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Abstract 

Background Many individuals with neurodegenerative (NDD) and immune‑mediated inflammatory disorders (IMID) 
experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which 
are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, 
an essential component of health, and may present objective evidence of fatigue. This study explored the relation‑
ships between gait characteristics derived from an inertial measurement unit (IMU) and patient‑reported fatigue 
in the IDEA‑FAST feasibility study.

Methods Participants with IMIDs and NDDs (Parkinson’s disease (PD), Huntington’s disease (HD), rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), primary Sjogren’s syndrome (PSS), and inflammatory bowel disease (IBD)) 
wore a lower‑back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physi‑
cal fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration 
vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were 
extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using 
a generalised linear mixed‑effects model (GLMM) and binary classification with machine learning.

Results Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, 
the variability of the non‑walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, 
and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current 
analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% 
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(precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, 
and gait rhythm were the most interesting characteristics for future analysis.

Conclusions Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait meas‑
ures and abnormal fatigue. However, factors such as the COVID‑19 pandemic may have impacted gait behaviours. 
Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait 
and abnormal fatigue.

Keywords Real‑world gait, Machine learning, Wearable devices, Walking, Fatigue, Digital health

Background
Many people with neurodegenerative disorders (NDD) 
and immune-mediated inflammatory diseases (IMID) 
experience abnormal fatigue. For instance, abnormal 
fatigue has been reported in over 85% of those with sys-
temic lupus erythematosus (SLE) [1, 2], 33% to 58% of 
those with Parkinson’s disease (PD) [3], 67% of people 
with primary Sjogren’s syndrome (PSS) [4], and over 41% 
of patients with rheumatoid arthritis (RA) showed clini-
cally important levels of fatigue [5]. These symptoms can 
be debilitating for those who experience them and are 
key contributors to poor quality of life. Accordingly, a key 
goal of the IDEA-FAST consortium [6] is to explore and 
identify digital endpoints that provide reliable, objective, 
and sensitive evaluations of abnormal fatigue, which in 
turn will facilitate therapeutic development to alleviate 
these symptoms.

A common method for assessing fatigue is patient 
reported outcomes (PRO)s, where the patients answer 
questionnaires and diaries designed to record how the 
patient is feeling. This approach gives a snapshot view of 
fatigue, either during a one-off visit at the clinic or with 
regular at-home questionnaires. PROs, however, are 
subjective, susceptible to recall bias [7], and the meas-
urement of granular changes over time requires high 
patient burden through repeated assessments. Further-
more, studies have shown that individuals who are sleep-
deprived or are out of their circadian phase are prone to 
underestimating their fatigue-related impairments [8–
11]. These issues are therefore worsened in cases where 
neurological functionality or sleep quality is impacted by 
an illness. Wearable devices may circumvent the pitfalls 
of PRO-based assessments since they could objectively 
and continuously monitor physiological changes related 
to physical and mental fatigue. Inertial measurement 
units (IMUs)—e.g., wearable devices comprising tri-
axial accelerometers and gyroscopes—are becoming an 
increasingly popular option for continuous remote moni-
toring, due to their affordability and ease of use in users’ 
natural environment. These recordings can be wirelessly 
transmitted to a device, such as a smartphone, where the 
signals can be processed, assessed, and reported to the 
user or clinicians.

Mobility (e.g., walking, gait) is considered as the 6th 
vital sign and represents an essential component of 
health and quality of life, being key to physical, men-
tal, and social well-being [12]. Loss in mobility has been 
associated with morbidity, falls, dementia, cognitive 
decline, hospitalisations, mortality, and symptoms of 
chronic disorders [13–16]. As such, the current study 
will explore the relationship between gait character-
istics and abnormal fatigue in people with NDD and 
IMID.

The current knowledge in the relationships between 
walking and abnormal fatigue in NDDs and IMIDs is very 
limited. Many studies exploring fatigue focus on muscle 
or exercise-induced fatigue in healthy participants with 
parameters such as accelerometer spectra [17], measures 
of acceleration, jerk, and posture [18–21], and temporal 
measures of gait (“micro” gait, e.g., gait speed, step time) 
[22, 23]. Most notably, the majority of existing literature 
has been conducted within in laboratory-based envi-
ronment, where the participants are monitored whilst 
doing an instructed task. This includes the six-minute 
walking distance test (6-MWDT) to assess the impacts 
of fatigue on gait (exercise) capacity [24–28]; gait speed 
i.e., the ten-meter walking test (10-MWT) [24, 29–32]; 
an electronic walkway [33, 34]; and a predefined path 
for unaided walking [35]. We found three studies that 
explored fatigue in NDD or IMID specifically with free-
living gait assessment. The first analysed physical activ-
ity over a seven-day period from a hip-worn tri-axial 
accelerometer in 123 participants with SLE [36]. Light 
and moderate/vigorous activity and moderate/vigorous 
activity periods > 10 min were identified from the accel-
erometer’s vector magnitude and compared to the par-
ticipants’ Fatigue Severity Score (FSS). The second study 
investigated the impact of physical activity on non-motor 
symptoms with the Movement Disorder Society-Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) in 45 PD 
participants with a hip-worn accelerometer for at least 
three days to record daily step count and assess sedentary 
behaviour, light physical activity, and moderate-to-vigor-
ous activity [37]. In the third, participants with multiple 
sclerosis (MS)—134 fatigued and 76 non-fatigued—wore 
an accelerometer above the dominant hip for seven days 
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to record light and moderate-to-vigorous activity counts, 
whilst reporting on their fatigue severity with FSS [38].

In many cases, the exploration of gait measures is lim-
ited to characteristics such as gait speed [31, 39], and 
ambulatory activity (step count) [30]. Other studies 
were more focussed on gait, but only explored differ-
ent activity levels based on step count [37], vector mag-
nitude [36], and activity counts [38]. Another explored 
6-MWT, dynamic activity, number of postural transi-
tions, and walking bouts longer than ten seconds [28]. 
Three studies included a more comprehensive analysis of 
macro (reflecting activity) and micro (reflecting discrete 
gait outcomes) gait characteristics within a laboratory: 
one study assessed the associations of Multidimensional 
Fatigue Inventory (MFI) with measures of pace, rhythm, 
variability, asymmetry, and postural control [33]; one 
analysed the cycle time, stride length, swing time, and 
double support time and their variability (coefficient of 
variation (CoV)) [34]; and one compared gait duration 
(10-MWT), gait speed (m/s), cadence (steps/min), and 
stride length (m) to the Parkinson FSS [32]. Furthermore, 
the participants explored by the studies in the litera-
ture typically include only healthy subjects [33] or only 
one disease cohort such as PD [32, 37, 39], MS [35, 38], 
IBD [28], SLE [36], symptomatic knee osteoarthritis [31], 
fibromyalgia [34], and stroke survivors [30].

Therefore, in-depth analyses of the associations 
between real-world gait and abnormal fatigue in NND 
and IMID are currently lacking. The current study will 
analyse free-living data from several differing disease 
cohorts and will conduct an extensive exploration of vari-
ous measures of gait and walking activity as a preliminary 
assessment of data collected by IDEA-FAST [6].

This study aims to:
 (i) comprehensively explore the feasibility of using 

macro and micro gait characteristics from an IMU 
attached to the lower back to objectively identify 
PRO scores of physical and mental fatigue in NDD 
and IMID participants;

 (ii) assess the associations of the macro and micro 
characteristics with selected PROs using a gener-
alised linear mixed effect model and low vs. high 
fatigue binary classification performances of popu-
lar machine learning models;

 (iii) explore the usefulness of the gait-model’s physi-
ological feature groups using the associations from 
the linear mixed effect model.

Materials and methods
Experimental protocol
A total of 131 participants wore devices measur-
ing activity for the IDEA-FAST feasibility study. All 

participants provided written informed consent and 
research was conducted in accordance with the Dec-
laration of Helsinki and was approved by the London 
Riverside Ethics Committee (20/PR/0185) and the 
Health Research Authority (HRA). The inclusion cri-
teria ensured the participants were over 18 and were 
willing and able to participate. The exclusion criteria 
ensured participants had no diagnoses or symptoms 
relating to their disorder that could interfere with the 
aims of the study (e.g., sleep disorder, chronic fatigue, 
etc.) [40]. The current study analysed data from a 
lower-back IMU approximately at the level of the L5 
vertebra for two periods of five consecutive days in a 
free-living environment. The IMU was the McRob-
erts [41] Dynaport device, from which only the triaxial 
accelerometer data was used, with a sampling rate of 
100 Hz and a range of ± 8 g (1 g is equivalent to 9.81 m/
s2). Whilst wearing the device, participants were asked 
to complete short PROs up to four times a day: morn-
ing (09:00–12:00), early afternoon (13:00–16:00), late 
afternoon (17:00–20:00), and evening (21:00–24:00) on 
a smart phone provided. This included two questions 
asking how the participants were feeling with regards 
to their physical and mental fatigue (Likert items on 
a scale of 0–6). These data were collected between 
August 2020 and August 2021, therefore during the 
COVID-19 pandemic. More information can be found 
in [42] and a table of the participants’ demographics 
can be found in Table 1 in the Results section.

Data processing
To assess the gait characteristics from these acceler-
ometer data, the walking bouts, defined as periods of 
walking with three or more steps taken [43–46], were 
identified using algorithms validated with healthy 
adults [47]. From which, macro and micro measures 
of gait [14, 33, 48] were extracted using algorithms 
(including the walking bout detection algorthm used in 
the current analysis) that were validated with healthy 
older adults [49], PD and healthy controls in the real-
world [50], ataxia and healthy controls [51], and post-
stroke [52]. Statistical characteristics that represent 
these gait measures across the selected time-period 
were compared to the PROs to explore their relation-
ships. The spread and balance of the PRO scores them-
selves were also analysed. Since the individual cohort 
sizes were small—as few as 9 participants—the analysis 
described below was performed on all disease cohorts 
pooled together, allowing for the exploration of a 
mixed-disease biomarker. Additionally, the outcomes of 
analyses with 30 healthy controls included in the data 
can be found in the Supplementary Materials.
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Identification of bouts of walking
The raw accelerometer data were visually inspected to 
observe the orientation of the sensor and identify any 
periods of missing data. The sensor’s x–y-z axes from 
the raw accelerometer data were then renamed to give 
the participants vertical (VV), medial–lateral (ML), and 
anterior–posterior (AP) orientations. To further ensure 
the device was attached in the correct orientation, the 
mean of the sensor’s x-axis (participants’ vertical axis) 
was checked: if the mean across a day was positive, the 
data were visually inspected, and if required, the orien-
tation was corrected. The participant was considered 
as more likely to be walking if moving on all three axes 
and the trunk was upright. To find the walking bouts, the 
accelerometer data were mean normalised, filtered with 
a second order lowpass digital Butterworth filter with a 
frequency cutoff of 17 Hz, and segmented into 0.1 s non-
overlapping windows. Windows that met the conditions 
in Eqs. 1 and 2 were considered to contain data where the 
participant was upright and moving, where σAccVV  is the 
standard deviation (SD) of the accelerometer’s VV axis, 
σAccML is the SD of the ML axis, σAccAP is the SD of the 
AP axis, and AccVV  is the mean of the accelerometer’s 
VV axis [47].

The thresholds used in Eqs.  1 and 2 were defined in 
the validation study for this algorithm [47]. The neigh-
bouring windows containing walking data were merged 
to give the bouts. Bouts that were very short and very 
close together (less than 20 windows: 2 s) were merged 
and bouts that lasted less than 20 windows were excluded 
[47]. The resulting walking bouts that began up to 2 h 
before the participant completed a PRO were selected for 
analysis. The macro and micro gait characteristics were 
then extracted from the original accelerometer data using 
these defined walking bouts.

Detection of steps
With the walking bouts identified, the steps were iden-
tified from the lower-back accelerometer data by find-
ing the initial contact (IC) and final contact (FC) using 
MATLAB®, with the method outlined in [53]. The accel-
erometer data in the participant’s VV axis was detrended 
using the detrend function, mean normalised and fil-
tered with a fourth order lowpass digital Butterworth 
filter with a frequency cutoff of 20 Hz. This uni-axial 
signal was integrated with cumtrapz and then differ-
entiated using a Gaussian continuous wavelet transfor-
mation (CWT), thus smoothing the signal. IC events 
were then defined as the local minima of the CWT, 

(1)σAccVV + σAccML + σAccAP ≥ 0.05

(2)AccVV ≤ −0.77

detected using findpeaks, and FC events were defined 
as the local maxima from a further CWT differentiation 
[53]. Only IC events above the threshold of 0.4 × mean 
of the peaks and FC events above the threshold of 0.25 
× mean of the peaks were considered. Detected walking 
bouts containing fewer than three steps were removed 
and gait initiation (first three and last five steps) was 
excluded from further analysis. To account for any out-
lier steps detected by the algorithm described, any steps 
associated with a step time ≤ 0.25s or ≥ 1.25s or a step 
length ≤ 0.23m or ≥ 0.95m, or any strides associated with 
a swing time ≤ 0.23s or ≥ 0.95s were removed from fur-
ther analysis.

Macro gait characteristics
Macro characteristics are the measures of gait that reflect 
activity. Based on the gait model [14, 54], the gait char-
acteristic groups for the walking (walking bouts) and 
non-walking (periods when walking was not detected) 
measures extracted from the accelerometer data were:

• Walking volume: number of steps in the walking 
bouts, length of the walking bouts (in seconds, excl. 
mean), total number of walking bouts, and number 
of walking bouts lasting 10 min or more;

• Non-walking volume: length of the non-walking 
bouts (in seconds, excl. mean) and number of non-
walking bouts lasting 20, 30, and 50 min or more;

• Pattern: bout length pattern, mean walking time (s), 
and mean non-walking time (s);

• Vector magnitude: vector magnitude of the triaxial 
accelerometer (m/s2);

• Variability: variability of the bout lengths (s).

The variability of the bout lengths ( S2 ) was calculated 
using the maximum likelihood technique (MLT) [55] 
because the accelerometer data were log normally dis-
tributed [56] and were found for both the walking ( S2W  ) 
and non-walking ( S2S ) bouts [57].

The bout length pattern was calculated using the alpha 
parameter, which describes the distribution of the lengths 
of the walking bouts [57]. It was devised by Chastin et al. 
[58] and is derived using the MLT. The alpha parameter 
can be calculated with Eq. 3, for an array of bout lengths 
xi of length n.

The vector magnitude is the absolute magnitude of the 
acceleration of the device and was found using Eq. 4.

(3)α = 1+ n

n

i=1

ln
xi

xmin

−1
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The walking and non-walking bouts, steps taken dur-
ing the walking bouts, and variability of the bout lengths 
were identified using MATLAB®, which were then 
exported, and the remaining measures were extracted 
with Python.

Micro gait characteristics
Micro characteristics are the measures of gait that reflect 
discrete gait outcomes. For these features, the gait model 
[14, 54] feature groups and the number of features within 
each group were:

• Pace: step velocity (m/s), step length (m), and SD of 
swing time (s);

• Rhythm: stance time (s), swing time (s), step time (s), 
and stride time (s);

• Variability: SD of the step time (s), SD of the stance 
time (s), SD of the step velocity (m/s), SD of the step 
length (m), and SD of the stride time (s);

• Asymmetry: asymmetry of the step time (s), swing 
time (s), and stance time (s);

• Postural control: asymmetry of the step length (m).

From the sequence of ICi and FCi events, the stance 
(duration the foot was in contact with the ground), stride 
(the full gait cycle, i.e., two successive steps), and swing 
times (duration the foot was not in contact with the 
ground) were found using Eqs. 5–7 [49].

The step length was found using Eq. 8 which is based 
in the inverted pendulum model [59]. Here, h is the 
change in height of the participant’s centre of mass and 
l is the pendulum length i.e., the sensor’s height above 
the ground, which was taken as 53% of the participant’s 
height [60].

The change in height h was found by a double CWT 
integration of the accelerometer’s VV axis. These posi-
tion data were filtered with a fourth order highpass digi-
tal Butterworth filter with a frequency cutoff of 0.1 Hz to 
prevent integration drift [59].

(4)
vector magnitude =

√
AccVV

2 + AccML
2 + AccAP

2

(5)Stance time (s) = FCi+1 − ICi

(6)Stride time (s) = ICi+2 − ICi

(7)Swing time (s) = Stride time− Stance time

(8)Step length (m) = 2
√
2lh− h2

With the step length, the step velocity can then be cal-
culated using Eq. 9 [49].

With these five gait characteristics extracted, the varia-
tion and asymmetry of each measure were also assessed. 
The variabilities were calculated by finding the SD of 
each gait characteristic, as seen in Eq. 10, and the asym-
metries were calculated by finding the absolute difference 
between the left and right feet, as seen in Eq. 11 [49].

For the asymmetry, the gait characteristics were sepa-
rated into the left and right feet by automatically assign-
ing the first detected step of each bout as right steps and 
alternating with the left step.

These micro characteristics were found using MAT-
LAB and then exported to Python which was then used 
for the remainder of the analysis.

Gait measures
With the gait measures calculated, the features with mul-
tiple values within each 2-h period were pooled. Ten 
statistical characteristics were used to represent these 
metrics across the bouts that began up to two hours prior 
to the corresponding PRO. These were the mean, SD, var-
iance, sum of the values, minimum and maximum value, 
median, and 25th and 75th percentiles. Measures, such 
as number of bouts, that only had one value across the 
2-h period are represented in the results as ‘single’. This 
gave a total of 45 macro features and 58 micro features 
from the accelerometer for 1387 physical fatigue and 
1380 mental fatigue PRO outcomes. Samples that did not 
have a PRO label nor any walking bouts associated were 
excluded. Therefore, participants whose entire data were 
excluded based on these criteria were also excluded from 
the analysis, giving 72 participants, plus an additional 30 
healthy volunteers who have been included in analyses in 
the supplementary materials.

Analysis of relationships between gait and abnormal 
fatigue
The relationships between the PRO scores and the digital 
measures gait described above were assessed using a gen-
eralised linear mixed effect model (GLMM) and machine 
learning classifiers. This was done by comparing each 
PRO score to the digital gait measures extracted from 

(9)Step velocity (m/s) =
Step length

Step time

(10)Variability = SD(Gait characteristic)

(11)
Asymmetry =

∣∣Gait characteristicLeft −Gait characteristicRight
∣∣
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the two-hour period prior. This time period was selected 
since two-hours was deemed sufficient to capture walk-
ing behaviours and prior exploratory analysis indicated 
that two hours was a suitable length of time.

Generalised linear mixed effect model
Since the PRO scores were on a Likert scale and are 
therefore ordinal, the associations between the PROs and 
the gait measures described were assessed using gener-
alised linear mixed effect model (GLMM). This analysis 
was implemented using the glmer function in R [61], 
which incorporates both fixed and random effect param-
eters in a linear prediction model using Eq. 12 [62]. 

Here, X is the matrix of gait measures, Y  is the tar-
gets (i.e., the PRO scores), α is the random intercept, 
E(Y |X ,α) is the estimate of Y  given X and α , g(·) is the 
link function for the mean of the distribution, η is the 
mean of the distribution. Parameters β and α were esti-
mated using maximum likelihood estimation [62].

For the current analysis, the random effect was defined 
as the subject to account for repeated measures from 
each participant, the link function g(·) was binomial dis-
tribution, and the likelihood of a mixed effect model was 
approximated using adaptive Gauss-Hermite quadrature 
[61]. The samples were also weighted by the inverse of 
the number of samples with the same PRO score to pre-
vent underprediction of the underrepresented scores.

The goodness-of-fit of the GLMM, and therefore the 
associations between each digital measure and their cor-
responding fatigue PROs, was evaluated with the model’s 
marginal and conditional R2 (as recommended by [63]), 
which theoretically range from 0 to 1, with 1 meaning 
a perfect fit. Marginal R2 is concerned with variance 
explained by the fixed factors, whereas conditional R2 is 
concerned by both the fixed and random factors [63].

Machine learning classifiers
To classify low vs. high fatigue using the macro and micro 
gait characteristics, two methods of splitting the data 
were used: intersubject cross validation (CV) (five-fold 
leave-subjects-out CV where 20% of the subjects were 
excluded as the test data) and intrasubject CV (five-fold 
cross validation within the data of each individual sub-
ject). For the intersubject method, the PROs were bina-
rised by setting 0–2 as low fatigue and 3–6 as high fatigue 
[64]. For the intrasubject method, the PROs were bina-
rised to low or high after splitting the data into the train-
ing/testing sets (five-fold CV) by setting threshold for 
binarisation as the mean of the training data. Therefore, 
the threshold for PRO binarisation was more reflective 

(12)g(E(Y |X ,α)) = η + α = Xβ + α

of the participants’ baseline, however one or two PROs 
from three participants had to be excluded since there 
was not enough range in the PRO scores to create two 
classes. These two methods allowed analysis of the macro 
and micro characteristics’ abilities to identify low/high 
rated PROs with an ‘unseen’ subject and for each indi-
vidual subject.

For both methods, any missing features (macros: 6.5% 
of variability of the bout lengths; and micros: 0.5% of 
the step length and step velocity and 10.8% of the step 
length asymmetry) were replaced with the median of 
the training data. The median was selected since it less 
susceptible to extreme values than statistical measures 
such as the mean. Since the classes, in most cases, were 
imbalanced, the minority class was oversampled using a 
synthetic minority over-sampling technique (SMOTE) 
[65] from Imbalanced-learn [66]. The data were 
then scaled using StandardScaler [67] and shuf-
fled. Once the data had been prepared, it was evaluated 
using four machine learning classifiers: support vector 
machine (SVM), k-nearest neighbours (kNN), random 
forest (RF), and Naïve Bayes classifier (NB). These models 
were selected since they represent a range of basic ideas 
in machine learning (separation, clustering, decision 
trees, and probability) and were implemented using the 
scikit-learn python package [67].

SVMs were introduced in 1995 [68] and classify by 
searching for an optimal hyperplane that separates the 
classes. If the data are separable, the hyperplane maxim-
ises a margin around itself that does not contain any data, 
creating boundaries for the classes. Otherwise, the algo-
rithm establishes a penalty on the length of the margin 
for every observation that is on the wrong side. The SVM 
classifiers used in this analysis used an RBF kernel, which 
maps the data onto a higher dimensional space, where 
linear separation is then performed. The RBF kernel K  
between two patterns x and x′ is calculated using Eq. 13, 
where γ is the hyperparameter defined by grid search as 
described below.

The kNN algorithm is based on the idea that similar 
groups will cluster. Training can be considered as ‘plot-
ting’ training observations in a multidimensional fea-
ture space. The algorithm works by ‘plotting’ the testing 
observations and classifying them based on the class(es) 
of the nearest neighbour(s) within that feature space.

RF was introduced by Breiman [69] and is based on 
randomised decision trees. Decision trees are flowchart-
like structures that predict the value of a target variable 
by learning a series of simple decision rules based on the 

(13)K
(
x, x′

)
= exp

(
−γ �x − x′�2

)
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training data. RF uses an ensemble of trees, each with a 
different random subset of the training samples and fea-
tures. This decreases the variance, compared to an indi-
vidual decision tree, and reduces the risk of overfitting. 
The class was then taken as the average of the trees’ prob-
abilistic predictions, whereas the original publication [69] 
let each tree vote for a single class.

NB implements the Gaussian Naïve Bayes algorithm, 
where the likelihood of the features is assumed to be 
Gaussian (normally) distributed. Given a class variable y 
and a feature vector x1, x2 . . . xn , the predicted class ŷ is 
found using Eq. 14 [67].

Maximum A Posteriori (MAP) estimation is used to 
estimate the probability of class y , P(y) , and P

(
xi|y

)
 . For 

Gaussian NB, the likelihood of features xi given class y , 
P
(
xi|y

)
 , is calculated using Eq.  15, where σy and µy are 

estimated using maximum likelihood [67].

The parameters for these machine learning models were 
defined using a grid search with the training data of each 
fold. Tenfold cross validation was used to find the parame-
ter combinations that returned highest balanced accuracy, 
which then defined these parameters for the final model 
of the fold. The parameters defined for the SVM were reg-
ularisation parameter (values tested: 0.001, 0.01, 0.1, 1, 10, 
100, 1000) and the kernel coefficient for the RBF, γ , (val-
ues tested: 0.001, 0.01, 0.1, 1, 10, 100, 1000). For the kNN, 
the number of nearest neighbours, k , tested were 1, 2, 3, 
4, 5, 6, 8, 10, 15. For the RF, the parameters tested were 
number of estimators (trees in the forest) (values tested: 5, 
10, 50, 100, 200, 500) and the number of features to con-
sider when looking for the best split (values tested: 

√
N  , 

log2N  , and N  (where N  is the number of features)).
Precision, recall, and balanced accuracy were used to 

evaluate the classifiers’ predictions on test data. Since 
the data were imbalanced, these metrics were selected as 
they avoid inflated performance metrics on imbalanced 
datasets. Equations 16–18 show the calculations for these 
performance metrics [67].

(14)ŷ = arg max
y

P(y)

n∏

i=1

P
(
xi|y

)

(15)P
(
xi|y

)
=

1√
2πσ 2

y

exp

(
−
(
xi − µy

)2

2σ 2
y

)

(16)precision =
TP

TP+ FP

(17)recall =
TP

TP+ FN

where TP is the true positive rate, TN is the true nega-
tive rate, FP is the false positive rate, and FN is the false 
negative rate. Here, high fatigue is the positive class and 
low fatigue is the negative class for both the physical and 
mental fatigue PROs.

Feature importance
To further investigate the impacts that these features 
have on the machine learning classifiers and to provide 
some clarity into the black-box nature of these models, 
the importance of the micro and macro feature charac-
teristic groups was evaluated. This was done with a light 
gradient boosting machine (LGBM)—a decision tree-
based model—and permutation feature importance.

Light gradient boosting machine
LGBM was introduced in 2017 [70] as an improvement 
on a typical gradient boosting decision tree: an ensemble 
model where the trees are in a series and each new tree 
minimises the errors of the previous tree [70]. The novel 
improvements of the LGBM are gradient-based one-side 
sampling (GOSS) and exclusive feature bundling (EFB). 
GOSS keeps all the instances with large gradients (errors) 
and performs random sampling on the instances with 
small gradients, since these instances are already well 
trained. EFB reduces the number of features by bundling 
mutually exclusive features into a single feature. Thereby, 
considerably speeding up the training of the model with-
out compromising the accuracy.

The LGBM firstly splits the features into discrete bins to 
construct feature histograms during training. The feature 
importance is then calculated finding the Gini index of 
each node (decision rule). The Gini index of a node is cal-
culated using Eq. 19, where nj is the importance of node j , 
wj is the weighted number of samples reaching node j , Cj 
is the impurity value of node j [71], A(j) denotes the child 
node from class A split on node j , and B(j) denotes the 
child node from class B split on node j [72].

Equation 20 can then be used to find the feature impor-
tance. Here, fi is the importance of feature i.

The average importance across the decision trees and 
cross validation folds were taken to give the importance 

(18)

balanced accuracy =
1

2

(
TP

TP+ FN
+

TN

TN+ FP

)

(19)nj = wjCj − wA(j)CA(j) − wB(j)CB(j)

(20)fi =
∑

j:nodejsplits on featureinj∑
k∈all nodesnk
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of each feature. This LGBM ranker was implemented 
using the lightgbm package [71].

Permutation importance
Permutation feature importance was also used to ana-
lyse the macro and micro characteristics and was imple-
mented using scikit-learn [67]. A model m was fitted 
using the data D , and then a reference score s was cal-
culated. Here, the balanced accuracy was used as the 
score s . Each feature j to be assessed was then permu-
tated (randomly shuffled) to corrupt the samples and 
give the corrupted data D̃k ,j . The balanced accuracy sk ,j 
of model m with this corrupted data was then computed. 
This process of permutating and calculating score sk ,j was 
repeated K  times with iteration k . The importance ij of 
feature j is then defined using Eq. 21 [73].

As such, a higher value of ij indicates to a higher impor-
tance for that feature and negative values indicate that the 
model improved with the feature’s corruption, therefore 

(21)ij = s −
1

K

K∑

k=1

sk ,j

it has negative importance. For this analysis, K = 5 and 
the macro and micro characteristics data were analysed 
separately. The mean importance across the four classi-
fiers described above was taken as the final permutation 
importance.

Results
Clinical and demographic characteristics
The data used in this analysis were collected at four clini-
cal sites in Europe as part of the IDEA-FAST feasibility 
study [40]. The participants included healthy controls 
(HC = 30) and those with six different NDD and IMID 
conditions: Parkinson’s disease (PD = 25), Huntington’s 
disease (HD = 14), rheumatoid arthritis (RA = 24), sys-
temic lupus erythematosus (SLE = 18), primary Sjogren’s 
syndrome (PSS = 18), and inflammatory bowel disease 
(IBD = 18).

The demographics of the participants who had usable 
data can be found in Table 1 and the number of samples 
from each cohort at each time of day is shown in Table 2. 
The disease cohorts (DC) data were used in the following 
analysis. The outcomes including the HC can be found in 
the supplementary materials.

Table 2 Number of samples used in the current analysis

DC Disease cohorts, PF Physical fatigue, MF Mental fatigue; morning: 09:00–12:00, early afternoon: 13:00–16:00, late afternoon: 17:00–20:00, evening: 21:00–24:00

Demographic = Population Morning Early Afternoon Late Afternoon Evening

PF MF PF MF PF MF PF MF

PD = 13 39 39 35 34 37 33 30 29

HD = 9 30 27 28 27 25 25 21 21

RA = 12 58 57 60 58 61 56 51 50

SLE = 9 58 57 50 53 49 51 56 59

PSS = 14 85 81 92 87 103 94 82 79

IBD = 15 69 76 84 92 88 96 96 99

DC = 72 339 337 349 351 363 355 336 337

HC = 30 100 87 107 103 121 120 125 110

Table 1 Demographics of the participants used in this study

Reported values are mean ± SD, aside from Sex which are the male to female ratio. DC Disease cohorts; M Male, F Female, BMI Body mass index

Demographic = Population Age (Years) Sex (M/F) Height (m) Weight (kg) BMI (kg/m2)

PD = 13 60.08 ± 11.34 7/6 1.75 ± 0.10 75.05 ± 12.56 24.40 ± 2.38

HD = 9 45.67 ± 11.17 4/5 1.74 ± 0.08 81.78 ± 18.73 27.47 ± 8.35

RA = 12 60.08 ± 10.43 2/10 1.65 ± 0.14 81.37 ± 16.41 30.45 ± 8.11

SLE = 9 51.33 ± 15.14 0/9 1.64 ± 0.07 69.36 ± 12.79 26.06 ± 5.38

PSS = 14 62.29 ± 12.62 2/12 1.62 ± 0.09 68.22 ± 8.23 26.27 ± 4.33

IBD = 15 35.60 ± 11.41 7/8 1.75 ± 0.11 74.79 ± 14.03 24.49 ± 3.50

DC = 72 52.51 ± 15.45 22/50 1.69 ± 0.12 74.84 ± 14.09 26.34 ± 5.61

HC = 30 48.70 ± 15.35 15/15 1.75 ± 0.10 79.72 ± 15.69 25.87 ± 4.24



Page 9 of 20Hinchliffe et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:94  

Table 2 shows that there is not a large disparity between 
the number of samples for the two types of fatigue and 
four times of day, therefore these are not aspects that 
must be considered with high criticism throughout 
this analysis. There is, however, a substantial dispar-
ity between the number of samples from each disease 
cohort. Therefore, the findings from this study may be 
more applicable to those with PSS or IBD than those with 
SLE or HD.

PRO scores
Figure 1 shows the physical and mental scores of the par-
ticipants. The participants’ mean PF score shows more 
spread across the full breadth of the 0–6 scale. Whereas 
for MF, the scores are only within 1–5, therefore cap-
ping off the extremes. While the participants’ mean PRO 
scores have similar interquartile ranges for both fatigue 
types, the MF has a lower median closer to 2 whereas 
PF is closer to 2.5. The scatter plots of the PROs’ means 
against SDs also show that PF has more spread than MF. 
Furthermore, both fatigue types show a slight positive 
relationship; generally, the higher the mean PRO score 
for a participant, the higher the SD. There is very little 
clustering of the patient cohorts; the MF shows that IBD 
generally has higher SDs and HD has lower SDs than the 
other cohorts, which is not seen with the PF. Further-
more, the cohorts with higher PF means (score > 3.5) are 
IBD, HD, and PSS, and the two highest MF means are 
from the PSS cohort.

Figure 2 shows the number of samples in each class for 
both the inter- and intra-subject cross-validation meth-
ods. These plots show that defining the threshold as the 
mean of each subject gave more balanced classes than 
using a threshold score of 2. In both cases there are more 
MF than PF samples in the low class and fewer MF in the 
high class.

Associations between micro and macro gait characteristics 
and PROs
A table of all associations between the gait characteris-
tics and PROs from the GLMM and their correspond-
ing p-values of the macro and micro characteristics can 
be found in the Supplementary Materials. Table  3 sum-
marises the absolute associations to assess the relation-
ships of the macro and micro characteristics with the 
two PROs. Overall, the associations are very weak. Fewer 
than an eighth of features had a statistically significant 
association with either PRO for both the macro and 
micro characteristics, all conditional R2 values were less 
than 0.2, and all marginal R2 values were less than 0.002. 
The variability of the non-walking bout lengths (in sec-
onds) returned the strongest conditional R2  value with 
PF, 0.165, and the strongest marginal R2 value with MF, 
0.0018.

Figures 3 and 4 show the R2 values of the GLMM for 
each macro and micro characteristic. The measures were 
ranked based on the mean R2 values, with the statistically 
significant (p < 0.05) measures double-weighted since 

Fig. 1 Summaries of the PRO scores (excluding healthy). a shows physical fatigue and b shows mental fatigue. Left: Box plots of the participants’ 
mean PRO scores. Right: Scatter plots of the mean against the SD for each participant’s PRO scores, colour represents cohort. Box plots show 
the median, interquartile range, 1.5 × interquartile range, and outliers of the data. PRO Patient reported outcome, PF Physical fatigue, MF Mental 
fatigue, SD Standard deviation
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these associations are more meaningful. The statistics 
were also ranked to explore any influence these measures 
may have on the findings. When considering both figures, 
there are minute differences between conditional R2 val-
ues, whereas the marginal R2 values are more variable.

Figure 3 shows that, generally, the conditional R2 had 
stronger associations with the PF, whereas the marginal 
R2 had stronger associations with the mental fatigue. For 
both the conditional and marginal R2, all measures of gait 
pattern were not statistically significant (p ≥ 0.05). After 
which, the two groups with the weakest associations were 
the walking then non-walking volume, with the strongest 
associations from the bout length variability followed by 
the vector magnitude. The three highest ranked statistics 
were the single-value measures, followed by the mini-
mum and SD, for both conditional and marginal R2.

Figure 4 shows that none of these gait measures were 
statistically significant (p ≥ 0.05). With the ranks based 
purely on the non-significant measures, both the con-
ditional and marginal R2 agree on the order of the gait 
characteristics—postural control, rhythm, variability, 

pace, then asymmetry—and the best statistic was the 
mean. Additionally, the conditional R2 returned higher 
(but non-significant) R2 values with the PF than MF in 
every instance.

Machine learning classifier performances
Figures  5 and 6 show the outcomes of the classifiers 
trained on the macro and micro characteristics, respec-
tively. Overall, the classification accuracies are around 
50% (random chance) for both feature groups and CV 
methods. The kNN and RF outperformed the SVM and 
NB for the intersubject method with the macro charac-
teristics, and the micro characteristics generally returned 
lower accuracies than macro for this CV method. 
Whereas, the micro characteristics’ interquartile ranges 
are generally higher for the intrasubject CV method, 
although all medians were 50% for both feature groups 
for this CV method. The interquartile range and whisk-
ers for the intrasubject CV method is much larger than 
the intersubject CV, possibly due to there being over 100 
folds for intrasubject CV, compared to five.

Fig. 2 The number of low and high fatigue samples in each class (excluding healthy). a Binarisation threshold was two (intersubject method). 
b Binarisation threshold was the mean PRO value of each subject (intrasubject method). PRO Patient reported outcome, PF Physical fatigue, MF 
Mental fatigue

Table 3 Summary of the linear mixed effect model associations and their statistical significance

No. Number, PF Physical fatigue, MF Mental fatigue

Feature Group
(No. of Features)

% of Statistically 
Significant Features 
(p < 0.05)

Mean absolute association Strongest association

Conditional R2 Marginal R2 Conditional R2 Marginal R2

PF (%) MF (%) PF MF PF MF PF MF PF MF

Macros [45] 6.7 11 0.157 0.096 0.0002 0.0003 0.165 0.100 0.0014 0.0018

Micros [57] 0.0 0.0 0.157 0.096 0.0002 0.0002 0.162 0.098 0.0010 0.0006
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Figure 7 shows the performance of the classifiers when 
trained on the characteristic groups separately for the 
macro (a) and micro (b) features. These plots also show 
that the balanced accuracies were around chance (50%), 
without a substantial difference between the characteris-
tic groups for both the macros and micros. In most cases 
the MF returned slightly higher or similar accuracies, 
with the vector magnitude as the exception, where the 
accuracies for physical fatigue are as high as 62.08. The 
two lowest performing groups were walking volume and 
pace, especially for the physical fatigue.

Table  4 shows a summary of the performances of the 
classifiers by reporting the mean balanced accuracies 
across the fold for each model. The precisions and recalls 

of the analyses in this section can be found in the sup-
plementary materials. Overall, the accuracies were simi-
lar to chance. When considering the intersubject CV 
method, vector magnitude with RF returned the high-
est performance for PF with 54.47% (precision = 48.2%, 
recall = 48.6%), and for MF the highest accuracy was 
with postural control with RF with 51.89% (preci-
sion = 42.6%, recall = 44.9%). For the intrasubject CV 
method, the micros with the SVM classifier returned the 
highest classification accuracy in both cases with 56.90% 
(precision = 43.9%, recall = 51.4%) and 55.74% (preci-
sion = 42.7%, recall = 49.3%) for PF and MF, respectively.

Generally, the intrasubject method returned higher 
accuracies than intersubject and for the macro and 

Fig. 3 Bar plots of the R2 values from the GLMM of the macro characteristics with non‑significant associations on the left and statistically significant 
associations on the right (p < 0.05). a, b show the conditional R2 and c, d show the marginal R2. a, c Gait characteristic group rank averaged 
across the statistical measures. b, d Statistic rank averaged across the gait characteristic groups. Features are ranked from highest to lowest mean 
R2 across the significant and insignificant measures, double weighted to the significant measures. Error bars show the 95% confidence interval. PRO 
Patient reported outcome, PF Physical fatigue, MF Mental fatigue, SD Standard deviation, GLMM Generalised linear mixed effects model
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micro characteristics each combined in ‘All’, the macros 
outperformed the micros, especially for PF. Overall, the 
differences in performances between the characteristic 
groups were considerably small, especially when con-
sidering the SDs.

Feature importance
To further investigate the usefulness of the different 
inputs, the importance of the features were ranked using 
two machine learning-based rankers: LGBM tree ranker, 
and permutation importance. However, due to the poor 
performance of the machine learning classifiers, the 

outcomes of these rankers may be misleading and are 
therefore not reported in this manuscript but are avail-
able in the supplementary materials.

Discussion
To our knowledge, this is the first study to comprehen-
sively investigate macro and micro gait characteristics 
in a free-living environment and their relationships with 
self-reported abnormal fatigue in multiple NDD and 
IMID cohorts and healthy participants. We have inves-
tigated the association between these gait measures and 
the PROs using a GLMM and binary machine learning 
classification and inspected the usefulness of the gait 

Fig. 4 Bar plots of the R2 values from the GLMM of the micro characteristics with non‑significant associations on the left and statistically significant 
associations on the right (p < 0.05). a, b show the conditional R2 and c, d show the marginal R2. a, c Gait characteristic group rank averaged 
across the statistical measures. b, d Statistic rank averaged across the gait characteristic groups. Features are ranked from highest to lowest mean 
R2 across the significant and insignificant measures, double weighted to the significant measures. Error bars show the 95% confidence interval. PRO 
Patient reported outcome, PF Physical fatigue, MF Mental fatigue, SD Standard deviation, GLMM Generalised linear mixed effects model
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domains using the GLMM. Overall, the current analysis 
has shown weak relationships between digital measures 
of real-world gait and abnormal fatigue.

Generally, the balanced classification accuracies were 
low and the GLMM showed weak associations; the high-
est balanced accuracy (averaged across the CV folds) was 
56.90% and the strongest association was 0.165 (for a 
range of 0 to 1). Therefore, the current analysis has shown 
that these conventional summary gait metrics of walking 

behaviour are poorly related to the patients’ perception of 
their fatigue. The analysis described in the current study 
was additionally conducted on all available participants 
i.e., including the healthy controls. The outcomes of these 
additional analyses can be found in the supplementary 
materials. Notably, we found that these additional partic-
ipants did not substantially change the findings, therefore 
they did not introduce substantial noise, nor clarify the 
relationships.

Fig. 5 Boxplots of the balanced accuracies of the classifiers for all folds with the gait macro characteristics. a Cross validation across the subjects 
(Intersubject method). b Cross validation within each individual subject (Intrasubject method). The dashed line represents random chance (50%). 
PRO Patient reported outcome; PF Physical fatigue, MF Mental fatigue, SVM Support vector machine, kNN k‑nearest neighbours, RF Random Forest, 
NB Naïve Bayesian

Fig. 6 Boxplots of the balanced accuracies of the classifiers for all folds with the gait micro characteristics. a Cross validation across the subjects 
(Intersubject method). b Cross validation within each individual subject (Intrasubject method). The dashed line represents random chance (50%). 
PRO Patient reported outcome, PF Physical fatigue; MF Mental fatigue, SVM Support vector machine, kNN k‑nearest neighbours, RF Random Forest, 
NB Naïve Bayesian
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Machine learning classifier performances
The machine learning classifiers returned poor clas-
sification performances (< 57%), meaning these algo-
rithms were unable to reliably identify the participants’ 
reported physical or mental fatigue from the macro 
and micro characteristics. This indicates that these 
gait measures have a weak relationship with patient 
reported fatigue. Figures  3b and 4b show plots of the 
classifier outcomes with intrasubject CV and dis-
play a wide range in balanced accuracies: 0% to 100% 

across the folds. This may be due to the limited vari-
ation in some participants’ reported fatigue severity 
during the study period. In most cases, the classifica-
tion accuracies were higher when using the intrasubject 
CV approach, compared to intersubject CV (with all 
features). This may reflect the subjective nature of the 
PROs and how individual patients score their own lev-
els of fatigue. For example, if a participant has consist-
ently experienced high fatigue for an extended duration 
and has therefore acclimatised to these symptoms, their 

Fig. 7 Boxplots of the balanced accuracies of the classifiers for all folds with each individual gait micro characteristic group and the intersubject 
method, across each fold and classifier. The dashed line represents random chance (50%). a Macro gait characteristics. b Micro gait 
characteristics. PRO Patient reported outcome, PF Physical fatigue, MF Mental fatigue
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walking behaviours may have a different relationship 
with their fatigue, compared to other participants. This 
may also be due to the pooling of six different disease 
cohorts in the intersubject CV method causing large 
intersubject variability in both the gait behaviours 
and the participants fatigue perception. Additionally, 
this is also possibly due to the flexibility in the assign-
ment of the low and high classes in the intrasubject CV 
approach. As seen in Fig. 2, the classes are much more 
balanced when defined by each participant’s mean PRO, 
as opposed to a universal threshold. Generally, the kNN 
and RF were the best classifiers, but the differences in 
performances from each classifier were subtle. Overall, 
the machine learning classifiers were unable to reliably 
separate low and high physical and mental fatigue with 
these data.

Feature comparisons
When considering the outcomes of the GLMM and clas-
sifier performances, it is unclear whether the macro or 
micro characteristic features are more useful. There is no 
clear group with stronger associations from the GLMM, 
though none of the micro characteristics were statisti-
cally significant (p < 0.05), and the macros generally out-
performed the micros with the intersubject CV method, 
but the micros generally outperformed the macros with 
the intrasubject CV method. This indicates that when 
exploring fatigue scores between participants at the 
population level, macro characteristics of gait may be 
more useful, whereas micro characteristics of gait may 
be more useful when exploring fluctuations in fatigue for 

individual participants. Furthermore, it is possible a com-
bination of select macro and micro characteristics could 
increase classifier performances.

Looking at the feature rankings from the GLMM, 
there is little consistency for the statistical characteris-
tics summarising the measures across the 2-h windows, 
compared to the gait characteristics. However, the single 
value measures were ranked at the most important by 
both the conditional and marginal R2. These measures 
include the number of walking and non-walking bouts, 
alpha parameter (pattern) and bout length variability, and 
since the pattern, walking and non-walking volumes were 
the lowest ranked of the gait characteristics, this ranking 
was likely influenced by the bout length variability, which 
was ranked the highest of the gait characteristics.

According to the R2 values from the GLMM, the fea-
ture groups with the highest importances in the macro 
characteristics were vector magnitude and bout length 
variability. One study investigated light and moderate/
vigorous activity levels from the vector magnitude of a 
hip-worn accelerometer in 123 SLE participants [36]. 
The authors found associations (p < 0.05) with moderate/
vigorous activity with fatigue PROs but not light activ-
ity. Therefore, future research could investigate the vec-
tor magnitude during higher and lower activity (such 
as walking) levels. There are examples of analysis of the 
relationship between fatigue and the micro-character-
istic gait variability for adults with NDD or IMID in the 
literature [34, 74], but the analysis of the variability of 
the walking bout lengths themselves are not as popular. 

Table 4 Summary of the balanced accuracies of the machine learning classifiers

Reports the mean ± SD of the balanced accuracies averaged across each fold and the maximal mean balanced accuracy given by a classifier. Bold denotes the ’best’ 
outcome for each PRO, feature group, and cross-validation approach. PRO Patient reported outcome, PF Physical fatigue, MF Mental fatigue

Train-Test Split PRO Group Mean Accuracy Highest Accuracy

PF MF PF MF

Intersubject CV method Macros All 50.69 ± 2% 49.70 ± 1% 52.98% 51.69%

Walking Volume 47.35 ± 1% 49.56 ± 0% 48.85% 49.95%

Non‑walking Volume 49.12 ± 3% 49.62 ± 1% 50.71% 51.39%

Pattern 47.91 ± 1% 50.64 ± 1% 49.73% 51.72%

Vector Magnitude 52.73 ± 1% 49.99 ± 1% 54.47% 50.60%

Variability 49.29 ± 1% 51.10 ± 1% 50.02% 51.86%
Micros All 46.62 ± 3% 48.36 ± 1% 50.09% 50.42%

Pace 43.62 ± 2% 49.11 ± 2% 45.53% 51.39%

Variability 47.40 ± 2% 47.37 ± 2% 49.85% 49.02%

Rhythm 47.58 ± 2% 48.50 ± 2% 49.83% 50.86%

Asymmetry 48.85 ± 1% 49.82 ± 1% 49.84% 51.81%

Postural Control 48.09 ± 2% 50.55 ± 1% 50.72% 51.89%
Intrasubject CV method Macros All 53.44 ± 1% 53.21 ± 1% 54.54% 54.53%

Micros All 56.13 ± 0% 54.70 ± 1% 56.90% 55.74%
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Therefore, this macro bout length variability would be an 
interesting point of further investigation.

For the micro characteristic feature groups, the current 
analysis found the feature groups with the overall high-
est ranks (although this was based on statistically non-
significant measures (p ≥ 0.05)) were postural control 
(which only included one measure: the asymmetry of the 
step length) and rhythm. One study found that temporal 
variation of postural balance was predicted collectively 
by pain and fatigue (30.7%) (p < 0.001) in 15 RA partici-
pants [75]. For rhythm, one study found an association of 
higher scores of physical fatigue with step time (rhythm) 
in healthy older adults [33]. Since the literature is con-
gruent with the findings of the current study, the current 
analysis can conclude that these measures could be more 
useful for future investigations.

Intuitively, it is reasonable to expect that higher fatigue 
would be associated with less activity, e.g. fewer steps and 
less time spent walking. However, the current analysis 
has found this to not be the case. Walking volume (step 
count, number of walking bouts, and length of walking 
bouts) was ranked second-to-last and PF did not have 
any statically significant associations, for both condi-
tional and marginal R2. Furthermore, the walking vol-
ume had some of the lowest classification accuracies. 
Two studies found no statistically significant relationship 
between walking volume measures and abnormal fatigue: 
daily step count over a 48-h recording period in 53 post-
stroke participants reported no relationship with fatigue 
from FSS and visual analogue scale (VAS) [30]; and 
the number of walking periods (> 10 s) and duration of 
dynamic activities over a 24-h period showed no differ-
ence between 10 fatigued (Checklist Individual Strength-
fatigue (CIS-fatigue) score of ≥ 35) and 10 non-fatigued 
IBD participants [28]. However, one study found that 
for 45 PD participants, those with fatigue (from MDS-
UPDRS, 17% of participants) had a lower step count 
(steps/day from 3-day recording periods) [37]. There-
fore, most of the literature is congruent with the find-
ings in the current analysis, though it is possible that the 
disease cohort can have an impact on the relationship 
between measures of walking volume and fatigue. We 
can conclude that there is potentially no overall relation-
ship between walking volume and the abnormal fatigue 
in these NDDs and IMIDs. This conclusion is in line with 
the experiences reported by many patients with persis-
tent fatigue symptoms. Therefore, if there is a relation-
ship between walking and abnormal fatigue, it is possibly 
in how they walk, not how much. This highlights the 
necessity for digital wearables to analyse the more subtle 
characteristics of walking behaviours over longer record-
ing periods, since these ‘simpler’ measures of gait that 
could be assessed visually by a clinician were insufficient 

for reliably identifying fatigue severity in the current 
analysis and existing literature.

Limitations
The main limitation of the current analysis, and any 
analysis exploring fatigue, is the subjective nature of 
the PROs. They are not an objective measure of fatigue, 
rather a measure of the participants’ perception of their 
own fatigue symptoms. Therefore, the “ground truth” 
used to train and test the classifiers is not necessarily 
objective fact. Thus, highlighting the need for alterna-
tive, objective measures of fatigue. Additionally, the lim-
ited variation in some individuals’ PRO scores used in 
this study may have also had an impact on the outcomes 
reported in the current analysis. This limited variation 
may have been exacerbated by the use of six-point Likert 
scales, which may have been insufficient to appropriately 
describe the participants’ perception of their fatigue.

Another main limitation of this analysis is that, despite 
having one of the largest participant populations in the 
literature, the data used in current analysis contains a 
relatively small number of participants, thus limiting the 
representation of intersubject variability. Moreover, the 
individual disease cohorts were very small, with some 
containing as few as 9 participants, and as such analysis 
of these individual cohorts was not performed. To coun-
teract these small cohorts, the analysis was done on all 
participants pooled together, which allows for the explo-
ration for a mixed-disease biomarker, but also obscures 
the impacts of these individual disease types on the gait 
behaviours and the participants’ perception of their 
fatigue. Additionally, the algorithms used to identify the 
walking bouts and extract the macro and micro charac-
teristics were not validated on all disease cohorts used 
within the current study. However, they were validated 
on healthy adults [49–51] and participants with varying 
mobility impairments, including Parkinson’s disease [50], 
ataxia [51], and post-stroke [52].

Furthermore, these data were collected during COVID-
19 pandemic between August 2020 and August 2021. 
This may have, for instance, limited the amount of walk-
ing data available and been unrepresentative of many 
participants’ lifestyles outside of a pandemic situation. 
Consistently, the walking bouts were very short, only 
25% of walking bouts lasted over 30 s, therefore very lit-
tle continuous walking was represented in these data. 
Finally, factors such as medication use, time of day, age, 
and sex should be explored in future analysis.

Future work
The main novelty of this work is the comprehensive 
analysis and comparison of these features for free-living 
data with multiple NDD and IMID cohorts. This was 
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done as a preliminary assessment before analysis of the 
IDEA-FAST clinical observation study (COS), which is 
currently ongoing and plans to include 2000 participants. 
As a result, multiple avenues of future investigations that 
could be considered with the COS—and similar data 
sets—include investigating the disease cohorts separately, 
considering confounding factors, and including other 
attributes that may aid the machine learning classifiers. 
Confounding factors such as participant weight, age, sex, 
and medication can impact macro and micro gait features 
and therefore providing this information could assist 
the classifiers in intersubject CV. For intrasubject CV, a 
possible input is the time of day, since this may have an 
impact on the participants’ perception of their symptoms 
i.e., fatigue during midday may be rated as more severe 
than during the evening, as well as their activity levels. 
For instance, one study found that, in PD, those with 
fatigue had a distinctly lower step count in the morning 
and afternoon hours, but not during the evening hours 
[37]. However, these authors also found no interaction 
between time of day and patient fatigue (p = 0.08). Future 
research should explore other measures of mobility in 
addition to gait characteristics such as walking speed, 
turning, non-linear metrics, and signal-based features, 
along with exploring different granularities, different 
time windows, and exploiting the continuous nature of 
these data, as well as data driven approaches with deep 
learning. In addition, the gyroscope data collected by the 
IMU would by an interesting addition to these analyses. 
Another important factor for future investigations to 
consider is potential approaches to better handle the sub-
jective nature of the PRO scores.

Conclusions
The current analysis investigated the associations 
of macro and micro gait characteristics with patient 
reported physical and mental fatigue in six NDD and 
IMID cohorts. Overall, the associations and classification 
accuracies were low—all R2 values < 0.17 and all mean 
accuracies < 60%—thus indicating to the complexity of 
identifying objective correlates of symptoms of fatigue 
from changes in gait. Most notably, the walking volume 
(step count and time spent walking) was one of the low-
est performing domains of the macro characteristics, 
indicating that, counterintuitively, the participants did 
not change their amount of activity with regards to their 
fatigue severity. These “traditional” gait measures used 
in the current analysis were insufficient for identifying 
patient reported fatigue, therefore further investigation 
is required for a mixed-disease biomarker. More “sophis-
ticated” measures derived from a digital wearable could 
be more interesting for future work and could include 
accelerometer vector magnitude during lower and higher 

activity intensity, bout length variability, and measures of 
postural control and gait rhythm, which were found to be 
more useful by the current analysis. However, compari-
sons of patient cohorts and with a larger participant pop-
ulation is important for future investigations.
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