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Abstract 

Background  Falls are common in a range of clinical cohorts, where routine risk assessment often comprises subjective 
visual observation only. Typically, observational assessment involves evaluation of an individual’s gait during scripted 
walking protocols within a lab to identify deficits that potentially increase fall risk, but subtle deficits may not be (read-
ily) observable. Therefore, objective approaches (e.g., inertial measurement units, IMUs) are useful for quantifying high 
resolution gait characteristics, enabling more informed fall risk assessment by capturing subtle deficits. However, IMU-
based gait instrumentation alone is limited, failing to consider participant behaviour and details within the environ-
ment (e.g., obstacles). Video-based eye-tracking glasses may provide additional insight to fall risk, clarifying how people 
traverse environments based on head and eye movements. Recording head and eye movements can provide insights 
into how the allocation of visual attention to environmental stimuli influences successful navigation around obstacles. 
Yet, manual review of video data to evaluate head and eye movements is time-consuming and subjective. An auto-
mated approach is needed but none currently exists. This paper proposes a deep learning-based object detection 
algorithm (VARFA) to instrument vision and video data during walks, complementing instrumented gait.

Method  The approach automatically labels video data captured in a gait lab to assess visual attention and details 
of the environment. The proposed algorithm uses a YoloV8 model trained on with a novel lab-based dataset.

Results  VARFA achieved excellent evaluation metrics (0.93 mAP50), identifying, and localizing static objects (e.g., 
obstacles in the walking path) with an average accuracy of 93%. Similarly, a U-NET based track/path segmenta-
tion model achieved good metrics (IoU 0.82), suggesting that the predicted tracks (i.e., walking paths) align closely 
with the actual track, with an overlap of 82%. Notably, both models achieved these metrics while processing at real-
time speeds, demonstrating efficiency and effectiveness for pragmatic applications.

Conclusion  The instrumented approach improves the efficiency and accuracy of fall risk assessment by evaluating 
the visual allocation of attention (i.e., information about when and where a person is attending) during navigation, 
improving the breadth of instrumentation in this area. Use of VARFA to instrument vision could be used to better 
inform fall risk assessment by providing behaviour and context data to complement instrumented e.g., IMU data 
during gait tasks. That may have notable (e.g., personalized) rehabilitation implications across a wide range of clinical 
cohorts where poor gait and increased fall risk are common.
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Introduction
Falls can lead to loss of independence and even death 
[1, 2]. Identifying those at risk of falling is an important 
clinical task often conducted in e.g., those with visual 
impairment [3], and the elderly [4–6]. Equally, fall risk 
assessment is of notable importance and pragmatically 
useful in people with a movement disorder, such as Par-
kinson’s disease (PD) [7–9] or Stroke [10–13] due to 
observable functional deficits in motor control. Addition-
ally, assessing fall risk is equally important during preg-
nancy [14] where a third of pregnant women may fall 
[15]. In fact, there is a significant increase in falls from 
pre-pregnancy to the 3rd trimester which cannot be fully 
explained by morphological [16] or biomechanical [17] 
changes.

A comprehensive fall risk assessment is multifactorial 
and a time-consuming process including but not limited 
to medication review, cognitive screening, detailing a his-
tory of falls, as well as evaluating gait, balance [18], and 
environmental hazards or hazardous activities that have 
been documented in some cases to be responsible for 
50% of falls [19]. For timeliness in many settings, assess-
ing gait alone is usually conducted to evaluate intrinsic 
fall risk [20]. That is convenient as gait is a good marker 
of global health [21] and fundamental to many activities 
of daily life [1]. Consequently, a gait assessment with pos-
itive outcomes from subjective evaluation (by an asses-
sor) provides insight into the patient’s independence and 
ability to ambulate with minimal fall risk. As described, 
an assessment is typically conducted by manual obser-
vation alone, where an assessor examines a person’s gait 
during a scripted task (i.e., walking protocol). Often, a 
protocol may include navigating (walking around or over) 
obstacles [22–25], deliberately challenging the person by 
increasing gait demands [26]. Yet, that also places extra 
burden on the assessor, challenging them to carefully 
observe the person’s gait during a more complex task. 
Instrumentation is needed to optimize assessment pro-
tocols while providing high resolution objective fall risk 
data.

The integration of digital technology as an objective 
standard in fall risk is not routine. While digital tools may 
provide clinicians with high-resolution data to poten-
tially aid in determining a patient’s fall risk, there is still 
ongoing work to be done in understanding their full util-
ity and developing appropriate methods. In recent years, 
technology has matured to include a wide selection of 
digital tools. Of course, 3D motion capture systems are a 
perceived gold/reference standard for human movement 
analysis, but it lacks practicality and deployment in habit-
ual settings. Moreover, reflective markers require timely 
application. In contrast, wearable devices (i.e., inertial 
measurement units, IMUs) are quickly attached and 

provide clinically relevant gait characteristics to a milli-
second resolution in any environment [27–30].

An objective gait assessment to inform fall risk is usu-
ally conducted within a laboratory with a single IMU on 
the lower back [30]. Typically, participants are then asked 
to undertake a protocol representing walking challenges 
in daily life [31, 32], like obstacle crossing [25]. However, 
a key IMU limitation is the provision of inertial gait data 
only without any insights into navigating behavior and 
visual attention allocation to environmental/extrinsic 
details. Accordingly, there is no absolute clarity to under-
stand how gait and fall risk is influenced by other intrinsic 
(e.g., visual attention) or extrinsic (e.g., obstacles) factors. 
For example, a comprehensive instrumented assessment 
would better understand how those being assessed allo-
cate visual attention along their walking path for safe 
navigation while also determining the role of attention 
when e.g., peripheral obstacles cause a distraction. Sup-
plementing IMU data with video data from video-based 
eye tracking wearable glasses could better define intrin-
sic and extrinsic factors, providing a contemporary and 
pragmatic approach to fall risk assessment with easily 
attached wearables. (Indeed, eye tracking offers an ave-
nue for exploring neurocognitive changes as a reason for 
increased falls incidence.)

Commercial eye tracking glasses capture high qual-
ity video data and often in the standardized MP4 format 
with a resolution of 1920 × 1080. The video contains a 
superimposed crosshair to display eye location. Accord-
ingly, videos contain data on the general environment 
and specific objects of where the wearer is looking but 
data processing of eye-tracker videos is extremely time 
consuming and needs to be automated to allow clini-
cal application [33]. Including eye tracking (to identify 
an object/obstacles of interest) with IMU data during a 
range of simulated free-living tasks (e.g., obstacle cross-
ing) would provide a novel approach for simultaneously 
instrumenting visual attention during gait within a fall 
risk assessment. To accomplish this, a suitable methodol-
ogy to instrument visual attention from video data must 
first be established as none currently exists. Accordingly, 
a novel vision-aided fall risk assessment (VAFRA) is pro-
posed in this study.

Instrumenting vision: a computer vision approach
Video-based eye trackers can help understand the allo-
cation of visual attentional (and visual function) [34, 
35]. Attention relates to the ability to focus on a task and 
within the context of gait assessment for fall risk could 
relate to when and how long one fixates on a hazardous 
obstacle [36]. It has been shown that duration of fixation 
and therefore attention on an obstacle is linked to avoid-
ance or clearance and risk of tripping [37]. Quantifying 
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fixation time on an obstacle can reveal the relationship 
between attention, obstacle avoidance or clearance, and 
fall risk. During navigation, the visual system provides 
critical information about factors like object depth, one’s 
heading direction, and time to contact with an object, but 
it also includes visual acuity, contrast sensitivity, depth 
perception, and visual field integrity, among others [38]. 
Those aspects of visual function contribute to detecting, 
and perceiving extrinsic/environmental cues, including 
obstacles, during walks.

Eye trackers can help assess attention (and visual func-
tion) by quantifying gaze patterns, saccades, and fixa-
tions during walks with obstacle avoidance or crossing 
tasks [39]. Those with compromised visual function 
may exhibit inadequate gaze patterns [40] that can lead 
to inadequate attention allocation to obstacles which, in 
turn, can increase the risk of tripping or falling [41]. Con-
versely, those with intact visual function are more likely 
to allocate appropriate attention to obstacles and hence 
successfully traverse around them, reducing fall risk. 
Despite the promising opportunities with eye-trackers, 
there are two key challenges to be overcome: (i) the time-
consuming review of video data with manual labelling of 
frames [33, 42] and (ii) objective identification of where 
the person is looking, and hence attending. The latter is 
complicated by any extrinsic obstacle which may impact 
walking and/or other items in the environment. Often, 
labs strive to maintain a clean environment by remov-
ing non-critical equipment but often that is not practical 
[33]. This is especially true in ecologically valid situations 
(i.e., everyday life), where distractions are common and 
can significantly contribute to fall risk. Moreover, many 
settings where fall risk assessment occurs (e.g., inpatient 
setting) have similar challenges to minimize distractions 
while maintaining optimal conditions.

An automated approach is necessary to analyze atten-
tion and visual function using video eye-tracking within 
the context of fall risk assessment, complementing the 
developments in IMU data processing for fall risk evalu-
ation [30]. In fact, many populations do not exhibit their 
true motor deficits until attention is divided [43, 44] and 
other real-world motor tasks like object avoidance can 
be best measured through the person’s visual recognition 
[45]. Better (instrumented) methods are needed to meas-
ure visual attention within real-world motor tasks. Arti-
ficial intelligence (AI) methodologies within computer 
vision (CV) enable automated instrumental approaches 
with e.g., object detection. CV algorithms label many 
video frames in a timely manner, classifying environmen-
tal contexts while informing attentional behaviors from 
eye tracking i.e., automating eye location overlapping 
with extrinsic factors like obstacles, distractions and/or 
hazards. Importantly there are attainable contemporary 

CV methodologies that are state of the art and can be tai-
lored to each specific use case e.g., YoloV8 [46].

To date, instrumented gait has received extensive 
research focus but fall risk assessment through gait alone, 
although useful, remains limited. Here we propose a deep 
learning-based object detection algorithm (VAFRA) for 
the novel instrumentation of allocation of visual atten-
tion (gaze) and contextualization of video data to better 
inform fall risk assessment within a lab during an obsta-
cle crossing based continuous walk. The work is impor-
tant as it presents a novel approach to better inform 
lab-based assessment of objective fall risk to advance 
approaches to rehabilitation via contemporary technolo-
gies. Specifically, we suggest pragmatic models to help 
instrument visual attention components during walks to 
better inform how video and eye-tracking can be used 
during fall risk assessments. The technology employed 
can capture and analyze gaze patterns and environmen-
tal interactions in a manner that is not dependent on the 
visual acuity of the user.

The paper is structured as follows. In the Methods and 
Materials section, we provide an overview of the par-
ticipants recruited, lab-based protocol and discussion 
of the dataset to train a model. That section also details 
(i) the mechanics detecting eye location and overlap 
between objects as well as determining object row and 
(iii) a U-Net approach for creating segmentation masks 
for the walking tracks/paths. The Results section pro-
vides preliminary statistics comparing foot clearance 
during attention vs. distraction as defined by the model. 
The Discussion provides insights to the instrumented 
approach with limitations but highlights future applica-
tion to assess fall risk in cohorts needing this proposed 
approach.

Materials and methods
Participants
This research was approved for human subjects’ study 
by the Washington State University institutional (eth-
ics) review board (IRB# 17442). All participants pro-
vided written informed consent. The study recruited 
a total of twenty healthy pregnant women (29.9  years 
old ± 4.9  years, 66.0  kg ± 10.5  kg, 166.0  cm ± 6.7  cm). All 
female participants were in approximately their 13th 
week of gestation (± 1 week). Recruitment was conducted 
through flyers distributed during their initial obstetrician 
visit. They volunteered by calling into an enrollment per-
son/researcher for screening. They were excluded from 
participating if they were considered a high-risk preg-
nancy, unable to walk unassisted, had a cognitive inabil-
ity to read and understand instructions, or if they could 
not commit to longitudinal testing for the entirety of the 
pregnancy.
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Protocol
Participants were enrolled as part of a larger follow-up 
(longitudinal) study examining fall risk in pregnancy. 
Each follow-up timepoint (n = 5) contained a wide test-
ing battery and each lasted approx. 60-min. Accordingly, 
about 100 h of video data were accumulated. During each 
testing session, participants wore eye tracking glasses 
(Tobii Pro2, Stockholm https://​www.​tobii.​com), which 
captured environment/lab video data at 24 frames per 
second (fps) from test start to finish along with the par-
ticipants gaze at each frame (1920 × 1080  px). The lab 
comprised two walking tracks/paths within a continuous 
loop with intentionally placed hurdles and distractors, 
Fig.  1. Six fully visible white PVC pipe obstacle hurdles 
were placed 3 m apart along the 12 m long, 0.92 m wide, 
two-sided black walking path. Some hurdles were always 
set to 10% body height, while surrounding hurdles were 
randomly assigned to 5%, 7.5%, 10%, and 12.5% of body 
height of the tested participant.

Dataset
Video data spanning the full 60-min per participant were 
utilized to train the proposed model. This was due to 
the frequent examples of more obscure angles and head 
positions captured when the participant was not per-
forming a direct 2-min walk test and may for example be 
standing and talking to a researcher between tasks while 
looking around the lab setting. That aided the model 
to generalize to more diverse scenarios like rare head 
angles during the test. A key advantage to the data being 
captured within a controlled setting is homogeneity. 
Specifically, within all videos captured from participants, 
variables such as lighting, hurdles and video qual-
ity remain similar. For use within the produced dataset 
the frames of the captured footage were extracted and 
labelled using a Python-based tool [47] with example 

classes being: hurdle, tennis ball, animate distractor, 
bucket.

The labelling process resulted in a dataset consisting 
of 987 labelled frames and 18 classes across all frames. 
These classes represent a variety of objects or obstacles 
that are pertinent to determining whether a participant 
is paying attention (i.e., to obstacles along the path) 
or distracted. Of these 18 classes 3 are defined as “core 
objects” being tennis ball, support, and hurdles as these 
are the direct objects and points of investigation for the 
task. The labelled information was extracted using the 
inbuilt functionality of the label producing software. The 
images folder contained the full resolution raw images 
with accompanying labelled information stored in the 
annotations folder in.txt format. Annotations contained 
a line for each object detected within the scene holding 
the object class id and object bounding box coordinates 
within the x mid, y mid, width, height format.

Object detection model (ODM)
Model implementation was performed using the Python-
based deep learning library PyTorch and the Ultralytics 
suite of available Yolo algorithms. The final object detec-
tion algorithm used was the latest YoloV8 network [46]. 
That version was chosen as it has been shown to have 
more accurate results on images and video within 1.3 ms 
speed per image size at 640 × 640 (to be used in this 
study) compared to YoloV7 [48]. This architecture (Fig. 2) 
takes the image as input and feeds it through a series of 
convolution, pooling and batch norm layers before out-
putting predicted classes and bounding box coordinates 
on the extracted features.

The output from the model was then further 
enhanced using non maximum suppression, used to 
remove duplicated bounding boxes and reduce noise in 

Fig. 1  The walking path route undertaken by all participants during testing. Upon starting, participants were tasked with crossing obstacles at 3 m 
intervals. Obstacle heights were set at a percentage (%) of the participant heigh during each walking trial

https://www.tobii.com
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detection based on intersection over union (IoU) met-
rics (i.e., overlap between predicted bounding boxes 
and ground truth annotations). Given the minute pixel 
data required to accurately classify important obsta-
cles within the track, the model was trained on images 
resized to 640 × 640 px to retain ample image informa-
tion while balancing performance. The requirement 
was further aided using distributed focal loss (DFL) 
which is a custom loss function used for improving the 
ability of models to identify small objects within images 
(Eqs. 1–4), which was a core requirement for the data-
set and to also aid with class imbalances within the 
training data.

Equations: DFL Loss equation, where s is the average 
object size for the batch, Nj is the number of anchor 
boxes in the batch with ground-truth label hj [2] is the 
height of the ground-truth bounding box for anchor 
box i with label j, epsilon is a small constant to avoid 
division by zero, and focal_loss_[48] is the focal loss for 
anchor box i with label j. The DFL loss is computed for 
each class j separately, and the final DFL loss is the sum 
of the DFL losses for all classes:
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The training process was conducted within a Windows 
based Python 3.8 environment, on a system containing 
an RTX 3070 graphics card, Ryzen 7 3700X CPU and 
24 GB of RAM and took ~ 3 h to train over 100 epochs. 
The dataset was split using a pragmatic 80:20 train-test 
ratio outputting evaluation metrics across both training 
and validation examples: train/box_loss, train/cls_loss, 
train/dfl_loss, precision, recall, mean average precision 
(mAP50 and mAP50-95), val/box_loss, val/cls_loss and 
val/dfl_loss.

ODM: eye location
Classification of the objects provided context to the video 
data but when considered in isolation, provided little 
meaningful information. To automate the detection of 
where visual attention is, a mechanism is required to pro-
vide information (Fig. 3). Within the model an algorithm 
was implemented to detect overlaps between the bound-
ing box coordinates using the × 1, y1, × 2, y2 format. 
Algorithm  1 outlines the process, by performing a for 
loop over each detected object, the coordinates are input 
to the overlap detection function taking the coordinates 
as arguments. Those coordinates are then compared with 
the stored eye tracker coordinates returning true if an 
overlap is detected.

ODM: object row mechanic
Whilst the proposed lab setup mimics that of an opti-
mal walking path for gait assessment [25], it also pro-
vides the inclusion of potential distractors and hurdles 
along the path. The spatial context of these distractors 
and hurdles are vitally important for inclusion within 
the model given their clinical significance and implica-
tions for assessing a participant’s visuospatial atten-
tion and ability to navigate environmental obstacles. To 
achieve this, detection of what the participant is look-
ing at is performed first, followed by the classification of 
what row the object belongs to, appending this provided 
context within the CSV file (e.g., tennis ball row 2) upon 
completion.

Algorithm 1  Algorithm for detecting bounding-box overlap

Fig. 2  Example backbone architecture of the YoloV8 feature 
extraction model
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Fig. 3  Flow diagram illustrating the deployment of the proposed AI model and its accompanying mechanics throughout a video
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When navigating the hurdles, a participant will encoun-
ter up to three sequential hurdles along each track/path, 
and it is important to understand which row the partici-
pants attention is on. For example, if it is known that the 
participant is looking at the immediate hurdle, it can be 
inferred they are paying attention to the hurdle and plan-
ning safe crossing (no contact). This assumption is based 
on typical gaze behavior observed in most individuals. 
However, we acknowledge that there may be exceptions, 
particularly among experienced participants or those famil-
iar with the path. It can also be inferred that if the partici-
pant is not paying attention to the nearest hurdle before 
crossing, they are distracted. Here, across all scenes involv-
ing obstacle crossing, the same core objects are present and 
organized along the walking path into rows (Fig. 4), (i) a set 
of tennis balls (at each side of the walking track and used 
by the participant to judge horizontal opening size, defined 
as the horizontal distance between the two balls;), (ii) sup-
ports (are used to hold up the tennis balls and can also be 
used by the participant to judge opening size) and (iii) a 
hurdle (obstacle to be navigated by participant).

Given the consistent spatial relationship of these 
objects the vertical pixel coordinates can be used to begin 
to cluster these objects into their respective rows Algo-
rithm  2. The algorithm first sorts the detected tennis 
ball objects based on their Y positions. Then, it iterates 
through the sorted list, calculating the distance between 
each consecutive pair of balls. If the distance is less than 
50 pixels, the balls are considered to belong to the same 
row and are added to the current row array. If the dis-
tance exceeds 50 pixels, the current row is appended to 

the rows array, and a new current row is initiated to begin 
capturing the next set of balls within the same row.

Algorithm 2  Algorithm for clustering balls

Once the algorithm for sorting hurdles into clustered 
rows was established, the loop responsible for classify-
ing the actual row of the objects was created. Algorithm 3 
gives each detected object an associated row by looping 
over every detected object and determining the object’s 
midpoint. With this information deduced and each 
ball clustered into its respective row, the y point of the 
object can then be compared with the detected row lines. 
Whichever row is determined to have the least absolute 
difference is classified to be the row of the object.

Fig. 4  VGG image annotation tool, used to create the segmentation masks
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Algorithm 3  Algorithm for assessing object row

Track segmentation model (TSM)
If participants are looking downwards at the track/path 
ahead of their immediate foot placement, this can pro-
vide context i.e., thinking about foot placement. Deter-
mining the exact spatial location of the participant’s 
walking path is more difficult, because a more detailed 
classification is required compared to general object 
detection. To address this, a further segmentation model 
was developed and deployed to provide a pixel-wise seg-
mentation mask for exact track location. This means that 
the exact location of the tracks themselves were detected 
not just a general bounding box. To develop this model, 
the same process for dataset collection was utilized as 
with the object detection tool. The videos were broken 
down into component frames to be used as images within 
the dataset. To create the segmentation masks (black 
and white images containing white pixels only where the 
regions we want the AI to detect are) the VGG image 
annotation tool [49] was used (https://​www.​robots.​ox.​ac.​
uk/​~vgg/​softw​are/​via/) Fig. 4.

Using VGG, the tool for creating segmentation masks to 
be used in AI models, a dataset of 388 frames and accompa-
nying binary segmentation masks were created. This data-
set was then used to create a U-Net based segmentation 

network (Fig. 5) with PyTorch. This model was then trained 
within the same Python 3.8 environment using a Ryzen 
3700x, 24 GB of RAM and an RTX 3070ti based machine 
over a course of 100 epochs. After gaining a binary (white/
black) segmentation mask of track location, detection of 
overlap between the eye location and track mask (black and 
white segmentation masks where only the location of the 
tracks are white) can be identified, Algorithm 4.

Algorithm 4  Algorithm for detecting track overlap

TSM: left/right object direction
With a methodology in place to assess an object’s row, a 
methodology for detecting which track a set of objects 
belong to is required (left or right). Understanding which 
side of the tracks an object belongs to is an important 
classification to assessing whether or not the participant 
is distracted (like paying attention to your driving lane 

Fig. 5  Visualization of the U-Net architecture that depicts 
how an image passes through the network

https://www.robots.ox.ac.uk/~vgg/software/via/
https://www.robots.ox.ac.uk/~vgg/software/via/
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vs oncoming traffic on a two-lane road). The track being 
actively navigated will always be on the right from the 
participants perspective, meaning any attention paid to 
objects on the right track will be relevant to navigation 
planning either immediately or in the near future. Con-
versely, attention paid to obstacles on the left track indi-
cates a distraction, as when they are visible they will be 
beyond the immediate area of the participant. A further 
algorithm (Algorithm  5) can be implemented to attain 
what side an object is on relative to the participant by 
inferring the mid-point between the different segmented 
track points.

Algorithm 5  Algorithm for left/right side detection

Results
Dataset
Currently the main object detection dataset contains 
958 fully labelled and annotated frames covering vari-
ous aspects of the 2-min walk. For the track detection 
segmentation model a dataset of 358 frames and accom-
panying binary segmentation masks were collected and 
finalized for training the models. The dataset for both 
models cover all aspects of different lighting conditions 
and laboratory layouts.

Object detection model (ODM)
A range of different output evaluation metrics were 
obtained from the model training (see supplementary 
materials, Fig. S1). To select the best model, only met-
rics obtained on the validation dataset were consid-
ered, with the mAP50 (mean average precision at 0.50 
intersection over union threshold) used as the met-
ric for determining the best performing model. The 
mAP50 being an accuracy metric that measures the 
percentage of predictions in object detection that have 
at least a 50% overlap with the ground truth annota-
tions. The model peaked in performance at epoch 64 
with an mAP50 of 0.93 (Table  1) indicating excellent 
model performance. This was further validated by the 
results from the confusion matrix (Fig.  6) calculated 
over the validation dataset showing excellent perfor-
mance across all classes (> 0.80). Initial viewing of the 
confusion matrix showing results from the validation 
set may seem to indicate overfitting or data leakage. 
However, the high values for some classes (e.g., Com-
puter = 1.0) appear to be caused by strong class imbal-
ance with very few examples being included within 
the validation set due to the small number of frames 
in general containing this object. To mitigate the 
effects of the class imbalance the model was trained 
using the DFL loss function by applying weightings to 
samples based on more hard, misclassified examples 
during training.

Track segmentation model (TSM)
Findings indicate that the segmentation model 
achieved a mean IoU score of 0.82 (Table 2), signifying 
a significant degree of overlap between the predicted 
segmentation masks and the ground truth labels on 
the validation data indicating its ability to general-
ize well to unseen data. The model’s convergence at 
epoch 6 implies that the model training process was 
effective and efficient. These results demonstrate the 
potential of segmentation models to effectively detect 
walking tracks in lab-based images, which has signifi-
cant implications for gait analysis in research studies. 

Table 1  Yolov8 object detection model validation metrics

Typical for best epoch indicated in bold

DFL loss Distribution focal loss, Cls loss Class loss, Box loss Bounding box loss

Epoch Precision Recall mAP50 Box loss Cls loss DFL loss

62 0.89 0.92 0.92 1.06 0.58 1.02

63 0.88 0.93 0.92 1.06 0.57 1.03

64 0.90 0.93 0.93 1.06 0.57 1.03
65 0.89 0.92 0.92 1.07 0.57 1.03

66 0.88 0.91 0.92 1.06 0.57 1.02
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Future research will focus on implementing this model 
to larger datasets and refining its performance to 
improve its accuracy and robustness.

Discussion
This paper proposes a vision-aided fall risk assessment 
(VAFRA) algorithm for automating the processing and 
labeling of contextual extrinsic (environmental) infor-
mation obtained from head-mounted wearable eye 
tracking glasses/devices. To the authors’ knowledge, 

no other research has proposed this method to better 
inform fall risk assessment, complimenting instrumented 
approaches as seen with IMU-based gait. Accordingly, 
authors believe this is the first study to propose object 
detection algorithms for contextualizing wearable eye 
tracking data within a lab-based environment for fall 
risk assessment. Whilst other studies have proposed the 
fusion of AI, wearable eye tracking glasses and kinematic 
data [50] this study presented here is the first to utilize 
the visual attention (gaze) function from the glasses 
to investigate the visual attentional of a participants 
navigation.

The model utilizes state-of-the-art object detection 
algorithms (YoloV8) trained on a unique laboratory-
based dataset. Yolo was chosen given the core require-
ment of the system to be able to contextualize the 
environmental objects in a time efficient manner for use 
in wider studies. At present whilst other state-of-the-art 

Fig. 6  YoloV8 model confusion matrix when tested on validation dataset

Table 2  Segmentation model convergence at epoch 6

Typical for best epoch indicated in bold

Epoch Val IoU Val loss

1 0.12 59.23

6 0.82 36.33
12 0.78 37.53



Page 11 of 14Moore et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:106 	

object detection algorithms exist [51–54], they do not 
offer the speed required of such applications that is cur-
rently available using the yolo series of algorithms as 
shown in their use in other cases [55–58]. Our model 
demonstrates accurate classification and localization of 
objects and hazards within the lab environment, as well 
as accurately determining the participant’s gaze location. 
By providing object coordinates and eye fixation loca-
tion, a simple box overlap algorithm (algorithm 1) offers 
a robust and generalizable approach for automatically 
detecting eye gaze direction to infer where a participant 
is attending in space. The more challenging aspect of uti-
lizing the box overlap algorithm involved the quantifica-
tion of what row and side an object was relative to the 
observer. To quantify the row of the object, an algorithm 
for clustering detected objects into respective rows based 
on Y coordinates was implemented. However, that same 
approach could not be performed to quantify whether the 
object was on the left or right of the observer. To quantify 
left and right, an additional segmentation algorithm was 
created to accurately detect walking tracks. Given the lay-
out of the walking tracks, a midpoint was clearly visible 
between the two tracks. That midpoint, when detected 
through the gap in the segmentation masks, accurately 
separated objects by providing an angled vertical line 
separator for classifying the objects side. Importantly, 
that did add to the computational complexity and per-
formance overhead of the full system. Evaluation of the 
model’s performance yielded promising results, showing 
significant accuracy across all objects (83%–98%). Over-
all accuracy of detected objects was demonstrated by a 
mean average precision at 50% intersection over union 
(mAP50) value of 0.93 (Table  1) on the validation data-
set. The robustness of the proposed model was further 
confirmed by the values depicted in the confusion matrix 
(Fig. 4), with most classes achieving a score > 0.90. Inter-
estingly, classes with limited training examples achieved 
respectable scores of > 0.83. Whilst the model achieved 
high accuracies across all classes some causes for con-
cern are also present. A low number of samples within 
a data set may lead to inaccurate results, principally the 
mAP50 score of 1.0 for the computer class. Upon investi-
gation it was seen that the computer class had an incred-
ibly limited number of samples within the dataset with 
even fewer belonging to the validation dataset (results in 
Fig. 6). The combination of very few validation examples 
and use of fine tuning on the Yolo algorithm of which its 
original training data included many examples of such a 
class would give reason to believe this was the cause of 
such a high score rather than overfitting or data leakage.

Notably, the model achieved an impressive 0.98 detec-
tion accuracy for eye-tracker location. This indicates the 
model’s ability to accurately determine the participant’s 

gaze location, providing an effective means of under-
standing their current focus of attention. The proposed 
model represents the first steps toward an AI-based con-
text driven breakdown of free-living fall risk assessment 
[28]. Indeed, adoption of a comprehensive approach may 
help overcome ethical challenges with video capture 
in the wild [59]. VAFRA uniquely applies deep learn-
ing techniques to process video data from eye-tracking 
glasses, which can capture the participant’s gaze loca-
tion and attention allocation. Existing methods for fall 
risk assessment typically focus on either single sensor 
based inertial measurements [27, 60] or providing envi-
ronmental context without the use of eye tracking tech-
nology, neglecting the attentional aspects of fall risk 
[28]. In time, models like VAFRA could be deployed 
within fall prevention strategies like in [61], except with 
mobile based cameras more reflective of real world sce-
narios. Object detection algorithms have been examined 
for those with visual impairment. One example [62] uti-
lizes a multimodal approach consisting of a walking aid 
mounted mobile camera and depth sensor. However, the 
object detection algorithm is not categorically described, 
as the cited work uses TensorFlow application program-
ming interface (API) with the MS COCO dataset [63]. 
Although the referenced paper does not provide com-
prehensive evaluation metrics and use of a publicly avail-
able dataset only it helps to showcase the use of object 
detection within egocentric contextualization. In con-
trast, Joshi et al. [55] created an on board visual impair-
ment aid that used a custom primary capture dataset 
and the YoloV3 algorithm for object detection. However, 
that work also fails to provide robust validation metrics 
by describing objects as correctly recognized at an aver-
age of 95%, when compared with the more stringent and 
robust metric of an mAP50 value evaluated on our model 
where 0.93 suggests that despite its more homogenous 
dataset has an incredibly strong accuracy for wider appli-
cation. For example, Sankarnarayanan et  al. [64] use a 
publicly available image dataset (Google Open Images v6) 
to show how improvement in mAP50 value from 0.31 to 
0.50 is described as moderate performance. Although the 
dataset utilized by Sankarnarayanan et al. is less homog-
enous (91,167 images, 20 classes) across a range of envi-
ronments compared to our novel dataset (958 images, 19 
classes) in a single environment it serves as a benchmark 
for detailing how effective VAFRA is (0.93 mAP50) on a 
small training dataset.

Informing gait rehabilitation
One of the primary benefits of this system is its capac-
ity to automate the analysis of extensive datasets. With 
over 100 h of footage to review within our use case, tradi-
tional manual analysis would be impractical and resource 
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intensive. The developed model’s ability to detect distrac-
tions and obstacles, coupled with determining whether 
these elements overlap with the participant’s gaze, sig-
nificantly reduces the time and labour required for 
comprehensive data analysis. This system now enables 
an efficient methodology for determining correlations 
between, for example foot clearance height between those 
participants paying attention to an upcoming obstacles vs 
those that are not or extraction of what objects are caus-
ing distractions on larger scale datasets gathered within 
the lab. Although not the focus here, a further interest-
ing use of VAFRA would include the examination of how 
participants may change their strategy to the gait tasks 
over different time points. Specifically, examining the 
intrinsic response (i.e., visual attention and gait) due to 
(repeated) exposure to distractors within the environ-
ment. Understanding these dynamics can inform clinical 
practices, leading to the development of targeted inter-
ventions and therapies aimed at improving gait and bal-
ance in this population. The system’s adaptability extends 
beyond pregnant women, offering applications in various 
fields such as sports science, ergonomics, and neurologi-
cal rehabilitation, where the interaction between atten-
tion and movement is critical. The precision of the object 
detection model ensures high accuracy in identifying 
distractions and obstacles, which is essential for drawing 
reliable correlations between visual attention and kin-
ematic responses.

Strengths and limitations
One important limitation of this research is that the find-
ings may not be generalizable to other labs or indeed 
non-lab-based conditions. That is because the object 
detection model was developed and evaluated in a con-
trolled lab environment with data from a single location. 
Although a large volume of video data was used the num-
ber of participants with eye-tracking and gait data was 
conservative.

Future work
Future work will be needed to assess the generalizabil-
ity of this approach to more complex, real-world envi-
ronments. Specifically, work from this study will aim to 
deploy this form of technology within free-living envi-
ronments to assess other cohorts with elevated fall risk, 
such as people with Parkinson’s Disease (PD). For exam-
ple, using a model like VAFRA with video-based eye 
tracking glasses during IMU-gait assessment could lead 
to a comprehensive understanding of real-world visual 
cues to mediate PD gait and reduce falls [65]. Deploy-
ment beyond the lab/clinic will improve our understand-
ing of gait patterns in real-world settings and help to 

develop personalized interventions to improve mobility 
and prevent falls in several clinical populations that have 
increased risk.

One of the major challenges for the model concerns 
its generalizability to the range of different light-
ing conditions and range of potential objects–both 
of which are highly variable in real-world settings. 
Regardless, overcoming that challenge is necessary to 
advance VARFA and instrument vision more broadly 
to compliment the advances in instrumented gait and 
to better understand free living fall risk in a range of 
clinical cohorts. One topic of work that should be con-
sidered as part of refining instrumenting vision beyond 
on the lab is the examination of other CV algorithms 
(e.g., other Yolo versions) to assess their performance 
and proficiency.

Conclusions
The proposed VAFRA methodology helps instrument 
eye gaze associated with visual attention during walks to 
better inform behaviour and context, complimenting gait 
characteristics in a more holistic fall risk assessment. It 
supports the use of object detection models in complex 
lab environments, where AI-based contextual informa-
tion is important for understanding gait patterns and 
detecting abnormalities. Use of object detection mod-
els can help instrument vision from video-based eye-
tracking glasses within lab-based fall risk assessment and 
results demonstrate potential to accurately contextualize 
gait data. Instrumentation beyond the lab is the next step 
for habitual fall risk assessment.
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