device predominantly featured in these studies is the
MusicGlove. This inclination towards MusicGlove finds
resonance in its precedent evaluation within controlled
laboratory settings, as documented in works such as [50,
53]. Notably, these lab-based evaluations also encom-
passed comprehensive assessment reports, a pivotal ele-
ment that contributes to user acceptance and guides the
development of the device. This meticulous approach to
evaluation has carried over to the home-based studies, as
exemplified by references such as [48, 49, 51], wherein no
adverse effects have been reported.

Rehabilitation approaches performed by wearable devices
Sensor-based devices used in this review are produced
to be compact and light, enabling users to wear them
in various settings without being intrusive and allow-
ing them to interact with the video game appropriately.
As previously noted, these devices employ a passive
rehabilitation approach that does not include actuators
but relies solely on sensing technologies. This category
includes data gloves [48-51, 53, 56, 61] and data straps
[52], which don’t offer movement assistance. In other
words, these devices are designed to assess user per-
formance through sensor technologies and gauge the
impact of the associated video game’s cues, feedback,
and motivation. A noteworthy study of sensor-based
devices is the hand-shaped keyboard developed by

(2024) 21:89
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Mawase et al. [63]. This keyboard offers improved ergo-
nomics by supporting the wrist and forearm, allowing
users to channel force exertion more efficiently into
their fingers.

The only studies that solely use a rigid robotic device
are those by [57-59], which utilize the FINGER device.
This active device aids the user by providing resistance
against the flexion of non-targeted fingers. This device’s
dual rehabilitation approach combines passive and active
elements. It begins with the user independently perform-
ing finger flexion, a passive aspect of the process. Once
the user reaches a specific flexion angle threshold, the
active component is introduced, as the device provides
performance-based assistance from the robot.

Soft robotic devices dont employ traditional rigid
actuators like hydraulic and pneumatic. Instead, they
integrate lightweight actuators sensing technologies for
movement assistance and sensor technology for move-
ment assessment. The exoskeleton developed by [55]
serves a crucial support function, specifically aiding users
in executing wrist movements while maintaining stabil-
ity. The study by Thielbar et al. [60] uses the Pneuglove, a
pneumatic exoskeleton, and the CyberGlove, which was
solely utilized for outcome measurement and not as a
video game interface. The Pneuglove is an active device
that prevents the flexion of a specific finger and initiates
the user’s finger flexion movement independently. These
two modes correspond to the video game’s two game-
play modes: the first mode prevents finger flexion for the
keyboard game, while the second mode, based on Gui-
tar Hero, assists the user in flexing their finger to strike
musical notes. These functionalities enable the device
to support a broader range of movements, aiding users
across different game modes.

Two studies [54, 62] used a combination of sensor-
based and robotic devices, offering an active rehabili-
tation approach by applying pressure on the targeted
finger during key movements. Though they utilized
both devices, they always worked together, unlike the
FINGER device, which combines both active and pas-
sive approaches. The force exerted by the actuators can
be finely adjusted, even down to a minimal level. In such
cases, the assistance can be considered primarily passive,
aligning with an advanced stage of rehabilitation where
the user requires less aid.

Most of the devices focus on finger rehabilitation,
with only one dedicated to wrist rehabilitation [55], and
were tested exclusively on PwoND. Moreover, no device
addressed the rehabilitation needs of both the fingers and
the wrist. This is notable because various conditions, like
Carpal Tunnel Syndrome-a prevalent neurological dis-
order-often involve simultaneous issues in both the fin-
gers and the wrist. In cases like Carpal Tunnel Syndrome,
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pressure or constriction at the wrist affects the median
nerve, extending from the forearm to the palm [67].

Motion tracking technologies for enhanced rehabilitation
monitoring
In various studies, sensor technologies’ primary focus is
precisely detecting in real-time user performance moni-
toring during movements. However, a case in point is the
MusicGlove system, which, due to its reliance on con-
tact sensing pads, imposes restrictions on the required
movements for completion. This constraint results in a
fixed set of "acceptable movements,” limiting the system’s
adaptability. MusicGlove provides feedback solely on
movement completion, lacking real-time position data.
Various electronic sensors and systems have been
employed in these studies, including accelerometers,
gyroscopes, magnetometers, IMUs, FSRs, electrical leads,
and potentiometers. Motion tracking sensors such as
accelerometers, gyroscopes, magnetometers, and IMUs
are essential in virtual reality video game studies. These
sensors enable the development of 3D hand animation
models and support hand motions across multiple axes,
which is necessary for virtual piano applications. This
approach helps create a sense of immersion and realism
for the user, as recommended by [54].

Musical themes and adaptive video games

Many gamification approaches designed for a play-
ful rehabilitation experience center around a musical
theme, often involving playing the piano or catching
musical notes. Most studies presented video games
similar to Guitar Hero®, one of the most famous music
video games. The primary benefits of employing com-
mercial games lie in their widespread acceptance and
budget-friendly costs. However, these games may need
more comprehensive guidance or measurement features
for monitoring the precise movement and positioning
of the arms, hands, and fingers, limiting their effective-
ness for therapeutic purposes. Therefore, the studies that
employed similar versions of commercial video games
realized modifications to the game, enabling it to adapt
to user needs. In the case of selecting the piano in certain
studies, it is suggested that this choice was made due to
its familiarity among the general public.

It is crucial to allow the modification of video game
parameters to achieve specific rehabilitation objectives.
For example, Thielbar et al. [60] noted that the challenge
of a task can be adjusted to match the user’s abilities in
several ways, such as changing the level of assistance pro-
vided by the PneuGlove, altering the speed of key presses,
and selecting specific key combinations for practice. This
flexibility is essential when designing video games for
long-term rehabilitation and self-administered care in
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home settings, especially in telemedicine or telerehabili-
tation scenarios, as mentioned by Merians et al. [62]. It is
essential to balance providing an optimal challenge level
and avoiding overly complex or too easy tasks, as sug-
gested by Mihaly Csikszentmihalyi [68]. Merians et al.
[62] quantified each patient’s thumb and finger range of
motion, speed, fractionation, and strength before initiat-
ing exercises to establish an initial difficulty level. Since
that study in 2002, more automated approaches have
emerged, especially with the rapid growth of artificial
intelligence applications in healthcare. Some studies have
incorporated algorithms to automate the selection of
challenge levels [54, 57-59].

The reviewed video games are designed to motivate
users and guide the creation of either passive devices,
where users independently initiate and complete move-
ments without assistance, or active devices, which
provide resistance to help guide the movement of spe-
cific body segments. The absence of devices that assist
the user in initiating movement may limit the range of
potential applications, as targeting neuroplasticity early
in the progression of a neurological condition is crucial.
Patients often require more assistance in such cases, and
active devices that initiate movement can provide signifi-
cant benefits.

Music therapy insights
The consistent use of TIMP across the reviewed studies
indicates a preference for a method familiar to therapists
and patients, as playing musical instruments is an eve-
ryday leisure activity for many. However, TIMP differs
from traditional leisure activities in that it involves play-
ing instruments in unconventional ways. Studies focusing
solely on TIMP incorporated virtual piano or keyboard
elements [52, 54, 56, 62, 63]. TIMP has been linked to
improvements in grip strength, finger strength, and
gross and fine hand motor skills [69], as demonstrated by
clinical outcomes such as the Fugl-Meyer test and Wolf
Motor Function test. These functional gains underscore
the efficacy of TIMP in rehabilitative settings.
Additionally, some studies incorporated RAS, which
uses auditory rhythmic cues such as repetitive pulses or
metrically accentuated music [70]. In video games simi-
lar to Guitar Hero, metrically accentuated music lever-
ages specific songs and increases the tempo to heighten
the challenge, encouraging users to adapt to the quicker
pace. Sun et al. [61] is the only study that combined RAS
and TIMP. In this study, a metronome (repetitive pulses)
served as a cue to guide users in performing specific ges-
tures, aiding in the timing of piano key pressing.
However, it’s noteworthy that only a few studies eval-
uate the impact of music therapy with and without
incorporating video games. This evaluation extends to
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understanding the effects of both visual and auditory
cues on users. Considering the potential impact of music
therapy, it becomes crucial for a more comprehensive
assessment in future studies. It would be particularly
interesting for devices that offer movement assistance,
such as rigid robotics, to incorporate evaluations of the
impact of music therapy. Quantifying the influence of
visual and auditory cues in conjunction with movement
assistance could provide valuable insights into optimiz-
ing rehabilitation outcomes. The study by English et al.
strongly emphasized the impact of auditory cues, exam-
ining user performance with both visual and auditory
cues compared to using visual cues alone. The study
concluded that combining audiovisual cues enables par-
ticipants to learn timing tasks more efficiently than rely-
ing solely on visual cues. The authors also highlight the
importance of choosing the appropriate cues based on
the specific skills taught and the performance metrics
used to measure these skills.

PSE sessions are designed to engage patients dynami-
cally and interactively. In a PSE scenario, patients might
be prompted to perform specific hand and arm move-
ments in response to a rhythmic auditory cue, such as a
steady drumbeat or a melodic sequence. This auditory
guidance is a precise and structured framework, enhanc-
ing the synchronization and coordination of the patient’s
movements. The rhythmic precision of the auditory cues
not only aids in motor skill development but also intro-
duces an element of enjoyment and engagement, trans-
forming the rehabilitation process into a more immersive
and stimulating experience [35].

Despite its potential benefits, the adoption of PSE in
rehabilitation processes is currently limited, primarily
due to the intricate nature of the approach. The practical
implementation of PSE requires the expertise of a skilled
Music Therapist [34] who can tailor the exercises to each
patient’s individual needs and capabilities. The scarcity of
PSE in current rehabilitation practices underscores the
importance of specialized practitioners in unlocking the
full potential of this approach. As the field progresses,
further research and exploration into applying PSE in
diverse rehabilitation contexts could reveal novel treat-
ment strategies for enhancing the effectiveness of hand
therapeutic interventions.

Limitations

The search strategy was meticulously designed to
encompass specific terms such as game, interface,
simulation, and virtual environment. Rather than opt-
ing for the more general term "video game,” we chose
a more refined approach to capture exclusively articles
that extensively discuss video games, filtering out other
types of gamification methods. Although the narrative
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approach aligns well with the diverse descriptions of
game design in the articles, it leans towards interpre-
tation rather than strictly adhering to systematic or
scoping review methodologies. The assessment of each
wearable device’s effectiveness in tandem with music-
based gamification approaches required nuanced inter-
pretation, as only overarching findings were provided.
Therefore, readers should look over the review’s find-
ings with an awareness of its interpretation. Never-
theless, the narrative approach offers flexibility in
contextualizing the unique features of wearable devices
and the analysis of music therapy.

Conclusion

Our review provides an overview of the transformative
effects of NMT within neurorehabilitation. We have
explored its synergies with emerging fields, including
the gamification of physical therapies and the integra-
tion of wearable devices tailored for hand functionality
and assistance. NMT appears as a promising alternative
to traditional treatments, such as pharmaceutical inter-
ventions, with significant potential. Our investigation
underscores the ongoing exploration of neuroplasticity
enhancement in motor learning, positioning NMT as
a dynamic and impactful avenue. The fusion of NMT
with cutting-edge technologies expands the horizons
of therapeutic interventions and lays the foundation for
innovative, personalized approaches to neurorehabili-
tation. Nevertheless, challenges persist in integrating
NMT into video games within rehabilitation pro-
grams. While many programs incorporate NMT, they
often limit its application to auditory feedback alone,
neglecting the full spectrum of elements that music can
offer. Such simplistic implementations are less likely to
elicit the desired neurobiological responses associated
with NMT, potentially hindering its effectiveness. This
limitation contrasts with observations in other fields,
highlighting the need for a more comprehensive utili-
zation of NMT within the context of video games for
enhanced neurorehabilitation outcomes.
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