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Abstract 

Background Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely 
developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events 
(GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly 
degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present 
a method for improving GE detection from IMU recordings in such cases.

Methods We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 
patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects 
GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detec-
tion techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to anno-
tate this pattern from a model stride, in order to detect all GEs in the signal.

Results We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median 
absolute error of 8 ms (IQR [3–13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 
GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8–39] ms) and 26 ms 
(IQR [12–50] ms).

Conclusions Our results are consistent with the state of the art for healthy subjects and demonstrate a good accu-
racy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect 
GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used 
to ensure its reliability.
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Background
The study of gait in medicine is an essential tool for eval-
uating the health and progression of patients with vari-
ous diseases [1]. In this context, quantitative gait analysis 
can be used to finely evaluate the patient’s functional 
abilities, track the progression of their disease, measure 
the effectiveness of treatments, and develop personalized 
rehabilitation plans [2, 3].

In recent years, inertial measurement units (IMUs) 
have become widely developed in gait analysis due to 
their compact size, low cost, and ease of integration [4, 
5]. They allow for objective and quantitative gait analysis, 
easy to use in healthy subjects, athletes [6] and patients, 
for example with neurological or orthopedic diseases 
[7]. They allow therefore the measurement of indicators 
on the gait semiology of patients, such as speed, stride 
length, double-support time, and balance [8]. Some of 
these features depend on the segmentation of strides 
and steps. Based on the historical description of gait in 
healthy subjects, 4 GE occur in a stride, in this order: 
Heel-Off (HO), Toe-Off (TO), Heel-Strike (HS), and 
Foot-Flat (FF) [9, 10]. Two main phases are described: 
the Stance Phase (StP) when the foot is on the ground 
between HS and TO, and the Swing Phase (SwP) when 
the foot is in the air between TO and HS [11, 12].

To accurately identify GEs from IMU signals, many 
techniques have therefore been developed. Currently, 
automatic detection of GEs on IMU recordings in healthy 
subjects has achieved a high degree of accuracy and con-
tinues to improve, with many efficient algorithmic tech-
niques detecting GEs with a median absolute error of less 
than a tenth of a second [13–15]. However, the results 
on pathological subjects are often less precise, especially 
when gait is severely degraded. Due to the complexity 
of the sensory and motor commands that control gait, 
patients with advanced neurological pathologies can 
have particularly unstructured gaits [16–18]. For exam-
ple, Ji et al. showed a 4 times lower accuracy in detecting 
the end of the step in hemiplegic subjects compared to 
healthy subjects [19]. Moreover, most of the algorithms 
tested on impaired patients have only been tested in a 
few specific diseases [20–23]. Therefore, one of the cur-
rent challenges is to improve GE detection in pathologi-
cal gaits.

A recent literature review has referenced the most 
commonly used mathematical principles in the exercise 
of IMU-based gait analysis [24]. This study summarizes 
research practices regarding IMU positioning, algorith-
mic methods, and algorithm validation processes. Over 
the past few years, the 3 most commonly found types of 
methods have been the Hidden Markov Model (HMM) 
[25], the Wavelet Transform (WT) [9], inspired by the 
study of ECGs, and rule-based detections (RBD) utilizing 

various mathematical tools [13, 26]. The study recom-
mends the use of RBD with IMUs placed on the ankle or 
foot, validated using pressure sensors as ground truth. 
Recently, Deep Learning algorithms have also proven 
successful in detecting GEs [23].

Among the RBD algorithms, template-based meth-
ods have shown promising results in segmenting GEs in 
healthy subjects [10, 27, 28]. This technique relies on the 
creation of a reference dictionary of steps, which is used 
for segmentation of the signal by pattern recognition and 
extraction [29]. The use of a unique step dictionary allows 
for GE segmentation in healthy subjects [10, 29]. How-
ever, in neurological diseases, this method requires the 
addition of a solution for imprinting the patient’s step, 
such as an instrumented mat [28], making the deploy-
ment in routine clinical practice impossible. Another 
area for improvement concerns the use of different pat-
tern extraction methods, such as Dynamic Time Warping 
(DTW) [10, 30]. DTW is a technique that promises pre-
cise detection of signal variations and similarity, and has 
already been used in gait analysis [27, 31].

The objective of this study is to develop a reliable algo-
rithm for detecting degraded gaits using only IMUs, mak-
ing it suitable for routine clinical use. To achieve this, we 
propose a new method for detecting Gait Events (GEs) in 
degraded gaits using IMUs. This method combines math-
ematical tools such as autocorrelation [32], the matrix 
profile algorithm [33] and the multiparametric Dynamic 
Time Warping (mDTW) algorithm [10].

This new automatic GE detection algorithm is based on 
the raw acceleration and gyration data collected by the 
IMUs and requires neither manual annotation nor exter-
nal tools. To evaluate its efficiency, we tested it in com-
parison with an instrumented mat, considered the gold 
standard in gait segmentation [34], as well as with tem-
plate-based state-of-the-art techniques [10, 29].

Methods
Cohorts
All the gait data were recorded at Percy Military Hospital 
(Clamart, France) from June 2018 to September 2021. 13 
healthy control subjects (CS) who reported no medical 
impairment and were considered healthy after a clinical 
examination by medical doctors among investigators, 29 
patients with multiple sclerosis (MS), and 21 post-stroke 
hemiplegic patients with spastic equino varus foot (EVF) 
requiring surgical intervention were enrolled. Included 
participants had to be mobile and able to walk 4 sets of 
20  m with u-turn with a 3-minute break between each 
set, with or without medical assistance. Patients who 
were unable to walk, had a history of ankle or foot sur-
gery, or had a history that could alter gait were excluded. 
Each subject in the CS cohort participated in between 1 
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and 3 sessions, each consisting of 4 to 42 experiments. 
Patients in the MS cohort participated in 1 or 2 ses-
sions with 4 to 6 experiments each, as described in [28]. 
Patients in the EVF cohort were recorded preoperatively 
and during follow-up visits at 3 and 6 months. All partici-
pants provided written informed consent before inclu-
sion. The study protocol followed the principles of the 
Declaration of Helsinki and was approved by the ethics 
committee “Protection of Persons North West III” (RCB 
ID: 2017-A01538-45).

Data acquisition
Equipment
Two sensors MTw Awinda  XSens® (weight 16 g, dimen-
sions 47 mm × 30 mm × 13 mm, sensitivity ± 2000 deg/s 
and ± 160  m/s2,  XSens® Technologies, Enschede, the 
Netherlands) (XS) were placed on the dorsal part of each 
foot of participants using Velcro bands. The sensor refer-
ence frame axes, which are used in subsequent analyses, 
are specified in Fig. 1. Apart from the axes, which must 
be correctly oriented, the exact position of the sensors is 
not measured, which is not required for the algorithm. 
A 6-meter  GAITRite® walkway (GR) was placed in a 
wide corridor of the hospital. The acquisition frequen-
cies for XS and GR were 100 Hz and 120 Hz, respectively. 
Both systems were time-synchronized with the Awinda 
Recording and Docking Station to within 10 µs.

Experience
An experiment involves walking straight for 10  ms at a 
comfortable speed while wearing the foot sensors, with 
6 ms of the walk on the GAITRite® walkway. Initializa-
tion and termination of the walk are performed outside 
the mat, and the experiment can be conducted with or 
without footwear. In some cases, patients may use a gait 

aid such as a tripod cane, simple cane, or foot lift. The 
instructions given are consistent at the beginning of each 
test. Figure  2 illustrates the gait environment and pro-
vides a detailed description of the protocol.

Exporting and processing data
For XS recordings, the software XSens MVN studio soft-
ware (MVN Studio, XSens, the Netherlands) is used to 
export the nine-dimensional signal (3D accelerations, 3D 
angular velocities, and 3D magnetic fields). To improve 
the quality of the signal, a low-pass Butterworth filter of 
order 8 with a cut-off frequency of 14Hz is applied. This 
filter setting is consistent with the trends reported in the 
literature [35].

For GR recordings, the  GAITRite® processing software 
is utilized to obtain the initial contact (IC) and final con-
tact (FC) data. If the quality of the walk permits, auto-
matic segmentation is performed. In cases where manual 
assistance is required, an expert is consulted. In either 
case, a visual inspection is conducted by the expert from 
GR signals and videos if available. The expert has the 
possibility to reject an event if its annotation is deemed 
“obviously incorrect”: an event in the middle of a phase 
without gyration or GR sensors turned on away from the 
footprint. Criteria for the exclusion of an experience or 
stride annotated by the GR are predetermined and out-
lined below:

• Logistical criteria that can invalidate an experiment: 
a sensor being misplaced or not recording for more 
than 0.5 s during the experiment, inability to export 
or corruption of a data file, or the subject’s inability to 
complete the entire mat crossing.

• Qualitative criteria that invalidate a GR event: an 
event partially outside the mat, an event detected too 

Fig. 1 Presentation of the sensor. A Tw Awinda  XSens® sensor. B Definition of the axis for the sensor on the left foot
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close to the end of the recording (duration less than 
the average duration of a stride), or obvious visual 
errors identified by the expert.

Data of interest
Based on the axes shown in Fig. 1, our algorithm focuses 
on two pre-processed signals. The first signal is the 
absolute norm of the total jerk free from gravity, which 
is obtained from the values of acceleration free from 
gravity:

The second signal is the gyration in the sagittal plane 
directly measured by the sensor: ωy.

We treat both signals, which are sampled at 100 Hz 
by the IMUs, as time series. If data is missing, we com-
plete it using quadratic interpolation. The jerk time series 
and the gyration in the sagittal plane are respectively 
designed as J and � in the following analysis.

�jtot� =
dfreeAccx

dt

2

+
dfreeAccy

dt

2

+
dfreeAccz

dt

2

.

Algorithm procedure
The algorithm is built in 4 parts, and an illustration of the 
whole process is proposed in Fig. 3.

Firstly, we estimate stride length using the autocorrela-
tion method [32]. This enables us to identify a reference 
stride by comparing it to a pre-defined model stride for 
similarity using a targeted matrix profile algorithm [33]. 
Next, we use the jerk and gyration signals and apply a 
multiparametric Dynamic Time Warping (mDTW) algo-
rithm to annotate the reference stride. Finally, we use 
correlation and mDTW to detect all GEs of the signal 
using the annotated stride as a template, following the 
same method as previously employed [10]. All these steps 
are fully automatic and are detailed below.

First part: stride duration inference with autocorrelation
This section aims to estimate a consistent value for the 
average duration of a stride. Autocorrelation is a com-
monly used signal-processing technique that involves 
cross-correlating a signal with itself. It can be used to 
estimate the period of an imperfect periodic signal that 
does not contain a single dominant frequency [36].

Fig. 2 Gait recording protocol. The patient is equipped with two sensors Mtw Awinda  XSens® placed on the dorsal part of each foot using Velcro 
bands. Walking is initiated upstream of the active surface of the GR
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We considered the free accelerations and gyrations 
recorded by foot-level IMUs to be stationary and peri-
odic depending on the regularity of the subject. We com-
puted the autocorrelation for � and J components. The 

estimated stride duration was determined by match-
ing the first autocorrelation peak. We assumed that the 
expected values of the average stride duration were the 
same for each foot. To avoid overestimation, we chose 

Fig. 3 Flowchart of the GE detection method. Schematic representation of the 4 parts of the algorithm. The color of the boxes is: red for input data, 
blue for the corresponding tools and illustrations, brown for intermediate steps, and green for the output result
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the shorter of the two stride estimates. This assumption 
does not mean that the steps have the same duration and 
therefore does not erase a potential asymmetry. An illus-
tration of the signals and the peak detection process is 
provided in Fig. 4.

Second part: reference stride isolation with matrix profile
Once the average duration L of a stride is estimated, 
we want to find a reference stride. Therefore, the most 
recurrent pattern of L-size must be extracted from the 
signal. Matrix Profile (MP) is a recent reference [37, 38] 
efficient for the pattern extraction task. This time series 
processing technique uses normalized Euclidean distance 
to calculate the similarity between subsequences of the 
original sequence. The resulting output highlights repeat-
ing patterns in the data sequence.

To adapt and personalize the pattern detection, so 
as the start and the end of the pattern corresponds to 
phenomena of interest, Dau et  al. [39] proposed to add 
an annotation vector (AV). AV is a time series which is 
explicitly describing the preferred location or expected 
behavior of the pattern, thus limiting the risk of detecting 
insignificant patterns [40]. A low value indicates that the 
subsequence starting at this index is not a valuable pat-
tern, and should therefore be rejected. Conversely, higher 
values mean that the subsequence at that location should 

be favored for pattern detection. The combination of AV 
and MP leads to a corrected matrix profile (CMP).

In our algorithm, we computed a CMP from � and a 
dimensionless AV that favors locations in order to have 
large variations for J and � in the center of the search 
window. Our objective was to center the SwP. AV was 
defined as follows:

An illustration of pattern recognition by CMP using the 
example of gyration is shown in Fig. 5.

Third part: reference stride annotation with DTW
The pattern isolated in the previous section corresponds 
to a complete stride, probably centered on the SwP. The 
next step is to annotate this reference stride with the best 
estimates of TO and HS. To do this, a model stride was 
used to annotate each reference stride using DTW.

Model stride. We extracted a “model stride” from our 
dataset of healthy subjects, which has all 4 stride events 
annotated. Specifically, TO and HS were annotated with 
the GR, while FC and IC were annotated with their 
respective events. FF and HO were estimated and are 

(1)AVi =

i+ 2m
3

∑

k=i+m
3

ωk

ωmax
+

jk

jmax
.

Fig. 4 Autocorrelation signal. A Control subject. B Patient from the EVF cohort. The two graphs on the left show the preprocessed signals 
of interest for both feet. The righthand graph is the resulting multiparametric autocorrelation for each foot and gives the estimated return value 
of the duration of a stride (dot line)
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Fig. 5 Corrected matrix profile. A Control subject. B Patient from the EVF cohort. Top: gyration signal (blue) and jerk signal (orange). Bottom: CMP, 
the red star indicates the minimum value of the CMP and allows the detection of the pattern (black) and its nearest neighbor (red)

Fig. 6 Model stride. Stride from a healthy subject used as a model for all detections. A Gyration (blue) in the sagittal plane. B Total jerk (blue). 
For each figure, the 4 events of the stride are represented. TO and HS were given by the GR. FF and HO were visually estimated and given as 
an indication
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provided as an indication. The signals of interest corre-
sponding to this stride are illustrated in Fig. 6.

DTW. The Dynamic Time Warping (DTW) algorithm 
is a distance measure that aligns and transforms two time 
series through a non-linear transformation to obtain an 
optimal match between them. Its objective is to deter-
mine a measure of their similarity and obtain a match-
ing path between the points called the “warping path”. 
We opted for a multidimensional DTW (mDTW) taking 
into account both time series J and � . Following the rec-
ommendations of [41], we used a mDTW with depend-
ence between signals, called mDTWd, using normalized 
Euclidean distance with normalized signals. Because of 
the probable presence of the SwP in the middle of the 
reference stride, we used an additional constraint with an 
Itakura parallelogram with radius r = 2 [42].

Reference stride annotation. To compare and annotate 
the reference stride with the model stride, we first shifted 
the model stride to ensure that the SwP was in the same 
position in both series. We then applied mDTWd to find 
the optimized path under constraints. Finally, we used 
this warping path to match the events of both series. We 
assumed that the last point of the subject’s series that 
matched with the TO point of the model corresponded 
to the TO estimation, and the first point of the subject’s 
series that matched with the HS point of the model cor-
responded to the HS estimation. Figure 7 illustrates the 
annotation protocol and an example of the result.

Fourth part: segment the entire walk with a template‑based 
detection
The annotated stride obtained at the end of the previ-
ous section is used as a reference for the detection of GE 
throughout the signal using the template-based method. 
The method used is based on the one described in the 
article by Dot et al. [10], which uses mDTW on the series 
while adapting the parameters due to degraded strides: 
� = 0.4 and µ = 0.1. At the end of this final part, all the 
detected strides should be completely annotated with the 
best findings of TO and HS, as shown in 8.

Technical precisions
The algorithm was implemented with python 3.8, on the 
PyCharm 2022.3 IDE. In part 2, we used the compute 
function from the Matrix Profile Foundation’s python 
package, with the default parameters. In parts 3 and 
4, we used the python tslearn package [43] to compute 
mDTWd.

Performance analysis
The accuracy of the proposed method is assessed by 
comparing the correctly detected times for HS and TO to 

the annotations IC and FC of the GR gold standard. The 
following metrics were used:

• Events. As described before, the GEs of interest in 
the study are TO and HS.

• Annotated events. These are the events IC and FC 
annotated by the GR, considered the Gold Standard.

• Detected events. These are the events HS and TO 
detected by the algorithm between the beginning and 
the end of the gait experience on the mat.

• Recall (sensitivity). This is the proportion of events 
annotated by the GR that have been correctly detected 
by the algorithm. An annotated event is considered 
correctly detected if the duration between this anno-
tated event and the nearest detected event of the same 
nature (TO for FC; HS for IC) does not exceed 20% 
of the duration of a stride. A detected event can be 
used only one time. Sensitivity is defined as the ratio 
between the number of correctly detected annotated 
events and the total number of annotated events.

• Precision. This is the proportion of detected events 
that effectively correspond to an annotated event. 
A detected event is considered to be correct if the 
duration between this detected event and the near-
est annotated event of the same nature (FC for TO; 
IC for HS) does not exceed 20% of the duration of 
a stride. An annotated event can be used only one 
time. Precision is defined as the ratio between the 
number of correctly detected events and the total 
number of detected events.

• F1-score. This is the harmonic mean of precision and 
recall. 

• �TO. For a correctly detected TO event, it is the 
absolute difference in time (ms) between the corre-
sponding annotated FC and the detected TO.

• �HS. For a correctly detected HS event, this is the 
absolute difference in time (ms) between the corre-
sponding annotated IC and the detected HS.

• Mean � HS and Mean �TO. For each type of event, 
it is the average of the measured absolute differences 
for the correctly detected and annotated events.

This performance was then evaluated against the perfor-
mance of the algorithm of Dot et al. [10].

Statistical analysis
The main performance metric used to evaluate 
the method was the F1-score, which is a combined 

(2)F1score = 2×
recall ∗ precision

recall + precision
.
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measure of recall and precision. An F1-score of less 
than or equal to 0.95 was considered indicative of 
low performance. The second outcome measure 

was the median absolute error in GE detection com-
pared to the gold standard, which reflects accuracy. 
The method was compared to the state of the art. 

Fig. 7 Annotated reference stride. Top: healthy subject from the CS cohort. Bottom: patient from the EVF cohort. A, B mDTWd matrix 
between model stride (up) and reference stride (left) signals with the corresponding warping path (white line). C, D Annotation of the reference 
with the 4 GEs. Blue line: jerk. Yellow line: gyration
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For non-normally distributed data, such as � HS and 
Mean �TO, medians and interquartile ranges (IQRs) 
were reported, and the Wilcoxon-Mann–Whitney test 
(WMW-test) was used to evaluate the significance of 
the results. Differences were represented as relative 
values for visualization. The normality of the data was 
assessed with the Shapiro-Wilk test. For normally dis-
tributed data, means and standard deviations (SDs) 
were reported. All statistical analyses were computed 
with R Studio 2023.03.0-386.

Results
Participants
We included 13 CS individuals, 29 MS patients, and 21 
EVF patients. The baseline characteristics of the subjects 
and patients are filled in Table 1.

To provide an overview of the quality of the data and 
gait characteristics, Table 2 presents the number of steps 
and the mean walking speed for each cohort. Figure  9 
illustrates the distribution of walking speed within each 
cohort.

Figure 10 provides a detailed overview of the recorded 
dataset that is utilized in the subsequent analyses (rules 
are specified in the Methods section).

Fig. 8 Final gait segmentation. A Healthy subject from the CS cohort. B Patient from the EVF cohort. GEs detected by the algorithm were reported 
on the jerk signal (top). Gait phases deducted from GEs were reported on the gyration signal (bottom)

Table 1 Baseline characteristics of each cohort

For age, height and weight, mean and standard deviations are given. Median 
and extreme values of EDSS are given for MS patients. There is no validated 
severity score for the EVF cohort, but it should be noted that the surgical 
indication for the equine varus foot is given in the most severe cases

 CS control subjects, MS multiple sclerosis patients, EVF equino varus foot 
patients

CS (n = 13) MS (n = 29) EVF (n = 21)

Sex (M/F) 6/7 13/16 9/12

Age (years) 26.6 (2.0) 59.2 (10.0) 54.0 (14.8)

Height (m) 1.69 (0.09) 1.69 (9.7) 1.68 (10.9)

Weight (kg) 63.3 (14.8) 67.5 (17.6) 71.2 (14.9)

EDSS – 6 [2–7] –

Table 2 Gait parameters

Number of steps, mean (SD) of gait speed, and median (IQR) number of steps 
per experience

CS control subjects, MS multiple sclerosis patients, EVF equino varus foot 
patients

CS (n = 13) MS (n = 29) EVF (n = 21)

Speed in m/s (SD) 1.13 (0.11) 0.23 (0.12) 0.28 (0.15)

Total steps 8410 3442 4180

Steps per exp (IQR) 8 (7–8) 27 (22–36) 17 (13–22)
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Performance and accuracy of the detection method 
compared to gold‑standard
The results of the detailed algorithm are presented in 
Table 3. For the CS cohort, the F1-score was 100%, indi-
cating perfect and exact detection of all strides. Among 
the well-detected annotated strides, the median � TO 
was 8 ms (IQR [3–15] ms), and the median � HS was 7 
ms (IQR [3–12] ms). For the MS cohort, the F1-score was 
99.4%, with a recall of 99.7% and a precision of 99.2%. 
The median � TO was 23 ms (IQR [10–50] ms), and the 
median � HS was 15 ms (IQR [7–30] ms). For the EVF 
cohort, the F1-score was 96.3%, with a recall of 96.7% and 

Fig. 9 Walking speed distribution for each cohort. Dot lines represent mean values

Fig. 10 Flowchart of the data collected and analyzed in the study. Rules for deleting and correcting data are provided in Methods

Table 3 � TO and � HS of our main algorithm for each cohort

All the results are given in milliseconds

CS control subjects, MS multiple sclerosis patients, EVF equino varus foot 
patients, TO Toe-Off, HS Heel-Strike

CS (n = 16819) MS (n = 6067) EVF (n = 8951)

F1 100 99.4 96.3

Recall (%) 100 99.7 96.7

Precision (%) 100 99.2 96.0

TO events 8410 3002 4381

Median � TO [IQR] 8 [3–15] 23 [10–50] 27 [15–48]

HS events 8409 3065 4570

Median � HS [IQR] 7 [3–12] 15 [7–30] 25 [10–50]
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a precision of 96.0%. The median � TO was 27 ms (IQR 
[15–48] ms), and the median � HS was 25 ms (IQR [10–
50] ms).

The boxplot of � HS and � TO for the correctly detected 
and annotated steps of each cohort are presented in 
Fig.  11. The details for each patient or subject included 
in the study are provided for illustrative purposes in the 
Supplementary materials [see Additional file 1].

More detailed histograms are displayed in Fig. 12.

Performance and accuracy of the detection method 
compared to state‑of‑the‑art
The recently validated Dot [10] algorithm uses the same 
protocol and the same sensor position, which allows 

Fig. 11 Boxplot of � HS and �TO. Each dot represents a correctly 
detected and annotated step

Fig. 12 Histograms of � HS (A–C) and �TO(D–F) for each cohort. Dot lines represent the mean error

Table 4 � TO and � HS of state-of-the-art algorithm for each cohort

All the results are given in milliseconds. When displayed, p-value is the result of the WMW-test with our full algorithm. F1-scores lower than 95% and p-values lower 
than 0.05 are displayed in bold

CS control subjects, MS multiple sclerosis patients, EVF equino varus foot patients, TO Toe-Off, HS Heel-Strike

CS MS EVF

Value p‑value Value p‑value Value p‑value

Dot 2020 [10] F1-score (%) 100 – 99.1 – 95.7 –

Recall (%) 100 – 99.4 – 96.1 –

Precision (%) 100 – 98.8 – 95.4 –

Mean � TO [IQR] 13 [7–22] < 0.0001 15 [7–53] < 0.0001 20 [8-68] < 0.0001
Mean � HS [IQR] 10 [5–18] < 0.0001 23 [8–66] < 0.0001 43 [17-82] < 0.0001
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us to use it as a reference to test the results of our algo-
rithm. We applied it to our data set. For CS, the F1-score 
was unchanged at 100%. The median absolute error for 
TO was 13 ms (IQRs [7–22] ms) and the median abso-
lute error for HS was 10 ms (IQRs [5–18] ms), which 
was significantly poorer than our performance (p-value 
< 0.0001). For MS and EVF, the F1-scores were satisfac-
tory (< 95%) and the median deviations for HS and TO 
were significantly worse than for our algorithm (p-value 
<0.0001). All the results and tests are reported in Table 4.

Ablation study
To assess the necessity of the mathematical tools used in 
parts 2– 4, we implemented alternative algorithms that 
either removed these tools or replaced them with simpler 
ones. We then compared the results obtained with our 
original algorithm using a WMW-test. We present here 3 
of the alternative algorithms that were tested.

• Test 1: without Jerk signal. Only the gyration signal 
was considered for the whole protocol.

• Test 2: without MP. We replaced the pattern detec-
tion with the MP algorithm with a random selec-
tion of a portion of the signal of the same duration, 
located between the beginning and the end of the gait 
on GR to ensure that a walking period was selected.

• Test 3: without DTW. We replaced the DTW-based 
method used for annotating the reference stride in 
part 3 with a correlation optimization method. Simi-

larly, for part 4, the stride detection on the entire sig-
nal was performed solely using correlation without 
any readjustment by DTW.

Table 5 summarizes the results obtained, clearly demon-
strating the relative importance of each of the tools used.

Discussion
Gait analysis using IMU has gained widespread popu-
larity, and several algorithms have been developed and 
demonstrated their efficacy in detecting gait events (GEs) 
of healthy individuals [4, 13, 24, 44]. In clinical settings, 
measuring gait performance provides valuable additional 
information about walking activity and spontaneous gait 
characteristics, such as in the follow-up of neurological 
patients [5, 18, 45] or in preoperative examinations [46, 
47]. While some teams use only trunk wearable sensors 
that provide global features such as smoothness [48], a 
more precise analysis requires GE detection, which can 
be done with two separate IMUs on each lower limb [47].

Our algorithm provides automated and reliable GE 
detection, which is effective not only for healthy subjects 
but also for pathological gaits (precision ≥ 95%, recall ≥ 
95%, and F1-score ≥ 95%). Other previously published 
techniques have shown similar F1-scores (Table 6). Hid-
den-Markov-Model [25], wavelet transform [49], and 
some rule-based methods have been shown to be effec-
tive among these techniques.

Table 5 � TO and � HS of alternative algorithms for each cohort

All the results are given in milliseconds. When displayed, p-value is the result of the WMW-test with our full algorithm. F1-scores lower than 95% and p-values lower 
than 0.05 are displayed in bold

CS control subjects, MS multiple sclerosis patients, EVF equino varus foot patients, TO Toe-Off, HS Heel-Strike

CS MS EVF

Value p‑value Value p‑value Value p‑value

Test 1 F1-score (%) 100 – 99.1 – 95.7 –

Recall (%) 100 – 99.4 – 96.1 –

Precision (%) 100 – 98.8 – 95.4 –

Mean � TO [IQR] 8 [3–15] 0.801 30 [13-77] < 0.0001 31 [17–70] < 0.0001
Mean � HS [IQR] 8 [3–18] < 0.0001 19 [8-44] < 0.0001 38 [15–80] < 0.0001

Test 2 F1-score (%) 56.4 – 49.2 – 57.2 -

Recall (%) 56.9 – 48.6 – 57.1 –

Precision (%) 55.9 – 49.6 – 57.4 –

Mean � TO [IQR] 17 [7-71] < 0.0001 50 [18-177] < 0.0001 58 [23–177] < 0.0001
Mean � HS [IQR] 13 [5-67] < 0.0001 34 [10-166] < 0.0001 60 [20–171] < 0.0001

Test 3 F1-score (%) 97.9 – 98.2 – 95.2 –

Recall (%) 97.9 – 98.6 – 95.5 –

Precision (%) 97.9 – 98.0 – 94.9 –

Mean � TO [IQR] 33 [15–90] < 0.0001 42 [18–90] < 0.0001 57 [27–100] < 0.0001
Mean � HS [IQR] 33 [13–67] < 0.0001 32 [14–73] < 0.0001 57 [25–107] < 0.0001
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Regarding the median time error between detected 
events and GR annotated events, our method demon-
strates results of below 10 ms in healthy subjects, which is 
consistent with the latest algorithms [22, 49, 50], includ-
ing Deep Learning algorithms [23]. In MS and EVF path-
ological subjects, our results show moderate impairment 
and give acceptable results centered around 20 ms. How-
ever, most existing algorithms are flawed when analyz-
ing pathological gaits in some neurological pathologies 
such as multiple sclerosis [28] and hemiplegic patients 
[47]. At last, some methods require training phases for 
each patient that may require additional equipment [28]. 
Although step detection seems to be performant for 
pediatric hemiplegic patients [53], it remains difficult for 
post-stroke hemiparetic patients [54].

Our algorithm is built on a Template-Based Approach 
that has already been successfully applied [29]. Until 
now, this approach required the implementation of step 
dictionaries that were not efficient enough for patho-
logical gaits. Additionally, when these dictionaries were 
customized [28], they required the joint use of an instru-
mented mat as GR during the training phase, which com-
promised clinical deployment. To overcome this, our 
method extracts the template directly from each record. 
The results show that CMP described by VanBenschoten 
et al. [33] may be an important part in increasing the pre-
cision and accuracy of detection. The addition of DTW, 

often used in HMM, has also increased detection perfor-
mance as it does not depend on the time factor but only 
on the similarity of the signals [30]. Dot et al. [10] showed 
that using a single template based on gyration signals and 
associated with non-linear deformations may be suffi-
cient to model the gait of healthy subjects, and our algo-
rithm is consistent with this result. However, whereas 
Dot et al. did not efficiently detect GEs in highly patho-
logical gaits, our method maintains satisfactory results 
in neurological patients. As suggested by [31], the use of 
mDTWd has shown better efficiency.

Our study may have some limitations. Firstly, only short 
straight-line gait has been studied, whereas the u-turn 
may provide valuable information in monitoring neuro-
logical pathologies [55, 56]. Secondly, the experiments 
took place in a safe, hospital environment. Even if these 
two conditions are suitable for the examination of gait 
in daily clinical practice, they do not reflect the patient’s 
gait in a free environment and may have limitations 
when transposing the method to real-life gait record-
ings. Finally, the gold standard we used has limitations in 
analyzing highly pathological steps. The GR automated 
step detection is ineffective since it relies on a well-paced 
right-left alternation respecting a median line. Even the 
manual annotation of steps via the GR software with a 
video fails when patients do not have a classic HS-TO 
stride sequence. For instance, in the case of foot drop, 

Table 6 �Start (IC or HS) and �End (FC or TO) reported in the literature for healthy subjects and pathological gaits

a WA-pMS: pMS needing a walking aid
b NA-pMS: pMS not needing a walking aid

Publication Subjects F1‑score (%) �Start (ms) �End (ms)

Dot et al. 2020 [10] Healthy 99 15 (18) 16 (13)

Flood et al. 2020 [50] Healthy 99 16 (7) 40 (16)

Romijnders et al. 2021 [22] Elderly 100 32 29

Hemiparetic 100 31 40

PD 100 33 40

Perez-Iribarra et al. 2020 [51] Healthy 99 75 (40) 29 (24)

Hemiparetic 97 68 (42) 52 (39)

Myelopathic 96 58 (43) 54 (41)

Trojaniello et al. 2014 [26] Elderly 100 10 20

Hemiparetic 100 17 21

PD 100 15 22

Choreic 100 12 18

Ji et al. 2019 [49] Healthy ≥ 95 60 20

Hemiparetic ≥ 95 40 180

Vienne-Jumeau et al. 2020 [28] Healthy 100 15 (7) 19 (9)

WA  pMSa 99 100 (60) 50 (40)

NA  pMSb 99 60 (70) 30 (40)

Storm et al. 2018 [52] WA  pMSa – 60 (20) 100 (50)

NA  pMSb – 70 (30) 100 (30)
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the stride’s initial contact will not always be the HS but 
could be a “Toe-Strike.” Additionally, in some patients, 
the foot does not leave the ground due to an important 
motor deficit, yet the foot moves and no longer really 
carries the body’s load. Bruening et al. suggests using dif-
ferent algorithms depending on the gait pattern [57]. For 
us, it is essential that one reproducible algorithm allows 
step detection for all gait patterns, particularly for lon-
gitudinal follow-up of operated patients, as surgery may 
significantly alter their gait. Furthermore, this raises the 
question of the step’s definition. While some teams con-
sider Initial Contact and Final Contact as genuine GEs, 
we prefer to consider HS and TO, which define step sta-
bility during the StP. Thus, for foot drop, Toe-Strike could 
be considered part of the SwP since the patient has not 
yet stabilized their foot on the ground. Considering these 
factors, template analysis by IMU complements contact 
analysis by instrumented mats or force platforms.

Another issue to consider is the localization of wear-
able sensors for gait analysis [9, 58]. Trojanello et al. and 
Romijnders et al. use a shank sensor, which may be more 
sensitive to the anterior-posterior acceleration move-
ment during the static phase, for which the foot sensor 
does not provide any information [23, 26]. This location 
may be more suitable for detecting gait events. How-
ever, for the analysis of step width and asymmetry, the 
sensor located on the foot will be more sensitive to vari-
ations and thus provide more relevant information. It is 
therefore a compromise between detecting gait events 
and analyzing gait parameters. It could also be interest-
ing to use all 4 sensors to combine their interests, even if 
this would make deployment of the measurement more 
complex.

Conclusion
Our Adaptive Non-Linear Approach to Step Detection 
using IMU has proven to be effective in analyzing the gait 
of healthy individuals and some pathological gait, with-
out the need for an annotated dictionary or the use of a 
gait recognizer. This innovative tool has the potential to 
enable real-time gait analysis of neurological patients and 
can be used as a routine clinical tool throughout their fol-
low-up. Our next objective is to provide an instantaneous 
gait analysis that can be deployed in clinical routines.
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