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Abstract 

Background In-home rehabilitation systems are a promising, potential alternative to conventional therapy for stroke 
survivors. Unfortunately, physiological differences between participants and sensor displacement in wearable sensors 
pose a significant challenge to classifier performance, particularly for people with stroke who may encounter difficul-
ties repeatedly performing trials. This makes it challenging to create reliable in-home rehabilitation systems that can 
accurately classify gestures.

Methods Twenty individuals who suffered a stroke performed seven different gestures (mass flexion, mass exten-
sion, wrist volar flexion, wrist dorsiflexion, forearm pronation, forearm supination, and rest) related to activities of daily 
living. They performed these gestures while wearing EMG sensors on the forearm, as well as FMG sensors and an IMU 
on the wrist. We developed a model based on prototypical networks for one-shot transfer learning, K-Best feature 
selection, and increased window size to improve model accuracy. Our model was evaluated against conventional 
transfer learning with neural networks, as well as subject-dependent and subject-independent classifiers: neural net-
works, LGBM, LDA, and SVM.

Results Our proposed model achieved 82.2% hand—gesture classification accuracy, which was better (P<0.05) 
than one-shot transfer learning with neural networks (63.17%), neural networks (59.72%), LGBM (65.09%), LDA 
(63.35%), and SVM (54.5%). In addition, our model performed similarly to subject-dependent classifiers, slightly lower 
than SVM (83.84%) but higher than neural networks (81.62%), LGBM (80.79%), and LDA (74.89%). Using K-Best features 
improved the accuracy in 3 of the 6 classifiers used for evaluation, while not affecting the accuracy in the other classi-
fiers. Increasing the window size improved the accuracy of all the classifiers by an average of 4.28%.

Conclusion Our proposed model showed significant improvements in hand—gesture recognition accuracy in indi-
viduals who have had a stroke as compared with conventional transfer learning, neural networks and traditional 
machine learning approaches. In addition, K-Best feature selection and increased window size can further improve 
the accuracy. This approach could help to alleviate the impact of physiological differences and create a subject-inde-
pendent model for stroke survivors that improves the classification accuracy of wearable sensors.

Trial registration number: The study was registered in Chinese Clinical Trial Registry with registration number 
CHiCTR1800017568 in 2018/08/04
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Background
Stroke is a leading cause of death and disability world-
wide [1]. The aging and growing population has caused 
an increase in the total number of stroke incidents 
worldwide. While the advances in treatment lowered 
the mortality rate, the number of survivors in need of 
rehabilitation has increased substantially [2]. Notably, 
a significant proportion of such cases is concentrated in 
lower-income and lower-middle-income countries [3], 
emphasizing the need for cost-effective interventions 
that are adaptable across diverse settings.

Stroke rehabilitation is a long, burdensome process, 
both physically and financially; hence, automated assess-
ment systems that can minimize the rehabilitation costs 
and reduce the number of visits to physiotherapists are 
needed [4]. Stroke survivors often exhibit significant 
variability in their physical conditions, including mus-
cle weakness, spasticity, and altered movement patterns, 
making it challenging to develop a universal solution. 
Moreover, the biological signals from stroke survivors 
differ from those of healthy individuals, further compli-
cating the interpretation of the data [5–7]. These physi-
ological differences underscore the need for tailored 
sensor designs and analysis techniques capable of accom-
modating the unique needs and characteristics of stroke 
survivors. Thus, this study proposes using transfer learn-
ing with dimensionality reduction and increased window 
size to improve the accuracy and applicability of home-
based rehabilitation systems.

Recent studies have emphasized the importance of 
automated assessment and rehabilitation [8, 9]. Auto-
mated assessment systems are computerized systems that 
use sensor data to assess the motor function of stroke 
survivors. These systems have the potential to replace 
conventional assessment methods while offering cost-
effective means of conducting interactive rehabilitation 
exercises [10, 11]. This is especially suitable for in-home 
rehabilitation and can help reduce social isolation [12, 
13]. Incorporating games into these systems can moti-
vate post-stroke survivors by enabling them to engage in 
enjoyable, repetitive motions or tasks [14].

Automated assessment systems typically employ one 
or more of the following sensors to gather data: electro-
myography (EMG), force myography (FMG), and inertial 
measurement units (IMUs). Some systems employ com-
mercially available cameras to get kinematic data [15–
17]. However, setting up these cameras requires large 
space and technical expertise that might not be available 
in older people. Wearable sensors are easier to set up 
but have lower accuracy due to differing physiology and 
inconsistent sensor placement. The work presented in 
this paper proposes a method that increases the classifi-
cation accuracy of hand—gestures on new users.

Several studies have investigated different features, 
dimensionality reduction techniques, and time segmen-
tation on EMG signals [18–21]. However, stroke sur-
vivors have intrinsically different biological signals and 
behavior in contrast to healthier and younger people [22, 
23]. Some research suggests that time-domain features 
of EMG are prone to interference from muscle noise and 
artifacts. Conversely, other data propose that features 
in the frequency domain and time-frequency domain 
exhibit less redundancy concerning the management of 
nonlinear signal parameters related to muscle spasticity 
[24].

The use of machine learning for rehabilitation and 
assessment is becoming increasingly common. Jacob et al. 
[25] proposed using a deep learning model to extract user 
intent from electroencephalogram (EEG) signals to stim-
ulate the intended muscle. In the work done by Werner 
et  al. [26], wearable IMUs were employed for assessing 
participant performance through the utilization of the 
Action Research Arm Test (ARAT) score. Another study 
quantified hand and wrist motor function using IMUs 
and mechanomyography [27]. Li et  al. [28] developed a 
cellphone augmented reality system for long-term treat-
ment of post-stroke patients, which exhibited improve-
ments significantly higher than the control group.

Different studies have investigated the use of gesture 
recognition for post-stroke rehabilitation. Anastasiev 
et  al. [29] used carefully placed electrodes on forearm 
muscles to extract EMG signals, reaching an accuracy 
of 90.37% on new stroke survivors using an SVM clas-
sifier. This study was done in a controlled environment 
where the participant ’s hands and forearms were wiped 
with alcohol wipes and the muscles were examined by a 
specialist. Nevertheless, this demonstrates the feasibility 
of using biological signals for gesture recognition. The 
use of EMG signals to control a game was investigated 
by Yang et  al. [30]. They tested on 12 stroke survivors 
and scored an accuracy of 76.1% using an LDA classifier 
where each participant was trained individually.

Most algorithms operate under the assumption that 
training and test data originate from the same feature 
space and exhibit similar distributions [31]. However, this 
assumption may not always be valid in biological signals, 
particularly when dealing with electrode shifts or vary-
ing user scenarios. Maintaining high performance often 
necessitates collecting large amounts of data and train-
ing a unique model for each user, which is a highly time-
consuming and labor-intensive process. Hence, transfer 
learning can adapt an existing model’s parameters or 
modify its architecture to suit the new users or tasks, 
while also reducing the training time and improving the 
accuracy [32]. Côté-Allard et al. [33] proposed a transfer-
learning scheme that uses a source network pre-trained 
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from source-domain, and adding a second network that 
is trained on the new participant for hand—gesture clas-
sification. This transfer learning architecture enhanced 
the performance on all tested deep learning models. Xu 
et  al. [34] uses their proposed EEGnet, pretrained from 
source-domain, and fine-tunes the last layer of the net-
work on the new participant. This approach enhances 
classification accuracy in motor imagery tasks for stroke 
rehabilitation via brain-computer interfaces. Zhang et al. 
[35] utilized LSTM neural networks in conjunction with 
transfer learning to enhance the generalizability of their 
model across new participants. Zou et al. [36] employed 
transfer learning to predict knee contact force in par-
ticipants with knee osteoarthritis. Their findings suggest 
that transfer learning is simpler and also yields superior 
results compared to traditional machine learning meth-
ods and inverse dynamic analysis.

The research presented in this paper improves the clas-
sification accuracy of subject-independent models for 
hand-gesture recognition post-stroke by employing three 
distinct methods. The first method significantly improves 
the performance, and the second and third methods 
can be applied individually or combined to supplement 
the first approach. First, using prototypical networks 
for one-shot transfer learning from the new participant 
to improve model accuracy from subject-independent 
models. Second, feature selection and dimensionality 
reduction are optimized, where applicable, over differ-
ent classifiers. Third, increased window size to improve 
model accuracy. To the best of our knowledge, this is the 
first paper to propose the application of few-shot learn-
ing for adapting a generalized model to individual users. 
The proposed approach is contrasted against conven-
tional transfer learning as well as subject-dependent and 
subject-independent classifiers and evaluated on data 
collected from 20 stroke survivors performing seven dis-
tinct gestures.

Methods
The authors acknowledge the use of Language Models 
(LLMs) for the initial drafting and editing of certain sec-
tions of this paper. However, all content has undergone 
meticulous review and revision by the authors to ensure 
accuracy, clarity, and adherence to scientific standards.

Subjects
In this work, we collected data from 20 participants 
(Table  1) with stroke (Brunnstorm stage for hand 2-6). 
A medical physician aided in conducting the experi-
ment with all participants. The study was conducted at 
Huashan Hospital’s Rehabilitation Medicine Depart-
ment in Shanghai, China. Informed consent was obtained 
from all participants. The Huashan Hospital Institutional 

Review Board (CHiCTR1800017568) granted prior 
approval for the experiment, which was conducted in 
adherence to the Declaration of Helsinki.

Sensors
A combination of wearable sensors was employed to 
gather data from the participants. One wristband, with 
one IMU and eight barometric pressure sensors, was 
placed on the wrist. The other wristband, with six EMG 
sensors, was placed on the forearm around 10 cm away 
from the elbow.

In the first wristband, a 9-axis IMU (BNO055; BOSCH 
Inc., Stuttgart, Baden-Württemberg, German) was used 
to gather kinematic data. 3D Eulers angles were also 
extracted in addition to the data gathered from acceler-
ometers, gyroscopes, and magnetometers [37]. To meas-
ure the FMG of tendon sliding, 8 barometric sensors 
(MPL115A2, Freescale Semiconductor Inc., Austin, TX, 
United States) were encased in VytaFlex rubber and posi-
tioned near the distal end of the ulna on the wrist. The 
data for both IMU and FMG were collected at 36 Hz and 
were processed using a 4th-order low-pass Butterworth 
filter with a cut-off frequency of 5 Hz.

In the second wristband, six wireless EMG sensors 
from the Trigno Wireless EMG System (MAN-012-2-6, 
Delsys Inc., Natick, MA, United States) were evenly dis-
tributed and placed around the forearm of the partici-
pant ’s affected side. The raw EMG data was collected at 
1926 Hz and processed using a 4th-order band-pass But-
terworth filter with a cut-off frequency of 20 Hz and 500 
Hz. The data was then filtered using a Hampel filter to 
remove artifacts from the data by identifying and remov-
ing outliers more than twice the standard deviation away 
from the average of the surrounding 100 samples.

Experimental protocol
The participants were instructed to sit on a chair with no 
armrests, allowing their affected arm to hang naturally 
by their side (shoulder abduction). Before collecting the 
data, a medical professional explained all the gestures 
and presented instructional images to the participants. 
Then, the participants were asked to perform gestures 
according to the instructional software to familiarize 

Table 1 Participant Information

Sex (M/F) 14/6

Age (mean ± SD) 63.8 ± 14.8

Brunnstrom stage for hand (mean ± SD) 4.5 ± 1.3

FMA upper extremity score (mean ± SD) 42.6 ± 14.2

Hemiplegic side (left/right) 12/8

Diagnosis (ischemic/hemorrhagic) 16/4
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themselves with both the gestures and the software. The 
software displayed text descriptions and images of the 
current gesture and the subsequent one. Following this 
familiarization period, with the assistance of a medical 
professional, the participants wore the wristbands. After-
ward, the participants were instructed to complete five 
formal trials, with one-minute breaks between each trial. 
Each trial involved collecting data from seven gestures 
(Fig. 1), provided in the same order, each gesture lasted 
6 s with a 4 s break between each gesture.

Signal pre‑processing and feature extraction
The data from all sensors was collected using MATLAB 
(MathWorks, Natick, MA, United States) and processed 
using Python (Python Software Foundation, https://
www.python.org/). After filtration, the data was normal-
ized using the mean value and standard deviation from 
each respective trial. Then the data was segmented using 
an overlapped segmentation method with a window size 
of 222 milliseconds and a step size of 55.6 milliseconds. 
Oskoei and Hu [21] found that an overlapping segmen-
tation approach to EMG data with a window size of 200 
milliseconds and a step size of 50 milliseconds provides a 
quick response time while Junior et al. [20] recommends 
a step size of 500 milliseconds with a 25% overlap. Both 
of those studies were tested on healthy participants. 
Further investigations on window size were done in this 
study by scaling it up to a factor of 4.

Feature selection is a crucial step in gesture recogni-
tion. Effective feature selection enhances classification 
accuracy, reduces computational complexity, and facili-
tates the extraction of relevant information from the 
signals. Thus, from each IMU, FMG, and EMG channel, 
a total of 12, 14, and 23 features were extracted, respec-
tively, for a total of 394 features. This includes features in 
the time domain, frequency domain, and time-frequency 
domain (Table 2).

From the time domain, statistical features such as Mean 
Absolute Value (MAV), Root-Mean-Square (RMS), Stand-
ard deviation (SD), Skew, Kurtosis, and Modified Mean 
Absolute Value 2 (MMAV2) were extracted. Additionally, 
Waveform Length (WL), Slope Sign Change (SSC), and 
Zero Crossing (ZC) were extracted to show the signal’s 
complexity and frequency information, and reduce noise 
interference. Other time domain parameters extracted 
include the Range (RNG), Trapezoidal Integration (INT), 
Simple Square Integral (SSI), Cardinality (CARD), and 4th 
and 5th order Temporal Moments (TM4, TM5). CARD is 
the number of distinct values within a certain threshold 
(0.001) present in the time-series signal.

Information for the frequency domain was extracted 
using the Fast-Fourier-Transform. These features are 
Dominant Frequency (DF), Mean Frequency (MF), Mean 
Power (MP), and Power Ratio (PR). DF refers to the pri-
mary oscillation with the highest amplitude, signify-
ing the most prominent periodic component within the 

Fig. 1 The seven gestures used in the trial
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signal. MP provides a representative assessment of the 
overall energy content, while PR assesses the distribution 
of power within designated frequency bands expressed as 
the ratio of power below and above the MF.

Wavelet transform (WT) and Hilbert Huang Trans-
form (HHT) were used for features in the time-frequency 
domain [38, 39]. WT (’db4’) involves decomposing EMG 
signals into different frequency components at varying 
scales, providing a time-frequency representation that 
captures both temporal and spectral features critical for 
discriminating distinct muscle activities. The two main 
components obtained through the decomposition of a sig-
nal at different scales or resolutions are ’approximations’ 
and ’details’. ’Approximations’ refer to the low-frequency 
components, capturing overall trends, while “details” rep-
resent high-frequency components, highlighting rapid 
changes or fluctuations in the signal. This decomposi-
tion enables a hierarchical representation of the signal at 
different scales, providing a comprehensive view of both 
coarse and fine details. The HHT is a data analysis method 
that decomposes a complex signal into intrinsic mode 
functions (IMF) using empirical mode decomposition 
and provides a time-frequency representation through 
the Hilbert spectral analysis. The envelope and the ampli-
tude are extracted through this decomposition, where the 
envelope represents the upper outline of each IMF, and 
the amplitude reflects the magnitude or strength of the 
oscillations associated with each IMF. Using the median 
for these four features is a better representative for people 
with stroke than the mean as per Phinyomark et al. [40].

After the features were extracted, the data was nor-
malized again using mean and standard deviation from 
one participant only. This participant was selected based 
on the participant with the highest individual accuracy. 
Normalizing the data using the mean and standard from 
one participant only had a higher accuracy than normal-
izing using the mean and standard deviation for all par-
ticipants, as participants with poor performance or high 
noise would reduce the accuracy of the results.

To lower the computational complexity and the pro-
cessing time, two-dimensionality reduction techniques 
were assessed on the employed classifiers. These were 
evaluated by reducing the number of components to 40, 
and adding 20 till 300 out of the 394 components were 
used. The first method involves the use of Principal Com-
ponent Analysis (PCA), which is a widely used statistical 
technique in data analysis and dimensionality reduction. 
Its primary goal is to transform a high-dimensional data-
set into a lower-dimensional one while retaining as much 
of the original variability as possible. The second method 
selects the best k features (K-Best) using the analysis of 
variance (ANOVA) F-statistic, where k in this case is the 
number of components.

Classifiers
Subject-independent models and models trained using 
transfer learning were mainly used in this study. Sub-
ject-dependent models were used for a final evalua-
tion to compare between the accuracy of general and 
individual based models. Subject-independent models 
were trained on all participants with a leave-one-sub-
ject out approach, whilst subject-dependent models 
were trained for each participant individually, with a 
leave-one-trial out approach. For transfer learning, our 
proposed model (Fig.  2) using prototypical networks 
(PN) [41] and neural networks (TL) both used few-shot 
learning from one to five samples from the new par-
ticipant’s data. Neural networks (NN), Linear Discrimi-
nant Analysis (LDA), Light Gradient Boosting Method 
(LGBM) [42], and Support Vector Machine (SVM) were 
employed for subject-independent and subject-depend-
ent models.

Neural networks are composed of interconnected 
nodes that transmit weighted signals to each other. The 
input data is processed through three fully connected 
layers using the ’RelU’ activation function, before pass-
ing through a ’Softamx’ activation function to the out-
put layer. This model was trained with a learning rate of 
0.0005, a batch size of 20, and 200 epochs. For TL, the 
model was then trained again using the same parame-
ters on a few samples from the new participant.

Prototypical networks are a type of neural network 
architecture designed for few-shot learning tasks, they 
have a query set and a support set. The query set com-
prises instances for which the model is tasked with 
making predictions, while the support set includes 
examples used for creating class prototypes during the 
training phase (G1, G2,... G7). A prototype is a rep-
resentative example of a class and is computed as the 
mean of the embedding of the support set in a given 
class. The model is trained to classify instances in the 

Table 2 Extracted features from sensors in different domains

Features without a number were extracted from all sensors
1Features extracted from FMG and EMG sensors
2Features extracted only from EMG sensors

Domain Features

Time Domain MAV, RMS, SD, Skew1 , Kurtosis1 , MMAV22 , WL,

SSC, ZC, RNG, INT, SSI2 , CARD2 , TM42 , TM52

Frequency Domain DF, MF, MP, PR

Time-Frequency Domain Median WT Approximate2 , Median WT Detail2

Median HHT Envelope2 , Median HHT Ampli-
tude2
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query set based on their similarity to these prototypes. 
This approach enables effective few-shot learning by 
leveraging a small support set to generalize and make 
predictions for the new participant.

The training and testing data were divided using 
a leave-one-subject-out approach. Specifically, dur-
ing training, only data from the training participants 
served as the query set, while the support set com-
prised samples (determined by the number of shots) 
from the new participant. These samples were taken 
from different trials, hence a one-shot took one sample 
from only one of the trials, while a five-shot took one 
sample from each of the trials. Subsequently, during 
testing, the same set of samples was employed as the 
support set, whereas the remaining samples from the 
participant were utilized to assess the performance of 
the trained model.

During training, a prototypical network processes the 
support set through a shared neural network to gener-
ate embeddings. The prototypes for each class are then 
computed as the mean of these embeddings for all exam-
ples in the support set that belong to the same class. The 
query set is similarly embedded using the same neural net-
work. The similarity between the embeddings of the query 
set and the class prototypes is calculated using Euclidean 
distance as a metric. The softmax function applied to the 
negative of these distances yields a probability distribution 
over the classes, where a shorter distance corresponds to 
a higher probability of class membership. The loss func-
tion is calculated as the negative log likelihood of the true 
class label, based on these probabilities. This loss is then 
used to update the weights of the neural network through 
backpropagation.

Once the prototypes have been computed, the classifica-
tion process involves comparing new data points to these 
prototypes in the embedding space and assigning them to 

the class with the closest match. This approach is effective 
in few-shot learning tasks because it captures the essence 
of each class with a limited number of examples. The dis-
tance metric used to measure the similarity between a data 
point and a prototype is the Euclidean distance:

where ||x − p|| is the Euclidean norm of the difference 
between vector x and p. Afterwards, the class assignment 
is determined using

where y is the predicted gesture for x, g is the gesture 
index, and pg is the prototype for gesture c. Several dif-
ferent classifiers were used to evaluate the performance 
of the proposed method.

SVMs are particularly well-suited for high-dimensional 
data and are known for their generalization ability and 
robustness to noise, making them suitable for the current 
problem and have been used in similar studies [29, 43]. A 
one-vs-one decision function with an ’rbf ’ kernel with a 
kernel coefficient γ = 1

FN  , where FN is the number of fea-
tures, and a regularization parameter C = 1 and a were 
used in this study. LGBM is a powerful gradient-boosting 
framework that employs decision trees as weak learners 
to construct a robust ensemble model. LGBM generally 
performs better than Decision Trees and Random Forests 
and has been used by Formstone et al. [27] for quantifica-
tion of motor function. A multi-class one-vs-all configu-
ration with 300 boosted trees was used in this study. LDA 
is a statistical method that finds a linear combination 
of features that best distinguishes between two or more 
classes of data. It can also reduce training time while still 
maintaining accuracy [44], making it a good option for 
real-time gesture recognition [30, 45].

(1)d(x, p) = ||x − p||2

(2)y = argmingd(x, pg )

Fig. 2 The feature vector FN is fed into a fully connected neural network to generate embedding features. These features map each class prototype 
(G1, G2,... G7), obtained from the mean of the support set (s), to a position in the embedding space. The class for each new sample (Q) is chosen 
by using a distance function to identify the closest class prototype
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Statistical analysis
For subject-independent models, each approach was 
repeated 20 times, where a different participant was 
left out or used for transfer learning, depending on the 
approach. For subject-dependent models, each approach 
was repeated 5 times per participant, where a different 
trial was left out. The average of the five trials for each 
participant was recorded, and the mean of all the partici-
pants was used to determine the accuracy of the classi-
fier. A one-way ANOVA was employed to calculate the 
statistical significance between different approaches and 
techniques. The Benjamini-Hochberg method to control 
the false discovery rate was used to adjust all of the com-
puted p-values [46]. Any of the adjusted p-values lower 
than 0.05 was considered statistically significant.

Results
Using a one-shot approach with a large window size 
significantly improved the accuracy ( p < 0.05 ) in com-
parison to TL and other subject-independent clas-
sifiers (Fig.  3). Our approach scored an accuracy of 
82.20%± 10.85% , significantly higher than all other 
subject-independent classifiers, followed by LGBM with 
an accuracy of 71.43%± 11.35% . The confusion matrix 
(Fig. 4) presents the classification accuracy for each ges-
ture. The one shot approach was evaluated against other 
optimised classifiers with larger window size and K-Best 
features, where applicable. Further evaluation of PN and 
TL used the five-shot approach with the smaller window 
size for the larger number of samples.

Feature selection and dimensionality reduction
Each classifier responded differently to using K-Best or 
PCA for dimensionality reduction (Fig. 5). Dimensional-
ity reduction using K-Best features enhanced the perfor-
mance of PN, TL, and SVM, attaining peak accuracies at 
80, 60, and 80 features, respectively. This led to accuracy 

improvements of 3.57%, 5.55%, and 9.02%, respectively. 
On the other hand, the performance of NN and LGBM 
improved with increasing the number of features till they 
plateaued at 300 and 280 features, where the difference 
was negligible. LDA demonstrated the least sensitivity 
to dimensionality reduction. The highest accuracy was 
observed when employing PCA with 260 components, 
resulting in an accuracy of 65.53%, resulting in a 2.18% 
increase compared to no reduction. PN and TN were 
evaluated with a five-shot approach and a small window 
size for a larger sample size.

Across the six different utilized classifiers, PCA dem-
onstrated the worst performance with only LDA having 
a higher accuracy when utilizing PCA. The discrepancy 
between employing K-Best and not was minimal, with a 
difference of less than 1%. Conversely, for the remaining 
classifiers, utilizing K-Best resulted in the most optimal 
performance. Figure  6 compares between the optimal 
results (extracted from Fig. 5) for different classifers and 
different dimensionality reduction.

Window size
For evaluating different window sizes, NN, LDA, and 
LGBM classifiers were utilized without dimensionality 
reduction due to its negligible effect. PN, TL, and SVM 
classifiers were employed with their optimum dimen-
sionality reduction configuration, and PN and TN were 
evaluated with a five-shot approach.

Enlarging the window size resulted in enhanced accu-
racy across all classifiers, despite the reduced sam-
ple size (Fig.  7) . The most notable improvements were 
observed in SVM and LGBM, with accuracy enhance-
ments of 6.48% and 6.34%, respectively. Conversely, NN 
and TL exhibited comparatively modest accuracy gains, 

Fig. 3 Our proposed methodology (one-shot PN with 0.88s window 
size) was significantly more accurate than all other benchmark 
models ( p < 0.05)

Fig. 4 Confusion matrix for our proposed one-shot approach
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Fig. 5 Effect of dimensionality reduction using PCA and K-Best features selection. The shaded area represents the standard deviation. Five-shot PN 
and TL, and SVM have better accuracy at lower features, while LDA is not affected. NN and LGBM have lower accuracy with features, but plateau 
at higher number of features
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registering improvements of 2.9% and 2.73%, respec-
tively. On average, all classifiers manifested an accuracy 
augmentation of 4.28%.

Number of shots
Due to overlapping windows, one-shot from the largest 
window size was compared with up to five-shots from the 
smallest window size (Fig. 8).

Using a larger window size demonstrated better per-
formance with fewer samples. The smaller window size 
achieved better accuracy after three samples.

Each of the proposed methods improved the accuracy 
of the subject-independent model (Fig. 9).

Subject‑dependent
When compared to other subject-dependent classifiers 
(Fig.  10), our approach demonstrated similar perfor-
mance, underscoring the robustness of our method in 
effectively integrating large-scale models into new partic-
ipants. These classifiers were trained on a large window 
size and the SVM classifier used K-Best feature selection 
for dimensionality reduction. SVM demonstrated the 
highest performance with a 83.84%± 11.65% accuracy, 
followed by our approach. LDA had the lowest accu-
racy at 74.89%± 14.36% with at least a 5.9% difference 
between it and other classifiers. LGBM and NN scored 

Fig. 6 Comparison between best accuracy achieved when using 
PCA or K-Best and without reduction

Fig. 7 Effect of window size on different classifiers. Increasing 
the window size slightly improved the accuracy over all the classifiers

Fig. 8 Effect of using more samples from the new participant, 
with smaller window size, to train the model in contrast to using 
a one-shot approach with a large window size

Fig. 9 Using one-shot transfer learning (PN) improved the accuracy 
in comparison to subject-independent NN. Supplementing it 
with dimensionality reduction (PN+DR), or increased window 
size (PN+TS), or both (PN+DR+TS) improved the accuracy even 
further. Results with (*) indicate a significant difference ( p < 0.05 ) 
between them
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an accuracy of 80.79%± 11.07% and 81.62%± 13.61% , 
respectively.

Discussion
Current in-home rehabilitation systems lack the reliabil-
ity of rehabilitation with a physiotherapist. The reason for 
this is the difficulty of translating the rehabilitation sys-
tems to home environments. This can be due to multiple 
reasons, such as lack of space, lack of technical expertise 
by the patient, and inability to accurately wear the sen-
sor. The sensor displacement can significantly impact 
the quality of the data and the performance of the wear-
able device [47]. To improve the accuracy of wearable 
systems, we propose the usage of PN to tune previously 
trained models onto the new user. This form of transfer 
learning requires only one shot to achieve significantly 
better accuracy ( p < 0.05 ) and can reduce the effect of 
sensor displacement.

Real-time gesture recognition models require short 
window size for data analysis. While this approach works 
well for healthy individuals, it may not be suitable for 
stroke survivors due to the differences in their biological 
signals. Stroke survivors exhibit more noise, necessitating 
robust features that are not typically found in the time 
domain. To address this issue, increasing the time seg-
ment can reduce noise and improve gesture recognition 
performance, even with a smaller sample size. However, 
this trade-off comes at the expense of the real-time capa-
bilities of the utilized model. While the statistical sig-
nificance of the results may not have been pronounced, 
it is notable that a discernible trend emerged across the 
classifiers utilized in the study. Specifically, a consistent 
increase in accuracy can be observed as the window size 
increases. Current literature regarding window size seg-
mentation have found that increasing the window size 

improves the accuracy up to a certain threshold [20, 21]. 
Considering the current literature regarding the noisy 
nature of biological signals emitted from stroke survivors, 
this threshold might be larger for them. Despite the lack 
of statistical significance, all these points indicate that 
there may indeed be meaningful patterns to be uncov-
ered with larger datasets or alternative methodologies.

Feature selection poses a challenge in developing ges-
ture recognition models for stroke survivors. Extracting 
numerous features, some of which are multidimensional, 
can significantly increase the parameters of the feature 
vector, potentially from a few dozen to hundreds or even 
more, depending on the number of channels. This abun-
dance of features may, depending on the chosen classi-
fier, lead to reduced model performance and increased 
computational time. Additionally, some of the extracted 
features may be noisy and decrease the performance of 
the model. Thus, using K-Best feature selection to elimi-
nate those features usually results in better accuracy than 
using PCA, which tries to retain as much information as 
possible.

Different models exhibit varying performance depend-
ing on the number of available samples. While healthy 
users can perform multiple trials to optimize sensor per-
formance, this may be challenging for people with stroke. 
Utilizing prototypical networks for few-shot transfer 
learning can substantially enhance model accuracy. The 
samples gathered for the few-shot learning were disjoint 
and from different trials. Consequently, despite the bet-
ter accuracy of the five-shot PN with a small window size, 
the one-shot PN with a large window size demonstrates 
greater reliability to unseen data. The five-shot approach 
will likely have samples from multiple trials, whilst a one-
shot approach will only have one sample from one trial.

Time segmentation, dimensionality reduction, and 
feature extraction techniques have all been investigated 
for healthy users. This does not translate to people with 
stroke, as seen in the results displayed in this work. Fur-
ther analysis and investigations must be conducted to 
determine the optimal configurations for assessing peo-
ple with stroke.

A major problem in rehabilitation research is the lack 
of generalized models that can work well for different 
people. Current methods often struggle to adapt to the 
unique conditions of each person. Without these models, 
it’s hard to successfully implement wearable systems for 
in-home rehabilitation. Our research shows that when 
compared to subject-dependent classifiers, our approach 
consistently achieves similar results. This suggests that 
our method can effectively use large-scale models in new 
users without losing accuracy. This flexibility is valu-
able for rehabilitation research, where subject-specific 

Fig. 10 Our proposed approach performed similarly 
to subject-dependent models
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data are limited. However, it’s important to note that in 
our study, data was presented in a consistent order to 
accommodate the slower reaction times of stroke recov-
ery patients, which might limit the generalizability of our 
findings due to potential learning effects.

This paper proposes the use of prototypical networks 
for one-shot transfer learning to quickly adapt to new 
users. This method can greatly improve the performance 
of wearable sensors for rehabilitation systems, where 
constant supervision is not possible.

Conclusion
This paper proposes using prototypical networks for few-
shot transfer learning to swiftly adapt to new users. This 
approach can significantly enhance the performance of 
wearable sensors in rehabilitation systems and serious 
games. Additionally, the role of time segmentation and 
feature selection has been examined to evaluate their sig-
nificance. Extending the time segment will likely improve 
performance but compromise real-time capabilities. 
Feature selection can either improve or degrade model 
performance, depending on the classifier. Therefore, it is 
crucial to consider dimensionality reduction techniques 
that preserve essential information, while removing noisy 
ones, before feeding the data into the model.
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