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Abstract

Background Body weight support (BWS) training devices are frequently used to improve gait in individuals with
neurological impairments, but guidance in selecting an appropriate level of BWS is limited. Here, we aim to describe
the initial BWS levels used during gait training, the rationale for this selection and the clinical goals aligned with BWS
training for different diagnoses.

Method A systematic literature search was conducted in PubMed, Embase and Web of Science, including terms
related to the population (individuals with neurological disorders), intervention (BWS training) and outcome (gait).
Information on patient characteristics, type of BWS device, BWS level and training goals was extracted from the
included articles.

Results Thirty-three articles were included, which described outcomes using frame-based (stationary or mobile)
and unidirectional ceiling-mounted devices on four diagnoses (multiple sclerosis (MS), spinal cord injury (SCI), stroke,
traumatic brain injury (TBI)). The BWS levels were highest for individuals with MS (median: 75%, IQR: 6%), followed by
SCl (median: 40%, IQR: 35%), stroke (median: 30%, IQR: 4.75%) and TBI (median: 15%, IQR: 0%). The included studies
reported eleven different training goals. Reported BWS levels ranged between 30 and 75% for most of the training
goals, without a clear relationship between BWS level, diagnosis, training goal and rationale for BWS selection.
Training goals were achieved in all included studies.

Conclusion Initial BWS levels differ considerably between studies included in this review. The underlying rationale for
these differences was not clearly motivated in the included studies. Variation in study designs and populations does
not allow to draw a conclusion on the effectiveness of BWS levels. Hence, it remains difficult to formulate guidelines
on optimal BWS settings for different diagnoses, BWS devices and training goals. Further efforts are required to
establish clinical guidelines and to experimentally investigate which initial BWS levels are optimal for specific
diagnoses and training goals.
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Background

Over the last decades, gait rehabilitation technology has
seized a firm spot in the rehabilitation of individuals with
neurological gait disorders, such as stroke, spinal cord
injury, cerebral palsy and multiple sclerosis [1, 2]. Reha-
bilitation technology is widely used to assess gait quality
and behavior [3], and to improve gait function through
the use of supportive training devices [1]. Many of these
training devices have found their way into clinical prac-
tice and have been implemented within rehabilitation
centers. Amongst these rapid innovative developments,
there has been great interest in body weight support
(BWS) devices. These devices have emerged as an appeal-
ing option to clinicians as they stimulate early gait train-
ing and reduce the physical burden on a therapist [4].

The use of BWS devices has shown promise in improv-
ing walking ability and avoiding the development of mal-
functional compensatory movement patterns in various
patient groups [4—6]. Generally, BWS is provided by an
overhead suspension mechanism and a harness that
apply vertical forces on a person’s pelvis or trunk causing
partial weight reduction [7]. Initially, BWS training was
mainly offered to individuals with a spinal cord injury,
as its working mechanism was primarily associated with
neuroplasticity [8, 9] and functional re-organization of
neuronal networks [10]. Then, BWS devices were also
used for other diagnoses, as they reduce the load on the
lower limbs [11], improve vertical alignment and trunk
stability [12], enhance gait initiation [13] and improve
physical fitness [14]. It is also thought that BWS reduces
the fear of falling through prevention mechanisms that
ensure a safe walking environment [4].

Recently, BWS devices have developed from station-
ary, treadmill-coupled devices to more elaborate mobile
and ceiling-mounted systems with multiple degrees of
freedom that can be used during overground walking
[15]. The current developments in BWS devices accom-
pany the trend towards promoting active participation
in training and providing assist-as-needed based on
patient-specific requirements [16]. Roughly, four main
categories of BWS devices can be distinguished: frame-
based constructions (either stationary or mobile) and
ceiling mounted devices (either unidirectional or mul-
tidirectional). Well-known examples of frame-based
constructions are the Woodway Loko system (station-
ary, Woodway USA Inc., USA) and the LiteGait (mobile,
Mobility Research, USA), whereas examples of ceiling-
mounted devices are the ZeroG (unidirectional, Aretech,
USA) and the RYSEN (multidirectional, Motek Medical,
The Netherlands).

Although all different types of BWS devices are fre-
quently used in rehabilitation programs, guidance in
selecting an appropriate support level is limited. In lit-
erature, providing BWS up to 30% is generally recom-
mended as this is shown to allow walking with close to
normal kinematics [17, 18]. However, gait rehabilitation
depends on more factors than solely normal gait kine-
matics and therapists may consider different reasons to
select BWS levels, such as patient-specific characteristics
or training goals. Guidelines on clinically relevant and
feasible BWS selection are currently lacking and thera-
pists often subjectively determine BWS levels based on
visual inspection and patient’s feedback.

This systematic review aims to describe the initial
BWS levels used during gait training, the rationale for
this selection, the clinical goals that are aligned with the
use of BWS and whether these differ between diagnoses.
Moreover, the study aims to describe whether pursued
training goals are more likely to be achieved at particu-
lar BWS levels and within a particular diagnosis. Insights
from this study can serve as a first step towards develop-
ing clinical guidelines.

Methods

The selection process of identification, screening, eligi-
bility and inclusion was performed in accordance to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines for reviews (Appen-
dix 1). Prior to the search, this review was registered in
PROSPERO (international prospective register of sys-
tematic reviews; registration number CRD42022367172).

Search strategy

Three electronic databases (PubMed, Embase, Web of
Science) were assessed and searched on April 20th 2023.
The search strategy was developed with the help of a
medical librarian and refined in group discussion after
preliminary searches. The final search strategy (Appen-
dix 2) included a list of terms relating to or describing
the population (individuals with neurological disorders),
intervention (BWS training) and outcome (gait).

Study selection and inclusion criteria

After exclusion of duplicate articles, two independent
researchers (SE and GP) selected eligibility based on title
and abstract. Thereafter, the researchers assessed poten-
tially relevant articles by reading full-text. Any in- and
exclusion conflict between the researchers was discussed
to reach consensus. In case of persistent disagreement, a
third independent reviewer (TB) could be consulted. Of
the studies included in the review, reference lists were
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screened for other relevant studies that may have been
missed in the search. The following inclusion criteria
were used when selecting articles: [1] the population con-
sisted of adults (>18 years of age) with neurological dis-
orders (i.e. traumatic brain injury (TBI), stroke, multiple
sclerosis (MS), cerebral palsy (CP) or spinal cord injury
(SCI)); [2] the only intervention used was a BWS device
(i.e. no exoskeletons and not combined with virtual real-
ity, electrostimulation, conventional gait training, etc.);
[3] the BWS device was used during forward walking; [4]
the study design included a clinical protocol that inves-
tigated the effectiveness of a BWS training intervention;
[5] at least two participants were included; [6] the BWS
level was reported; [7] the article was written in English
and was not a conference abstract, review, letter to the
editor or protocol.

Data extraction, outcome measures and risk of bias
assessment

The following information was extracted from the
included articles: [1] participant characteristics (i.e. sam-
ple size, sex, age, time since injury, mobility level); [2]
device characteristics (i.e. walking surface, type of BWS
device); [3] BWS characteristics (i.e. the BWS level and
rationale for selecting the BWS level); [4] training char-
acteristics (i.e. duration of training period/sessions and
frequency); [5] training goals reflected by the outcome
measures; [6] attainment of training goals.

The rationale for the selected BWS level in the included
studies was categorized into ‘rationale provided’ and
‘rationale not provided’ For the studies that provided
a rationale, it was determined whether it was based on
qualitative or quantitative criteria.

Training goals were categorized into pre-defined cat-
egories (according to the reported outcome measures)
by two independent researchers (SE and GP; Appen-
dix 3). The categories were defined based on chapters
of the International Classification of Functioning (ICF)
framework. When more than one outcome measure
was reported, articles could be allocated into multiple
categories.

When BWS levels were variable over a training period,
the level that was applied at the start of the training
period was used for further analysis. When only individ-
ual BWS values were reported, the average value over all
participants was used for further analysis. If only a range
of optional values was reported, we picked the middle of
the range for further analysis.

Two researchers (SE and GP) independently assessed
the risk of bias of the included articles using the Newcas-
tle-Ottawa Scale (NOS [19]). The NOS was slightly modi-
fied for the purpose of the current review and contained
items on participant selection and outcome assess-
ment (Appendix 4) to check if these items were properly
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reported. The risk of bias assessment did not assess the
design of the included studies. For each of the six items
included, studies could be awarded a maximum of one
star. Total NOS scores range from 0 to 6, with lower risk
of bias reflected by higher scores.

Results

Literature search

The search identified a total of 3004 articles. Removing
duplicates resulted in 1879 articles to be screened based
on title and abstract. Consequently, 226 articles were
identified as possibly relevant. The majority of the articles
were excluded after full text screening, because a BWS
device was not the only intervention used (n=79), the
article was a conference abstract (#=47), there was no
training intervention (n=26), BWS characteristics were
not reported (n=20), there was limb assistance during
stepping (n=8), other diagnoses were involved (n=7),
the article was a single case-study (n=4) or the popu-
lation was already reported in another included study
(n=3). Reference list screening resulted in one additional
article. Eventually, 33 studies were included in this review
(Appendix 5).

Study characteristics

In total, the included studies reported the outcomes
on 156 persons with a SCI, 204 persons after stroke, 22
persons with TBI and 11 persons with MS (Table 1). No
studies on CP were found that matched the inclusion
criteria. In general, the study sample size, sex, age, diag-
nosis and time since injury were well reported. Consider-
able heterogeneity was noted in terms of the participants’
characteristics such as sex (67% male), age (range: 18—-93
years), time since injury (range: 524 days-13 years) and
the level of mobility (walking with or without assistance
versus wheelchair dependent).

Persons with a SCI were included in 14 studies, persons
after stroke in 15 studies, persons with MS and persons
with TBI both in two studies. Concerning the different
categories of BWS devices, 22 studies used frame-based
stationary devices, eight studies frame-based mobile
devices and three studies ceiling-mounted unidirectional
devices. There was no data available for ceiling-mounted
multidirectional devices. In 30 studies, BWS training was
performed on a treadmill, whereas overground train-
ing was performed in four studies. In total, 11 different
types of BWS devices were used. Custom-made devices
were most often used (n=12), followed by the Woodway
LOKO system (n=8, Woodway USA Inc., USA) and the
LiteGait (n=6, Mobility Research, USA). Other types of
BWS devices were used in two studies or less.

The BWS levels in the included studies ranged from
17 to 78% between all included studies (median: 30%,
interquartile range: 12.5%). The BWS levels were highest
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Fig. 1 Vertical raincloud plot of the Body Weight Support (BWS) levels used for different diagnoses (x-axis) and types of BWS devices (in different colors).
The left half of the raincloud plot shows the group distribution and group mean (large open dots) for each diagnosis and BWS device based on the num-
ber of participants that was included in the corresponding studies. The right half of each raincloud plot shows the data for individual studies (small dots).

MS: multiple sclerosis; SCI: spinal cord injury; TBI: traumatic brain injury
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Fig. 2 Rationale for selecting Body Weight Support (BWS) levels

for individuals with MS (median: 75%, interquartile
range: 6%), followed by individuals with a SCI (median:
40%, interquartile range: 35.0%), individuals after stroke
(median: 30%, interquartile range: 4.75%) and individuals
with TBI (median: 15%, interquartile range: 0%, Fig. 1). In
31 studies, the BWS level was variable over the training
period and was adapted to the capabilities of the patients.
A fixed BWS level was used in two studies. Variable BWS
levels were reported differently between studies. 14 stud-
ies reported only the BWS level applied at the start of
the training period, mentioning maximum (n=1), aver-
age (n=2), optional (n=3) or fixed (n=8) values. Seven

studies reported average BWS levels at the start and end
of the training period and one study reported these start
and end levels per individual. BWS level progression for
multiple time points was reported by nine studies, men-
tioning average (n=5) and individual (n=4) levels.

In 13 studies, a rationale for selecting the level of BWS
was not provided. Among the provided reasons in the
other 20 studies, 16 studies provided qualitative descrip-
tions for the applied BWS level, e.g. “the level of BWS
was progressively decreased based on speed and qual-
ity demand” [20], whereas four studies used quantitative
reasons to select the level of BWS, e.g. “we selected the
BWS level that resulted in walking>0.08 m/s faster than
0% BWS” [21] (Fig. 2).

The included studies reported a wide variety in train-
ing goals as reflected by the studies’ outcome measures
(Fig. 3). The majority of the studies (#=22) had improv-
ing gait pattern functions as a rehabilitation goal, which
included outcome measures such as speed, 10 m Walk
Test, step length, step width and gait symmetry (Appen-
dix 3). In 14 studies, improving functional ability was
set as rehabilitation goal. Reported outcome measures
included scores on functional and clinical tests, including
the Berg Balance Scale, Functional Ambulation Category,
Motricity Index and Fugl-Meyer Assessment.

For individuals with a SCI, all 11 different training goals
were pursued by BWS training over all included stud-
ies. For individuals after stroke, five goals were reported
(improving functions of the cardiovascular system, joint
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Fig. 3 Boxplots of the Body Weight Support (BWS) levels used for different training goals. The boxplots show the following: box, interquartile range
(IQR; 25th -75th centiles); upper whisker, upper adjacent; lower whisker, lower adjacent; circle, median. MS: multiple sclerosis; SCI: spinal cord injury; TBI:

traumatic brain injury

mobility functions, gait pattern functions, muscle power
functions and functional ability). For individuals with
MS, two different training goals were pursued over all
included studies (improving mental functions and func-
tions of the cardiovascular system). For individuals with
TBI, also two training goals were reported (improving
gait pattern functions and functional ability). For most of
the training goals, the BWS level varied between 30 and
75%.

The rationales provided for BWS level selection dif-
fered between diagnoses and between studies that had
the same training goals. For individuals with a SCI,
the BWS level was often selected to ensure an upright
trunk and prevent buckling of the knees. For individu-
als after stroke, the BWS level was often selected based
on walking speed. The rationale for BWS level selection
also differed between studies that had the same training
goals. For instance, BWS levels for the goal of improv-
ing functions of the cardiovascular system were based
on the alignment of the trunk and limbs, training inten-
sity, individual improvement and walking speed. For the
goal of improving gait pattern functions, selection was
frequently based on walking speed, but also on the align-
ment of the trunk and limbs and gait kinematics.

All included studies achieved most of their training
goals. For all diagnoses, BWS gait training resulted in
increased walking speed after several weeks of training,

with applied BWS levels ranging from 20 to 78%. For
individuals with a SCI, BWS gait training was frequently
beneficial for improving walking endurance. In three
studies on individuals with a SCI, training goals were not
attained, i.e. balance control [22] and quality of life [23]
did not improve when using 30% BWS and bone density
did not improve when using 68% BWS [24]. For indi-
viduals after stroke, BWS gait training often improved
step length and step symmetry. However, in two stud-
ies, increases in step length and step symmetry were not
found when using 30% BWS [25, 26]. For individuals with
TBI, gait training did not improve swing and stance time
[27], when using 20% BWS.

Risk of bias assessment

The mean NOS score and standard deviation were
4.1%+1.2 (range: 2-6). For most studies, stars were
awarded for descriptions of training duration and fre-
quency, the BWS level and participant characteristics
(Appendix 6). Overall, stars were more often withheld
for items related to participants screening, selection and
follow-up of study groups. For these items, information
was often not explicitly described.
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Discussion

This systematic review provided a detailed overview of
initial BWS levels used during clinical gait training, and
showed that BWS levels differ considerably between
studies included in this review and tend to differ between
diagnoses, types of BWS devices and within training
goals. Our findings show that consensus on selecting
BWS levels is currently lacking, as well as clarity on the
underlying reasons for selecting a BWS level. The results
of this review seem to reflect the uncertainty within clini-
cal practice about what BWS levels should be used. Find-
ings from this review can serve as a starting point for the
development of guidelines that can be used in rehabilita-
tion programs.

In total, we identified 33 studies that applied BWS
training to improve gait in individuals with neurological
impairments. These studies were, however, not equally
distributed over the included diagnoses and BWS device
types. Specifically, data for individuals with MS and
TBI were underrepresented in literature and no studies
on adults with CP were included. Moreover, the major-
ity of the included studies used frame-based stationary
devices, whereas none of them used multidirectional
ceiling-mounted devices. It should be acknowledged that
the limited and heterogeneous data available for specific
diagnoses and devices hamper intercomparisons. How-
ever, our results clearly show that variety exists in the
amount of BWS applied during gait training, with values
ranging from 17 to 78% over all included studies.

In 39% of the studies included in this review, a ratio-
nale for selecting the BWS level was not reported.
Although the majority of the included studies did pro-
vide a rationale for selected BWS levels, the arguments
provided lack clarity to account for the variation in the
BWS levels found, as the rationale provided was based
on qualitative criteria in 80% of the cases. The variety in
BWS levels and the high number of qualitative rationales
provided could reflect the current practice in which the
BWS level is often determined subjectively [18]. Poten-
tially, the wide range of BWS levels could also be due to
differences in specific rehabilitation goals of the studies,
but our results show that even within most of the training
goals the range of applied BWS levels is substantial. The
wide range of BWS levels corresponds with the diversity
in rationales provided for BWS level selection within the
training goals. This diversity could be explained by the
large number of different rationales provided in general,
but also by the fact that most of the goals were pursued
by multiple diagnoses, whereas the rationales seemed to
be slightly dependent on diagnosis. However, this does
not necessarily mean that the strategy for BWS level
selection differs between diagnoses, as researchers from
the same field may have adopted research protocols
from other research groups. Due to the limited number
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of rationales extracted from the included studies and the
diversity of rationales within training goals, comparing
the strategies for BWS level selection between training
goals was not possible in this study. Future research may
determine how BWS levels should be tailored to specific
training goals [28].

Our results may argue for a patient and training-tai-
lored selection of BWS levels within future guidelines.
Despite the fact that data is limited for some of the
included diagnoses and BWS devices, our results indi-
cate that slightly higher BWS levels seem to be used for
individuals with MS and SCI than for individuals after
stroke and TBI. However, differences between diagnoses
need to be interpreted with caution, as they likely result
from potential confounders, such as differences in patient
and training characteristics. Factors such as severity of
the disorder, age, time since injury, cognitive level, train-
ing goals, within therapy changes of the BWS level and
frequency and duration of training may have had a larger
influence on BWS level selection than the diagnosis itself.
In the studies included in this review, individuals with a
SCI were often wheelchair dependent, whereas individu-
als after stroke were able to walk with assistive devices.
Consequently, differences in mobility level between diag-
noses could explain why the applied BWS levels were
slightly higher for individuals with a SCI compared to
individuals after stroke. The possibility to change BWS
levels within the training period could be considered
another confounder. Studies that allowed to change BWS
levels during the training period may have used higher
start levels than studies that used a fixed level over the
whole training period. Since movement strategies can
already be affected by small adaptations in tasks [29],
it seems to be important to accurately tune the level of
BWS to specific circumstances, taking into account
the potential confounders described above [30]. This
approach is in line with the assist-as-needed principle,
indicating that the amount of support is based on indi-
vidual requirements [16], and can be a strategy to deter-
mine BWS levels in future guidelines.

Only a limited set of cross-sectional studies (that were
not included in this review) systematically investigated
effects of different BWS levels on outcome measures
such as spatiotemporal gait parameters, muscle activity
and metabolic costs [4, 12, 13, 31, 32]. From these stud-
ies it is known that higher BWS levels reduce metabolic
costs [32], as higher BWS levels require less muscle activ-
ity [33]. Moreover, increased BWS levels seem to reduce
step length [13] and increase step width [12]. However,
in most of these cross-sectional studies, only a few BWS
levels have been applied and therefore it is unclear how
gait related parameters change over a full range of BWS
levels. In their systematic review, Apte et al. [18] pooled
together multiple cross-sectional studies to predict
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changes in gait over a full range of BWS levels. Despite
that their results provide insight in how gait could change
by increasing levels of BWS, they may be distorted by
the influence of different diagnoses and BWS devices as
shown in this systematic review.

Our results show that all included studies attained
most of their training goals, regardless of the applied
BWS level. It should be noted that the majority of the
studies in this review (#=28), did not include a control
group without BWS. In the absence of a control group
without BWS, the added value of BWS in comparison
to conventional gait training remains unknown. Results
from five studies that included control groups lack clarity
on the effectiveness of BWS gait training in general and
the applied BWS level specifically. Two of the included
studies [34, 35] found greater improvements in gait
speed during BWS training, whereas three other stud-
ies showed greater improvements in speed [25], balance
control [22], step length and symmetry [36] during gait
training without BWS. Variety in the applied BWS level
was small between these studies and differed between 20
and 30%, suggesting that other factors such as (severity
of) the disorder may explain differences between stud-
ies. Since goals were achieved in all included studies, it
cannot be estimated if goal attainment was more likely
to be achieved at particular BWS levels or within specific
diagnoses. Variation in study designs, populations and
outcome measures does not allow a to draw conclusions
on the effectiveness of applied BWS levels. Therefore,
further research is needed to obtain more insight into
the effectiveness of specific BWS levels within particular
diagnoses.

Although a considerable amount of literature exists on
BWS training in rehabilitation, the variety in study char-
acteristics preclude a clear picture of how to set BWS
levels in clinical practice. Further research is necessary
to develop guidelines for BWS level selection. In order
to create a more comprehensive and complete over-
view, future studies should more clearly report, for each
patient individually and for each training session within
the training period: patient characteristics, the level of
BWS applied and training goals pursued as well as the
rationale for the applied levels. Reporting these charac-
teristics for each individual and training session sepa-
rately would allow to monitor individual progression of
BWS level selection during rehabilitation. It should be
noted that the training goals described in the current
study were based on the reported outcome measures of
the included studies. Although these are likely to be asso-
ciated with training goals, future studies may investigate
the relationship between BWS levels and training goals
more directly, using training goals identified by thera-
pists. Moreover, it would be useful to conduct controlled
experiments to assess the effectiveness of multiple BWS
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levels for several diagnoses. Previous research suggested
that parameter selection in robotic gait training devices
might have an influence on the effectiveness of gait train-
ing [37] and argued that key-determinants for meaning-
ful clinical use of robotic gait training devices are optimal
patient selection and optimal adaptation of the device
and its settings to the individual situation and goals of a
patient [28]. The current study shows that variety exists
in the reported BWS levels, patient characteristics and
training goals. This variety indicates that BWS selection
cannot be based on one general guideline, but requires
multiple factors to be taken into account, such as train-
ing goals, the time point of training and patients’ level of
walking ability, to develop an individually-tailored BWS
training program. Therefore, future guidelines should
not consist of a general advice per diagnosis, but a set of
advices that can be used complementary to each other to
select an appropriate BWS level for each individual.

This study has some limitations to consider for inter-
pretation and future research. Due to the diverse and
limited amount of data reported in the included studies,
the influence of confounding factors such as severity of
the disorder and changes within training on BWS levels
and their selection could not be investigated, as well as
the individual progression of BWS levels during rehabili-
tation. Moreover, variation in study designs and popula-
tions, and the limited amount of studies available hamper
a systematic comparison of training effects. Therefore,
our results do not allow conclusions to be drawn about
the effect of BWS levels on rehabilitation success. In
addition, studies on exoskeletons were excluded from this
review, as these devices provide different types of support
next to BWS, which could otherwise have influenced
our results. However, as exoskeletons are also frequently
used in current rehabilitation, future research may inves-
tigate in which specific circumstances BWS devices and
exoskeletons should be used. These limitations should
be taken into account when developing guidelines based
on this review and could be topics of interest for future
research.

Conclusion

This systematic review provides a detailed overview of
the initial BWS levels used during gait training in indi-
viduals with neurological impairments. We showed that
BWS levels differ considerably between studies and tend
to differ between diagnoses, types of BWS devices and
within training goals. Our findings show that consen-
sus on selecting BWS levels is currently lacking, as well
as clarity on the underlying reasons for selecting BWS
levels. Further research is necessary to reach consensus
on selecting BWS levels and to experimentally investi-
gate which levels are optimal for specific diagnoses and
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training goals. This review serves as a starting point for
debate on selecting appropriate BWS levels in clinical
practice.

Abbreviations
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PROSPERO  Prospective register of systematic reviews

Scl Spinal cord injury

TBI Traumatic brain injury
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