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Abstract
Background Despite the promise of wearable sensors for both rehabilitation research and clinical care, these 
technologies pose significant burden on data collectors and analysts. Investigations of factors that may influence the 
wearable sensor data processing pipeline are needed to support continued use of these technologies in rehabilitation 
research and integration into clinical care settings. The purpose of this study was to investigate the effect of one such 
factor, sleep, on sensor-derived variables from upper limb accelerometry in people with and without upper limb 
impairment and across a two-day wearing period.

Methods This was a secondary analysis of data collected during a prospective, longitudinal cohort study (n = 127 
individuals, 62 with upper limb impairment and 65 without). Participants wore a wearable sensor on each wrist for 
48 h. Five upper limb sensor variables were calculated over the full wear period (sleep included) and with sleep time 
removed (sleep excluded): preferred time, non-preferred time, use ratio, non-preferred magnitude and its standard 
deviation. Linear mixed effects regression was used to quantify the effect of sleep on each sensor variable and 
determine if the effect differed between people with and without upper limb impairment and across a two-day 
wearing period.

Results There were significant differences between sleep included and excluded for the variables preferred time 
(p < 0.001), non-preferred time (p < 0.001), and non-preferred magnitude standard deviation (p = 0.001). The effect of 
sleep was significantly different between people with and without upper limb impairment for one variable, non-
preferred magnitude (p = 0.02). The effect of sleep was not substantially different across wearing days for any of the 
variables.

Conclusions Overall, the effects of sleep on sensor-derived variables of upper limb accelerometry are small, similar 
between people with and without upper limb impairment and across a two-day wearing period, and can likely be 
ignored in most contexts. Ignoring the effect of sleep would simplify the data processing pipeline, facilitating the use 
of wearable sensors in both research and clinical practice.

Quantifying the effects of sleep 
on sensor-derived variables from upper limb 
accelerometry in people with and without 
upper limb impairment
Allison E. Miller1*, Catherine E. Lang1,2,3, Marghuretta D. Bland1,2,3 and Keith R. Lohse1,3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-024-01384-z&domain=pdf&date_stamp=2024-5-24


Page 2 of 12Miller et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:86 

Introduction
Wearable sensors have enormous potential to improve 
the delivery and outcomes of rehabilitation care [1, 2]. 
This potential is being realized in both the research and 
clinical care realms. Research labs are exploiting wearable 
sensor technology to measure activity outside the clinic/
laboratory throughout a course of rehabilitation care [3, 
4] or an experimental intervention [5–8]. These investi-
gations have shown that improvements observed in the 
clinic/laboratory (i.e., activity capacity) do not necessar-
ily translate to improvements in what a person actually 
does in their free-living environment (i.e., activity per-
formance). While the use of these technologies has been 
primarily confined to research labs, their findings have 
resulted in a more recent emphasis to integrate these 
devices into clinical care settings [2, 9–11].

Despite the growing uptake of wearable sensors in 
rehabilitation, the use of these technologies pose signifi-
cant burden on data collectors (i.e., patients, research 
participants) and analysts [1, 2, 11, 12]. For example, in 
the research setting, support personnel are needed to 
carefully inspect and process the data, requiring signifi-
cant time and financial resources. The challenges become 
particularly problematic, if not unreasonable, when 
attempting to integrate these technologies into clinical 
settings. Busy clinicians do not have time to carefully 
scrutinize or perform manual computations of wearable 
sensor data. Thus, efforts to integrate these technologies 
into clinical care setting necessitate a fast, efficient, and 
least burdensome data processing pipeline.

Expediting the data processing pipeline to minimize 
burden on both research and clinical staff requires a thor-
ough understanding of factors that may influence it [11–
13]. One of the factors that is common among all persons 
and involves periodic movements is sleep [14]. The unex-
plored impact of sleep on the data processing pipeline 
has important consequences for both the development of 
research protocols and the resources required to process 
wearable sensor data. For example, some research proto-
cols require participants to remove the wearable sensor 
during periods of sleep if sleep is not a primary interest 
[15]. This, however, requires participants to remember to 
don the device after periods of sleep, placing additional 
burden on the participant and increasing opportunities 
for data to go missing. On the contrary, protocols that 
permit participants to wear the device during sleep may 
increase burden on research support staff to remove peri-
ods of sleep if movement during sleep is not of interest. 
Understanding the effect of sleep on the wearable sensor 
data processing pipeline would determine whether these 
additional burdens are necessary and could streamline 

the use of these technologies in both research and clinical 
care settings.

The purpose of this investigation was to determine the 
effect of sleep on sensor-derived variables from upper 
limb accelerometry in people with and without upper 
limb impairment. We focused on the upper limb for two 
main reasons. The first is that upper limb impairment is a 
common sequelae of many conditions, such as stroke [16, 
17], multiple sclerosis [18, 19], breast cancer [20, 21] and 
upper limb orthopedic conditions [22–24]. The second is 
that a common application of wearable sensor technol-
ogy in rehabilitation research is to measure upper limb 
movement [25–28]. We therefore had two objectives for 
this analysis: (1) quantify the effect of sleep on sensor-
derived variables from upper limb accelerometry, and 
(2) determine if the effect of sleep differs between people 
with and without upper limb impairment and across a 
two-day wearing period. Based on prior work demon-
strating no difference in upper limb accelerometry vari-
ables across a two-day wearing period [29, 30], we did not 
anticipate that the effect of sleep would differ between 
recording days. However, demonstrating no difference 
does not prove that there is no effect. We therefore felt 
it prudent to include the effect of day in the model to 
allow us to test for these differences, should they exist. 
We also note that, among the multitude of variables that 
can be computed from upper limb accelerometry, it is 
currently unknown which are most important for future 
research and clinical practice. A previous study by Barth 
et al. found that variability in five upper limb accelerom-
etry variables generated five unique clusters of individu-
als that differed in their upper limb use in daily life [31]. 
This suggests that these five variables may be important 
for measuring upper limb movement in daily life in peo-
ple with and without upper limb impairment and serve 
as a starting point towards simplifying the measurement 
of upper limb movement in daily life using wearable sen-
sors. We therefore report on these five variables in the 
primary paper and include 20 other variables that may be 
relevant for other scientific questions, populations, and 
clinical investigations in the supplement. The results of 
this analysis could help to minimize the personnel and 
computational burden to utilize wearable sensor tech-
nology in rehabilitation research labs and inform future 
efforts that seek to integrate this technology into clinical 
care settings.

Methods
Participants
This study was a secondary analysis of data collected dur-
ing the baseline time point of a two-site (Washington 
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University in St. Louis, MO and Shirley Ryan Ability 
Lab, Chicago, IL) prospective, longitudinal cohort study 
(NIH R37HD068290). This study recruits individuals 
without upper limb impairment (e.g., healthy controls) 
and individuals with upper limb impairment, including 
people with stroke, multiple sclerosis, distal radius frac-
ture, proximal humerus and/or clavicle fracture, shoulder 
pain, or breast cancer who were undergoing physical and/
or occupational therapy to improve upper limb function. 
Eligibility criteria for the control cohort included: (1) ≥ 18 
years of age (2) free of neurologic, musculoskeletal, or 
medical conditions that affect the upper limb or signifi-
cantly affect physical activity in general. Eligibility for the 
upper limb impairment cohort included: (1) ≥ 18 years of 
age (2) upper limb impairment as judged by a referring 
physician or surgeon (3) referral to rehabilitation services 
to address upper limb impairment (4) therapist docu-
mented goal(s) to increase or restore upper limb function 
(5) no other concurrent neurologic, musculoskeletal, or 
medical conditions that affect the upper limb or physi-
cal activity in general (6) no other co-morbid conditions 
determined by physician or therapy documentation that 
indicate a minimal chance for improvement in function 
(e.g., end-stage cancer diagnosis) (7) not pregnant or 
planning to become pregnant (8) no cognitive or commu-
nication problems that would prevent them from com-
pleting the study. For this analysis, all participants with 
upper limb impairment were grouped together as we had 
no scientific reason to suspect that the effects of sleep on 
the upper limb performance variables would differ based 
on diagnosis, nor would we have the statistical power 
to detect these sub-group differences. Only participants 
who wore the sensors for the full 48-hour wear period 
were included in this analysis. The study was approved by 
Washington University’s Institutional Review Board, and 
all participants signed informed consent prior to engag-
ing in any study procedures. This manuscript was devel-
oped in accordance with the STROBE guidelines.

Measures
All study procedures occurred remotely and study data 
were collected and managed using REDCap electronic 
data capture tools housed at Washington University 
in St. Louis. REDCap (Research Electronic Data Cap-
ture) is a secure, web-based software platform designed 
to support data capture for research studies providing 
(1) an intuitive interface for validated data capture; (2) 
audit trails for tracking data manipulation and export 
procedures; (3) automated export procedures for seam-
less data downloads to common statistical packages; and 
(4) procedures for data integration and interoperabil-
ity with external sources [32, 33]. Participants in both 
cohorts were sent several surveys and two wrist-worn 
accelerometers to wear for a 48-hour period. The surveys 

collected demographic information, including age, sex, 
race, and ethnicity, as well as clinical information (upper 
limb impairment cohort only). Surveys were completed 
online or on paper, depending on the participant’s prefer-
ence, and within one week of wearing the sensors. For the 
upper limb impairment cohort, participants completed 
the baseline time point within two weeks of starting out-
patient rehabilitation services.

Upper limb accelerometry variables were measured 
using established, reliable, and valid bilateral wrist-worn 
accelerometry methodology [34, 35]. Participants wore 
tri-axial GT9X Link accelerometers (ActiGraph Inc, 
Pensacola, Florida) on each wrist for 48  h that sampled 
at 30 Hz. Participants were instructed to go about their 
normal routine while wearing the sensors and to keep the 
sensors on during sleep. Once the sensors were returned 
to the lab, the data were visually inspected to verify a 
48-hour wear period using ActiLife 6 software (Acti-
Graph Inc, Pensacola, Florida) and exported for further 
processing.

Upper Limb performance variables
Work is ongoing to determine which sensor-derived vari-
ables from upper limb accelerometry are most important 
for research and clinical practice [31]. Thus, we exam-
ined 25 variables in total that reflect different aspects 
of motor behavior of the upper limbs in daily life under 
the assumption that the relevance of specific variables 
may vary across research questions, clinical populations, 
and scientific fields [2, 29, 36–38]. Here, we focus on five 
variables that were previously shown to generate unique 
clusters of individuals with and without neurologic upper 
limb deficits [31], and present the remaining 20 variables 
in the Supplement. Table  1 displays the five upper limb 
sensor variables and their respective calculations.

Two data files were extracted from ActiLife 6 software 
(ActiGraph Inc, Pensacola, Florida): a raw 30  Hz accel-
eration file (in gravitational units) and down-sampled 
1  Hz data file (in Actigraph activity counts). The 30  Hz 
data were band-pass filtered from 0.2 to 12 Hz to remove 
acceleration components incompatible with human 
activity. Data in the 1  Hz file were first filtered using 
ActiGraph’s proprietary filtering algorithm, which uses 
a maximum gain of 0.759 Hz and goes down to -6dB at 
0.212 Hz at 2.148 Hz and then down-sampled from 30 Hz 
to 1-second epochs for each axis by summing the 30 sam-
ples within each second [39]. Accelerations in each axis 
were combined into a single vector magnitude using the 
formula 

√
X2 + Y 2 + Z2 . A vector magnitude threshold 

of ≥ 2 activity counts was used to determine if the upper 
limb was active for each 1-second epoch [40, 41]. To 
compute the variables preferred time and non-preferred 
time, seconds of movement that exceeded this threshold 
were summed over the wearing period and converted to 
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hours. The use ratio was calculated as the ratio of non-
preferred limb movement relative to the preferred limb 
movement. The non-preferred magnitude and standard 
deviation (Table 1) are reported in activity counts [39].

Sleep detection
Actigraphy is a reliable and valid method for detecting 
sleep, with previous reports demonstrating acceptable 
to high agreement with polysomnography [42–45]. 
For this study, we employed a multi-step approach to 
detect sleep using published algorithms [42, 43]. Sleep 
time was determined from the sensor worn on the par-
ticipant’s preferred upper limb using the methodology 
described by Schoch and colleagues [43]. Briefly, this 
approach applies the Sadeh sleep algorithm [42] and 
includes several additional adjustments to improve the 
algorithm’s accuracy [43]. The first adjustment applies 
a criterion to distinguish between sleep and wake time 
using the mean vector magnitude for each day of data 
multiplied by a threshold. Here, we used a threshold of 
0.35 because it was best suited to identify sleep in pilot 
testing. The second adjustment removes periods when 
the sensors were not worn, which was not applicable 
for this analysis as all participants wore the sensors for 
the full 48-hour wear period. The third adjustment uti-
lized criteria by Webster et al. [46] to address instances 
of incorrectly identifying periods of sleep while the 
participant was awake by applying five smoothing rou-
tines. For example, brief periods of less than 10  min 
of sleep surrounded by at least 20 min of wake before 
and/or after were rescored as wake. The final adjust-
ment involved generating a sleep graph from the previ-
ous adjustments and displaying it to the research team 
member processing the data. The research team mem-
ber made additional adjustments (if needed) based on 
any notes made by the participant on their accelerom-
etry wearing log.

For each sensor variable of interest and wearing day, 
the sensor variable was computed using the full wear 
time (sleep included) and with sleep time removed 
(sleep excluded). The effect of sleep was quantified as 

the difference between sleep included and excluded 
(i.e., sleep included – sleep excluded). Custom-written 
R scripts (R Core Team 2021, version 4.2.1) were used 
for all variable computations and to implement the 
sleep detection algorithms described above [47, 48].

Statistical analysis
Linear mixed effects regression (LMER) was used 
to address our two study objectives and account for 
within-participant repeated accelerometry mea-
surement across days [49]. For each sensor variable, 
a LMER model was tested in which the difference 
between sleep included and excluded was the depen-
dent variable. Each model included a random intercept 
for participant and fixed effects for day and cohort and 
their interaction:

 
Difference(Included – Excluded)ij = β0 + γ0i + β1Cohort + β2Dayj + 
β3(Cohort*Dayj) + Ɛij.

 
Our first objective, to quantify the effect of sleep on 
each sensor variable, was addressed by interpreting 
the β0 parameter of the model. Using the difference 
between sleep included and excluded as the outcome 
allowed us to interpret the intercept (β0) as the main-
effect of including sleep in the algorithm. A statisti-
cally significant p -value for the intercept thus shows 
that including/excluding has a non-zero effect on the 
output.

Our second objective, to determine if the effect of sleep 
varied by cohort (people with upper limb impairment 
vs. without) and by day, was addressed by interpreting 
the effects of cohort (β1Cohort), day (β2Day), and their 
interaction (β3(Cohort*Day)). All fixed effects were con-
trast coded so that regression slopes can be interpreted 
as main effects (e.g., β1 is the effect of Cohort on aver-
age across days). Confidence intervals were computed 
using bootstrapping, and P values were adjusted using 
the Benjamini-Hochberg false discovery rate (FDR) [50] 
procedure to account for the number of statistical tests 
performed on all 25 variables (25 variables x 4 effects per 

Table 1 Description of Upper Limb Sensor Variables*
Variable Description
Preferred Time Time (in hours) that the dominant/unaffected limb is moving.
Non-Preferred Time Time (in hours) that the non-dominant/affected limb is moving.
Use Ratio Ratio of hours of non-dominant/affected limb movement, rela-

tive to hours of dominant/unaffected limb movement.
Non-Preferred Magnitude Median of the accelerations of the non-dominant/affected 

limb, in activity counts
Non-Preferred Magnitude Standard Deviation Standard deviation of the magnitude of accelerations across 

the non-dominant/affected limb, in activity counts
*Preferred indicates the dominant limb (control cohort) or unaffected limb (upper limb impairment cohort). Non-preferred indicates the non-dominant limb (control 
cohort) or affected limb (upper limb impairment cohort). If a participant identified both limbs as affected, their clinical documentation was reviewed to determine 
which limb was more affected. The more affected limb was considered the non-preferred limb in all variable calculations
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LMER model). All LMER models were conducted in R (R 
Core Team 2021, version 4.2.1) using the lmer [51], AIC-
cmodavg [52], and lmerTest [53] packages.

Results
At the time of this analysis, 148 individuals met the eligi-
bility criteria to participate in the larger study. Of these 
148, 16 individuals had missing data due to withdrawal 
from the study or loss to follow-up, and 5 individuals 
did not meet the 48-hour wear criteria for this analy-
sis. This resulted in 127 individuals (65 without upper 
limb impairment and 62 with upper limb impairment) 
included in this analysis. Table  2 displays the demo-
graphic and clinical characteristics of our full sample as 
well as each cohort. Supplemental Table 1 displays the 
demographic and clinical characteristics of each upper 
limb condition group.

Our first objective examined the effect of sleep on each 
sensor variable. We found a statistically significant dif-
ference between sleep included and excluded for three of 
the five sensor variables: preferred time, non-preferred 
time, and non-preferred magnitude standard deviation 
(Table  3, intercept values). To help contextualize these 
differences, the left column of Fig. 1 displays overlapping 
density plots of sleep included (grey) and sleep excluded 
(blue) for each of the five sensor variables. The right col-
umn of Fig. 1 displays the density plot for sleep included 
(grey), which is then overlain by the distribution of the 
differences between sleep included and excluded (white 
density plot, vertically scaled and centered around the 
mean of the variable with sleep included). For example, 
looking at preferred time (Fig.  1, top left), one can see 
that the distribution for sleep excluded (blue) is slightly 
shifted to the left compared to sleep included (grey), 

Table 2 Characteristics of Study Sample
Variable Full Sample

(n = 127)
Controls
(n = 65)

UL Conditions
(n = 62)

Age (yrs) 53.5 ± 17.8 49.4 ± 20.1 57.8 ± 13.9
Sex
 Female 62.2% (79) 69.23% (45) 54.84% (34)
 Male 37.80% (48) 30.77% (20) 45.16% (28)
Race
 White 71.65% (91) 80.0% (52) 62.9% (39)
 Black 21.26% (27) 10.77% (7) 32.26% (20)
 Asian 5.51% (7) 9.23% (6) 1.61% (1)
 Native Hawaiian or Pacific Islander 0.79% (1) 0% (0) 1.61% (1)
Ethnicity
 Hispanic, Latino 3.15% (4) 1.54% (1) 4.84% (3)
 Non-Hispanic, Non-Latino 96.85% (123) 98.46% (64) 95.16% (59)
Hand Dominance
 Right 90.55% (115) 90.77% (59) 90.32% (56)
 Left 8.66% (11) 9.23% (6) 8.06% (5)
 Both 0.79% (1) 0% (0) 1.61% (1)
Employment
 Working ≥ 37.5 h/wk 37.01% (47) 49.23% (32) 24.19% (15)
 Working ≥ 20 h/wk 5.51% (7) 6.15% (4) 4.84% (3)
 Working < 20 h/wk 7.87% (10) 10.77% (7) 4.84% (3)
 Not working 49.61% (63) 33.85% (22) 66.13% (41)
Living Situation
 Living alone, assistance with BADLs 1.57% (2) 0% (0) 3.23% (2)
 Living alone, independent with BADLs 24.41% (31) 27.69% (18) 20.97% (13)
 Living with others, assistance with BADLs 7.09% (9) 0% (0) 14.52% (9)
 Living with others, independent with BADLs 66.93% (85) 72.31% (47) 61.29% (38)
Affected Side
 Right 48.39% (30)
 Left 45.16% (28)
 Both 6.45% (4)
Concordance*
 Yes 45.16% (28)
 No 54.84% (34)
Abbreviations: UL- upper limb, BADLs- basic activities of daily living. *Concordance is when the dominant upper limb is the affected limb
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suggesting that excluding sleep results in a reduction in 
preferred time hours compared to including sleep. Cor-
respondingly, the top right panel of Fig.  1 shows the 
distribution of differences is shifted down by 0.31 h rela-
tive to the mean when sleep is included (solid line vs. 
direction and length of arrow), but there is uncertainty 
in that effect, with the standard deviation of the differ-
ences being 0.18. Thus, for any given point in the black 
histogram, we would expect that point to be shifted by 
0.31 ± 0.18 h (or 19 ± 11 min) if sleep was to be included.

Our second objective examined if the effect of sleep dif-
fered between individuals with and without upper limb 
impairment and between wearing days. Non-preferred 
magnitude was the only variable in which we observed a 
significant difference between people with and without 
upper limb impairment (Table  3). Compared to people 
without upper limb impairment (i.e., controls), people 
with upper limb impairment had a slightly smaller dif-
ference between sleep included and excluded for this 
variable. Despite being statistically significant, this dif-
ference between cohorts appears to be trivially small, 
see Fig. 2. Figure 2 displays overlapping density plots of 
sleep included (grey) and the distribution of differences 
between sleep included and excluded (white density plot, 
scaled and centered around the variable mean with sleep 
included for interpretability) for each cohort. Overall, the 
effect of sleep for people with and without upper limb 
impairment was relatively similar, as evidenced by the 
Cohort estimates in Table  3 and in examining the dis-
tributions of Fig. 2. The effect of day was not significant 
for any of the LMER models (Table  3), suggesting that 

the effect of sleep was not substantially different across 
wearing days. There was also no significant interaction 
between day and cohort for any of the upper limb perfor-
mance variables, suggesting that the effects of sleep were 
relatively consistent between cohorts and wearing days 
(Fig. 3).

Supplemental Tables 2–21 and Supplemental Figs.  1–
20 display the LMER model results and visual represen-
tations of the findings for each supplemental variable, 
respectively.

Discussion
The purpose of this study was to investigate the effect of 
sleep on the wearable sensor data processing pipeline to 
facilitate the use of wearable sensor technology in reha-
bilitation research and clinical care settings. Our first 
objective was to quantify the effect of sleep on sensor-
derived variables from upper limb accelerometry. We 
observed a small, significant difference between sleep 
included and excluded for three of the five sensor vari-
ables: preferred time, non-preferred time, and non-
preferred magnitude standard deviation. Our second 
objective was to determine if the effect of sleep differed 
between people with and without upper limb impairment 
and across a two-day wearing period. Here, we found that 
the effect of sleep differed slightly between people with 
and without upper limb impairment for one of the five 
variables, non-preferred magnitude, and that the effect of 
sleep was not different across a two-day wearing period. 
These findings have important implications for the use 

Table 3 Linear Mixed Effects Regression Model Parameters for each Sensor Variable
Sensor Variable Model Parameter Estimate 95% Confidence Interval T-Value FDR Adj. P-Value
Preferred Time Intercept 0.31 0.28–0.35 19.81 < 0.001

Day -0.02 -0.07–0.02 -1.04 0.61
Cohort 0.01 -0.05–0.07 0.18 0.94
Day x Cohort 0.02 -0.07–0.11 0.49 0.78

Non-Preferred Time Intercept 0.29 0.26–0.32 21.42 < 0.001
Day -0.03 -0.07–0.01 -1.49 0.44
Cohort -0.03 -0.09–0.02 -1.24 0.58
Day x Cohort 0.01 -0.08–0.11 0.22 0.92

Use Ratio Intercept 0.004 0.00007–0.01 2.23 0.13
Day -0.001 -0.01–0.004 -0.39 0.82
Cohort 0.0004 -0.01–0.01 0.12 0.94
Day x Cohort 0.01 -0.001–0.02 1.59 0.40

Non-Preferred Magnitude Intercept 0.04 -0.06–0.14 0.82 0.71
Day 0.04 -0.14–0.20 0.49 0.78
Cohort -0.3 -0.49 – -0.13 -3.13 0.02
Day x Cohort 0.01 -0.33–0.32 0.10 0.94

Non-Preferred Magnitude SD Intercept 0.2 0.1–0.3 4.17 0.001
Day 0.09 -0.01–0.2 1.65 0.38
Cohort -0.06 -0.3–0.13 -0.64 0.74
Day x Cohort -0.09 -0.32–0.14 -0.76 0.72
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of wearable sensors in both research and clinical care 
settings.

Despite being statistically significant, the differ-
ences we observed were small. For example, exclud-
ing sleep reduces non-preferred time by 0.29 ± 0.15 (or 
17.4 ± 9 min) relative to the mean when sleep is included. 
A difference of 17 min of non-preferred upper limb use 
is likely small in many contexts. The mean number of 
minutes of non-preferred time (with sleep included) 
of the sample was 392. To put this difference into con-
text, 17 min of non-preferred time equates to 4.3% of the 
mean non-preferred time of the sample. The differences 
in non-preferred magnitude and its standard deviation 
were even smaller (Table  3; Figs.  1 and 2). Collectively, 

these data suggest that the effect of sleep on sensor-
derived variables from upper limb accelerometry is small 
and similar between people and without upper limb 
impairment and across a two-day wearing period and can 
likely be ignored in most cases.

From a research perspective, these findings may help 
minimize burden on both research staff and partici-
pants [2]. For research staff, committing the time and 
resources to remove periods of sleep when process-
ing accelerometry data from the upper limb(s) is likely 
not necessary in most cases. For research participants, 
removing a sensor opens the possibility that a par-
ticipant will forget to put the sensor back on, creating 
opportunities for data to go missing [54]. These results 

Fig. 1 Differences between sleep included and excluded for each sensor variable. Left panel: Overlapping density plots displaying the distribution of each 
sensor variable with sleep included (grey) and sleep excluded (blue). The mean for each distribution is shown as a thin vertical line (solid- sleep included, 
dashed- sleep excluded). Right panel: Overlapping density plots displaying the distribution of each sensor variable with sleep included (grey) and the dif-
ferences between sleep included and excluded (white) scaled and centered around the variable mean with sleep included. The thin vertical line displays 
the mean of the distribution with sleep included. The arrow depicts the direction the variable would shift by excluding sleep. The number (s = ) in each 
plot represents the standard deviation of the differences between sleep included and excluded for that variable, demonstrating uncertainty in the differ-
ence. Preferred indicates the dominant upper limb (Controls) or the unaffected upper limb (Upper Limb Impairment cohort)

 



Page 8 of 12Miller et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:86 

suggest that research protocols need not instruct par-
ticipants to remove the sensors during sleep, which 
may improve participant adherence to wearing the 
devices [15]. Some research protocols also instruct 
participants to record their activities while wearing the 
sensor(s) [55]. If sleep is not a behavior of interest in a 
research study using accelerometry to measure upper 
limb movement, there is likely no need to burden par-
ticipants with recording sleep activity. This is not to 
suggest that activity diaries as a whole are not neces-
sary, as diaries can be helpful for comparing wearable 
sensor data to the participant’s reported activity. These 
reduced burdens will streamline the use of wearable 
sensor technology in research labs already accustomed 
to it, and also bring this technology within reach of 

labs unfamiliar to it, through a less computationally 
complex data processing pipeline.

From the clinical perspective, the success of deploy-
ing new technologies in clinical care settings hinges 
upon how well the technology is integrated into clini-
cal workflows [56–60]. This includes making the data 
directly available in the electronic health record (EHR) 
[1, 56, 61, 62]. Busy clinicians do not have time to 
process raw data or generate summary variables. It is 
therefore imperative that the data processing pipeline 
be as simple and efficient as possible. Findings from 
this study suggest that the data processing pipeline 
can be simplified by ignoring periods of sleep when 
deploying wearable sensors to compute variables that 
reflect motor behavior of the upper limbs in people 

Fig. 2 Differences between sleep included and excluded for each sensor variable by cohort. Overlapping density plots displaying the distribution of each 
sensor variable with sleep included (grey) and the differences between sleep included and excluded (white, scaled and centered around the variable 
mean with sleep included) for Control participants without UL impairment (left) and people with UL impairment (right). The thin vertical line displays the 
mean of the distribution with sleep included. The arrow depicts the direction the variable would shift by excluding sleep. The number (s = ) in each plot 
represents the standard deviation of the differences between sleep included and excluded for that variable, demonstrating uncertainty in the difference. 
Preferred indicates the dominant upper limb (Controls) or the unaffected upper limb (Upper Limb Impairment cohort). Abbreviations: UL- upper limb
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with and without upper limb impairment. This will 
expedite data processing, minimize burden on the cli-
nician, and allow summary data to be in the hands of 
busy clinicians sooner. We also note that, in scenarios 
in which data are collected over multiple time points, 
the decision to remove periods of sleep or not should 
remain consistent, regardless of whether the data pro-
cessing pipeline is built for research or clinical care 
initiatives.

There are several limitations to consider when inter-
preting the results of this study. The first is that wrist-
worn actigraphy is not without measurement error 
[54, 63]. Using wrist-worn actigraphy to detect sleep 
relies on the use of upper limb movements to deter-
mine whether periods of sleep have occurred [64]. Any 
missed or incorrectly identified upper limb movements 
would have a downstream effect on a sleep algorithm’s 

ability to quantify sleep patterns. Actigraphy-based 
sleep detection algorithms themselves also suffer from 
accuracy challenges [65, 66]. For example, if a person is 
awake but not moving their upper limbs, the algorithm 
is likely to incorrectly identify this period as sleep. For 
these reasons, actigraphy-based sleep detection algo-
rithms tend to perform better at detecting sleep (i.e., 
higher sensitivity), rather than periods of wakefulness 
(i.e., lower specificity) [44, 66, 67]. This means we may 
have over-estimated the amount of sleep in this study 
and potentially over-estimated the effect of sleep on 
the upper limb sensor variables. For this study, the 
Sadeh sleep algorithm was selected due to its high 
agreement with polysomnography and widespread 
use in the literature [42, 66]. While other algorithms 
exist, they tend to perform similarly in terms of overall 
accuracy, sensitivity, and specificity [66]. It is therefore 

Fig. 3 Differences between sleep included and excluded for each sensor variable by cohort and by day. Each coupled panel represents a sensor variable, 
with the leftward panel representing Control participants and the rightward panel representing participants with UL impairment. Each panel displays 
box plots of the differences between sleep included and excluded for Day 1 and Day 2. Preferred indicates the dominant upper limb (Controls) or the 
unaffected upper limb (Upper Limb Impairment cohort)
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plausible that using a different algorithm would have 
yielded a similar result; however, this was not formally 
tested in this study.

Conclusions
The effect of sleep on sensor-derived variables from 
upper limb accelerometry is small and similar between 
people with and without upper limb impairment and 
across a two-day wearing period. This small effect can 
likely be ignored in the upper limb wearable sensor 
data processing pipeline in many situations. To con-
tinue to support the uptake of wearable sensor tech-
nology in rehabilitation research and clinical care, 
future work should investigate the role of other fac-
tors, such as upper limb movement during walking, 
on the data processing pipeline. Efforts should also be 
directed towards understanding which sensor-derived 
variables from upper limb accelerometry are most 
important and should be carried forward in future 
research and clinical care initiatives.
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