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Abstract
Background Walking impairment is a common disability post acquired brain injury (ABI), with visually evident arm 
movement abnormality identified as negatively impacting a multitude of psychological factors. The International 
Classification of Functioning, Disability and Health (ICF) qualifiers scale has been used to subjectively assess arm 
movement abnormality, showing strong intra-rater and test-retest reliability, however, only moderate inter-rater 
reliability. This impacts clinical utility, limiting its use as a measurement tool. To both automate the analysis and 
overcome these errors, the primary aim of this study was to evaluate the ability of a novel two-level machine learning 
model to assess arm movement abnormality during walking in people with ABI.

Methods Frontal plane gait videos were used to train four networks with 50%, 75%, 90%, and 100% of participants 
(ABI: n = 42, healthy controls: n = 34) to automatically identify anatomical landmarks using DeepLabCut™ and calculate 
two-dimensional kinematic joint angles. Assessment scores from three experienced neurorehabilitation clinicians 
were used with these joint angles to train random forest networks with nested cross-validation to predict assessor 
scores for all videos. Agreement between unseen participant (i.e. test group participants that were not used to train 
the model) predictions and each individual assessor’s scores were compared using quadratic weighted kappa. One 
sample t-tests (to determine over/underprediction against clinician ratings) and one-way ANOVA (to determine 
differences between networks) were applied to the four networks.

Results The machine learning predictions have similar agreement to experienced human assessors, with no 
statistically significant (p < 0.05) difference for any match contingency. There was no statistically significant difference 
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Introduction
In 2019, global incidents of acquired brain injury (ABI), 
specifically stroke and traumatic brain injury, were esti-
mated to be 80 and 69 million people respectively [1, 2]. 
Walking impairment is a common physical disability post 
moderate to severe ABI [3, 4] affecting the legs, trunk 
and upper limbs, which limits participation in activities 
of daily living, adversely impacting quality of life [5, 6]. 
These visible deficits may create aesthetic issues, adding 
to the stigma of disability, and negatively impacting body 
image, self-esteem, mental health and social integration 
[7–9].

The criterion reference method for objective walking 
assessment is three-dimensional motion analysis [10]; 
however, it is a resource intensive endeavour, with cost 
and marker setup being a major barrier to clinical appli-
cation. Cimolin and Galli [11] also outlined the limita-
tion of clinicians needing to interpret the vast amount of 
data. This leads to concerns regarding pragmatic applica-
tion in a clinical setting. Other systems such as inertial 
measurement units hold promise for obtaining kinematic 
data during functional tasks in clinical settings, but they 
too have extensive setup and calibration times in addi-
tion to infection control issues related to sanitising them 
between patients that often preclude their use in routine 
practice [12].

Physiotherapists are believed to be skilled in accurate 
observational assessment of movement [13]. For this rea-
son, and because of its excellent clinical utility, subjective 
rating via visual observation is a frequently employed 
clinical assessment method and the most common tool 
utilised for clinical gait assessment [14, 15]. Prior work 
has therefore evaluated the application of the Inter-
national Classification of Functioning, Disability and 
Health Framework (ICF) Qualifiers Scale [16] for subjec-
tive assessment of arm movement abnormality during 
walking in people with ABI [17]. Whilst this assessment 
method has been shown to have strong intra-rater and 
test-retest reliability, its inter-rater reliability was only 
moderate [17]. For clinical practice settings where asses-
sors may differ over time, this attenuates the capacity to 
detect clinically relevant, but potentially subtle, changes 
in joint movement abnormality, thereby limiting clinical 
application.

Machine learning predictive algorithms are often 
applied to look for patterns in data and yield valuable 
outcome measurements and classifications [18, 19]. 
Machine learning has seen increased application in 
healthcare from prediction tasks to image classification, 
often outperforming humans [19]. Recent advancements 
in marker-less pose estimation software, such as Deep-
LabCut™, allow the training of networks that can extract 
joint positions from video frames [20]. These joint posi-
tions in a time series may be used as data to provide 
features for a predictive machine learning model that 
can assess functional tasks such as walking and other 
dynamic movements. Where machine learning may be 
particularly useful is in the classification of subjective 
assessments, which usually relies on a clinician visually 
inspecting a movement and rating it against their own 
interpretation of the scoring system. For example, recent 
studies have used DeepLabCut™ generated pose estima-
tion data to predict (1) subjective scores on a general 
movement assessment in children at high risk of cerebral 
palsy [21], and (2) lying or sitting arm and leg dystonia in 
children living with cerebral palsy [22]. This has poten-
tial for inter-rater reliability error, which is particularly 
concerning if these data are being used to inform clinical 
practice and treatment decision making. Machine learn-
ing algorithms could however be trained using a compos-
ite or average of several assessors, theoretically enabling 
the resulting algorithm to provide a score analogous 
to the consensus results this group of assessors would 
derive even when exposed to data it has not seen before. 
If enough raters are used in the training of the model, 
the law of large numbers may eventuate in that the true 
value would be detected and outlying results, which 
would be evident if enough individual assessors were 
performing these assessments, would be removed. Com-
pared to other instrumented methods such as marker or 
inertial measurement unit-based 3D gait analysis it has 
the potential to be performed and interpreted in close 
to real-time, and without sensors or markers placed on 
the person, enhancing its efficiency and potential clinical 
utility by overcoming the previously described limitations 
of these methods such as infection control. This could 
provide further benefits for in-person treatment settings, 
by reducing the assessor burden, improving accuracy, 

between the predictions from the four networks (F = 0.119; p = 0.949). The four networks did however under-predict 
scores with small effect sizes (p range = 0.007 to 0.040; Cohen’s d range = 0.156 to 0.217).

Conclusions This study demonstrated that machine learning can perform similarly to experienced clinicians when 
subjectively assessing arm movement abnormality in people with ABI. The relatively small sample size may have 
resulted in under-prediction of some scores, albeit with small effect sizes. Studies with larger sample sizes that 
objectively and automatically assess dynamic movement in both local and telerehabilitation assessments, for example 
using smartphones and edge-based machine learning, to reduce measurement error and healthcare access inequality 
are needed.



Page 3 of 11Mobbs et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:124 

and addressing an identified telehealth issue whereby cli-
nicians feel their scope for assessment is reduced [23].

To our knowledge there has been limited application 
of this machine learning methodology in the context of 
complex motor movements for predicting subjective gait 
assessment scores. Three recent studies have applied 
wearable sensors and/or an RGB-D (red, green, blue – 
depth, for example the Microsoft Kinect) or standard 
computer cameras to model machine learning algorithms 
to score relatively stationary upper body tasks such as 
Fugl-Meyer and Unified Parkinson’s Disease Rating Scale, 
and finger tapping assessments [24–26]. These studies 
compared their machine learning model results against 
either purely subjective scoring [24, 25] or a combination 
of subjective and wearable sensor-based scoring [26]. 
Additionally, a small convenience sample (n = 8) study 
used DeepLabCut™ to identify anatomical landmark data 
and neural networks to predict lower limb gait param-
eters and compare these data to a clinical system for spa-
tiotemporal gait analysis (GAITRite®) [27]. Other studies 
have used machine learning to classify gait patterns based 
on self-reported measures, such as depression [28], or to 
identify simulated gait impairment in healthy people [29]. 
However, none of these studies attempted to quantify 
kinematic marker-less upper limb movement collected 
in a clinical population, during a dynamic task as com-
plex as walking, and use these data to predict the results 
of a subjective rating scale performed by experienced cli-
nicians. Therefore, the primary aim of this study was to 
examine how well a two-level machine learning model 
can assess arm movement abnormality during walking in 
people with ABI. This model consists firstly of an image 
analysis program that extracts relevant anatomical land-
marks, and secondly a program that uses these anatomi-
cal landmarks to provide a subjective rating score. We 
hypothesise that the machine learning algorithm will pre-
dict arm movement abnormality scores during gait with 
similar agreement and accuracy as a trained experienced 
clinician. A secondary aim was to examine how the pro-
portion of videos used to train versus test the algorithm 
impacted the accuracy, with four variations of train/test 
proportions (50%; 75%; 90%; 100%). For this, we hypoth-
esised that increasing the relative proportion of trained 
videos would increase the accuracy of the prediction.

Methods
Human ethics and consent to participate declaration
This study included participants with adult-onset ABI 
(e.g. stroke and traumatic brain injury) from a previous 
cross-sectional observational study [17]. Ethics approval 
was received from Human Research Ethics Commit-
tees of Epworth Healthcare (approval number 648 − 14) 
and the University of the Sunshine Coast (approval 

number S/17/1006) in accordance with the Declaration 
of Helsinki.

Participants
The experimental group demonstrated an effort depen-
dent arm movement abnormality in their hemiplegic or 
affected upper limb during walking. Participants were a 
convenience sample of individuals (n = 42). They were 
recruited from a brain injury rehabilitation centre and 
private practice neurological-based physiotherapy clinics 
in Melbourne, Australia. All participants provided writ-
ten informed consent before assessment. Participants 
were > 18 years of age and were required to walk > 10 m 
barefoot, with no walking aids or hands-on assistance. 
Participants were excluded if they did not understand the 
English instructions, were pregnant, medically unstable, 
had significant cognitive impairments, or had physical 
deficits preventing assessment completion.

A convenience sample of healthy controls (HCs) was 
recruited from the healthcare network of staff, family, 
and friends (n = 34). Controls were included if they were 
more than 18 years of age and had no comorbidities that 
impacted their upper limbs or capacity to walk. Both 
groups were required to walk on a 10 m walkway at a self-
selected and fastest possible safe walking speed. Two tri-
als of each task were recorded and analysed.

Procedure
A Microsoft Kinect V2 camera was placed 0.5  m from 
the end of the walkway to record the RGB images (res-
olution 1920 × 1080) of participants in the frontal plane, 
for a total walkway length of 10.5 m. The ICF qualifiers 
scale was used by the expert assessors to quantify arm 
movement abnormality during walking. Additionally, 
the peak elbow flexion during walking was estimated 
visually by the assessors. Assessment was conducted 
by three neurological physiotherapists with > 15 years’ 
experience (therapist 1: 16 years, therapist 2: 33 years 
and therapist 3: 19 years). Assessors were provided with 
a lay definition of the rating categories and the video 
order was randomised. Physiotherapists observed the 
videos at standard playback speed with no rewinding in 
one 4-hour session with a 30-minute break using a ref-
erence sheet and a spreadsheet to input values. Before 
assessing videos, a 10-minute overview of arm movement 
abnormality during walking was provided with project 
rationale, along with two familiarisation videos to prac-
tice applying the scale. Videos were assessed and scored 
for an arm movement abnormality during walking, with 
159 videos for the ABI group across n = 42 participants, 
and 5 videos for the HCs across a randomly sampled n = 5 
participants. Only 5 HC videos were included in the sub-
jective analysis to reduce biasing results, as these videos 
would by definition be scored as unimpaired and hence 
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including the entire dataset would artificially inflate our 
validity findings. Conversely, all HC videos were used in 
training the first level of the machine learning algorithm, 
which was designed to detect anatomical landmarks.

First machine learning level: anatomical landmark network 
development
This study utilised an open-source software package 
(DeepLabCut™) applied to compute 2D and 3D pose 
estimates [20]. DeepLabCut™ was applied to select train-
ing data frames, label data frames, and generate training 
data for label positions over time. Videos were selected 
in numerical participant order selecting 50% (ABI: n = 21, 
HCs: n = 17), 75% (ABI: n = 32, HCs: n = 26), 90% (ABI: 
n = 38, HCs: n = 31), or 100% (ABI: n = 42, HCs: n = 34) 
of the participants that were used to train the network 
for each group. Only one video was selected randomly 
for each participant between the available videos. Still 
images were selected using the uniform method within 
DeepLabCut™ to select frames, labelling 20 frames per 
video. Bilateral joint label locations of shoulders, elbows, 
wrists, and hips were applied to each extracted frame 
(Fig. 1). Selection of training iterations was informed by 
Mathis, Mamidanna [20], with the DeepLabCut™ settings 
being 500,000 training iterations, using a 101 layer deep 
convolutional neural network (setting: resnet101), with 
no repeated shuffles (setting: shuffle = 1).

Anatomical landmark extraction
Anatomical landmark positions were then imported 
into a customised software package to extract the maxi-
mum, minimum, mean, standard deviation, skew, and 
kurtosis of the frontal plane elbow and shoulder angles 
of each limb. A recent study using 3D motion analysis 
demonstrated that the shoulder abduction and elbow 
flexion were the largest weighted variables influencing 

arm movement abnormality during walking, therefore, 
these measures were selected as the target features for 
this assessment [30]. Frontal plane elbow angle was cal-
culated as the angle between the longitudinal axes of the 
wrist to elbow segment, and the elbow to shoulder seg-
ment. The frontal plane shoulder angle was calculated as 
the angle between the longitudinal axes of the elbow to 
shoulder segment, and a line running vertically between 
the midpoint of the two hip landmarks and the two 
shoulder landmarks. This created a longitudinal axis run-
ning approximately through the sacrum and sternum on 
the anterior aspect of the body. Data were automatically 
trimmed to extract movements associated with gait, and 
exclude stationary time (start of the trial) and missing 
markers due to the person being too close to the camera 
(end of the trial). The former was achieved by creating an 
algorithm that identified when the pixel distance between 
any of the hip or shoulder markers increased, indicat-
ing that the image of the person was larger in the frame 
and hence they were closer to the camera. The latter was 
achieved by excluding all data once any of the identified 
anatomical landmarks were lost from the image for more 
than two consecutive frames. These kinematic traces 
for individual anatomical landmarks were three-point 
median filtered to reduce error associated with single 
frame landmark error. No filtering of the joint angle 
traces was performed.

Second machine learning level: predictive algorithm 
development
Whilst all recorded videos for all participants were used 
for anatomical landmark training, as stated previously 
not all HCs videos were used for the second stage of 
algorithm development (i.e. subjective score prediction). 
Only 5 HCs videos were scored using the subjective rat-
ing scale, as they would by nature score very well, and 
hence including all healthy participants would skew the 
data. Therefore, each of the four trained networks were 
applied to all videos that had been assessed and scored 
for an arm movement abnormality during walking (ABI: 
159 videos, HCs: 5 videos).

The maximum, minimum, mean, standard deviation, 
skew, and kurtosis for the bilateral elbow and shoul-
der was applied alongside the median subjective score 
of arm movement abnormality during walking for the 
three assessors across videos. Importantly, the median 
was selected as it allowed the value from the three asses-
sors to maintain an ordinal value, appropriate for classi-
fication and analogous to the nature of the assessment. 
Spyder (version 4.2.5) was used within an Anaconda envi-
ronment (version 4.11.0) using version 3.7.9 of Python. 
The Scikit-learn module (version 1.0.2) was applied to 
fit classification models, scale data, and perform K-fold 
validation [31]. Spreadsheets were imported into Spyder 

Fig. 1 Examples of labelled videos with anatomical landmarks, resulting 
from applying the trained networks to label videos. The anatomical land-
marks identified were approximations of the shoulder, elbow and wrist 
centres on each arm, and the anterior superior iliac spine ridges on both 
sides of the pelvis. Note the physical markers that can be seen in the im-
ages were not used in this analysis
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with features scaled using the StandardScaler to remove 
the mean and scale to unit variance. During pilot testing 
we compared a variety of different classification mod-
els (random forest, K-nearest neighbours, support vec-
tor, logistic, and decision tree) to choose an appropriate 
model. Subjectively we observed that the random forest 
classification was at least as good overall as the other 
methods and given that it has the advantage of providing 
the weighting that each variable contributes to the pre-
dictive algorithm, was subsequently chosen to represent 
all networks.

To validate and assess the models, K-fold validation 
was applied to each classification model. K-fold valida-
tion discussed by Zhang and Yang [32] involves splitting 
data into k = 5 equal outer folds where 1 outer fold is held 
as a “test set” and the remaining four folds are used as a 
“training set” to train a model, this process is repeated for 
each outer fold to be the test set. The accuracy was cal-
culated for each test set with the accuracy of the test sets 
taken across each classification model.

Using a validation method introduced by Varma and 
Simon [33], hyperparameters for each classification 
model were tuned by applying inner cross-validation 
loops to each training set of the outer cross-validation 
loop. Nested cross validation, whilst not frequently used 
due to being computationally expensive, was used to 
optimise hyperparameters and deemed appropriate for 
our relatively small dataset [34]. Our model used five 
folds for cross-validation.

Outer and inner cross validation processes were auto-
mated using Python to calculate parameters with respect 
to accuracy across all inner loops. Outer cross-valida-
tion was also automated with Python code reporting 
the average accuracy for each fold and average accuracy 
across the five folds for each classification model. The 
trained model was then applied to predict the scores for 
each video in the dataset across all networks (50%, 75%, 
90%, 100%), outputting an array of predicted scores for 
each network. An overview of the overall process of the 
machine learning implementation is provided in Fig. 2.

Fig. 2 Analysis pipeline describing the steps applied in sequential order for the first and second layer of machine learning to develop network predictions 
for each of the four networks (50%, 75%, 90%, 100%)
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Statistical analysis
The predicted scores were imported and compared to 
the median and individual assessor scores with accu-
racy (Numberofcorrectlyclassifedassessments

T otalnumberofassessments ∗ 100) and mean 
square error (MSE) (1

n

∑n
i=1

(
Yi − Ŷi

)2
), where n is the 

number of data points, Yi  is the observed value and Ŷi  
is the predicted value. Accuracy and MSE were calcu-
lated between the median of the three assessors and the 
machine learning networks (50% vs. median prediction, 
75% vs. median prediction, 90% vs. median prediction, 
100% vs. median prediction) and reported. Predicted 
scores were subtracted from the median assessor score. 
Absolute values from this procedure were tallied and 
reported to show the distribution for the prediction vs. 
assessors.

The predicted values for each network were subtracted 
from the median score between assessors and plotted 
using histograms to visualise the distribution. To assess 
the variance and performance of the four networks, a 
one-way ANOVA test was applied. One-sample t-tests 
were also performed for each network to examine if the 
network had a tendency to over- or under-predict values. 
Probability values of < 5% (i.e. p < 0.05) were considered 
to be significant for evaluation. An agreement matrix 
was developed by applying a quadratic weighted Cohen’s 
kappa [35]. Unseen participants (i.e. test group partici-
pants that were not used to train the model) were used 
from the 50% network, comparing between individual 
experienced assessors and the machine learning pre-
dictions. Additionally, a contingency table was created 
after all data for the 50% machine learning network and 
the median of the assessor scores were converted to (1) 
Impaired: moderate or higher impairment (score of 2 or 
greater) or (2) Unimpaired: minimal to no impairment 
(score of 0 or 1), which has been done in prior research 
using ICF scoring to convert the scale to a binary out-
come [36]. From these data the recall ( TP

TP+FN ), precision 
( TP
TP+FP ), accuracy ( TP+TN

TP+FP+TN+FN ), and summary F1 
(2∗precision∗recall

precision+recall ) scores were calculated, where TP = true 
positive, TN = true negative, FP = false positive and 
FN = false negative. All analyses were performed using 

Excel and Python. When assessing differences between 
predictions for participants who were seen or unseen 
by the DeepLabCut™ network a histogram was used. The 
predictions were filtered by seen vs. unseen and sub-
tracted from the median assessor score for the appropri-
ate video file.

Results
76 people were recruited for walking trials, 42 had an 
ABI (25 with stroke, 15 with traumatic brain injury, and 2 
with prior cerebral neurosurgery, 34 were HCs. Descrip-
tive data are reported in Table 1, with participants details 
further described in Kahn, Clark [17]. Amongst the 
group of people with ABI they were predominately male 
(26/42), conversely, within the HCs they were predomi-
nantly female (21/34). People within the ABI group had a 
mean time post injury of 6.2 years (± 5.7 years).

For the first part of the algorithm training (i.e., ana-
tomical landmark identification) train and test errors 
ranged between 1.35 and 4.15 pixels across all networks 
(50%,75%,90%,100%) applied to the 1920 × 1080 video 
frames. A one-way ANOVA between the networks (50%, 
75%, 90%, 100%) found that there were no statistically 
significant differences between the predictions (F = 0.119; 
p = 0.949). The distribution between the four networks 
subtracting the median assessor score are presented in 
Fig.  3, qualitatively demonstrating that all networks are 
similarly distributed. One sample t-tests for each network 
revealed that there was a statistically significant differ-
ence to 0 (p range = 0.007 to 0.04; Cohen’s d range = 0.156 
to 0.217), indicating that the models tended to under-
predict subjective scores, however, with small effect size 
[37].

Figure 4 displays a histogram comparing the predicted 
scores of seen vs. unseen participants. Qualitatively, 
this highlights that there is no discernible difference in 
the predictive algorithm’s capacity to predict subjective 
scores between the seen and unseen condition.

As shown in Table  2 with respect to the difference 
between scores, the four machine learning groups 
had similar results to each other when comparing the 

Table 1 Study participant characteristics between the ABI (n = 42) and the HCs (n = 34)
Characteristics Subjects with ABI (n = 42) HCs (n = 34)

Descriptive Range Descriptive Range
Sex (male/female) 26/16 - 13/21
Age (years) 48 ± 17 20 to 84 37 ± 15 21 to 78
Weight (kg) 80 ± 16 47 to 131 70 ± 13 45 to 103
Height (cm) 172 ± 8 155 to 190 170 ± 10 150 to 188
Injury Type (n) TBI (15)

CVA (25)
NS (2)

-

Time Post Injury (yrs) 6.2 ± 5.7 0.2 to 40.4
Hemiplegic side (L/R) 26/16 -
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accuracy and absolute difference between scores, with no 
discernible pattern related to percentage of videos used 
for training. Amongst the unseen comparisons, 50% vs. 
assessor 1 and 50% vs. assessor 2 appeared to marginally 
underperform when compared to comparisons between 

assessors (assessor 1 vs. assessor 2, assessor 1 vs. assessor 
3, assessor 2 vs. assessor 3). However, the 50% network 
performed similarly when compared to assessor 2 with 
similar distributions evident between assessors (assessor 
1 vs. assessor 2 and assessor 2 vs. assessor 3).

Table  3 displays a matrix comparing the inter-rater 
agreement between each assessor and the 50% unseen 
network. This table highlights that within each of the 
three match contingencies there is no statistically sig-
nificant (p < 0.05) difference between the predictions of 
the experienced clinicians and the 50% unseen network 
predictions.

Table  4 displays a contingency table after all data for 
the 50% machine learning network and the median of the 
assessor scores were converted to binary impaired/unim-
paired. This showed that the model had a very high level 
of recall (89%), precision (88%), and accuracy (84%), and 
the summary F1 score was also very high (0.88).

Discussion
We have demonstrated that, when trained and imple-
mented using the methodology described in this study, 
machine learning predictions can result in similar agree-
ment to human assessors for the relatively complex task 
of assigning a subjective rating of severity score to a 
video of someone walking with arm movement abnor-
mality. For example, our 50% network was able to clas-
sify the 0–4 scale scores with 60.4% and 58.8% accuracy 
for the total data and unseen data only respectively when 
compared to the median assessor score. This was com-
parable to the somewhat unreliable inter-rater accuracy 
observed for the unseen data, which ranged from 57.5 to 
67.5%. When the non-linear scale score was converted to 
a binary impairment/no impairment variable, accuracy 
improved to 84% against the median assessor score for 
our 50% network and the recall (88%), precision (84%) 
and F1 scores (0.88) were all very high. Additionally, 
there was no statistically significant variance between 
networks. This is important, because our 50% network 
(ABI: n = 21, HCs: n = 17), trained on only half of a rela-
tively small number of patients, can provide data with 
similar accuracy to human assessment on patients and 
trials it has not been exposed to previously. Importantly, 
this allows less time spent training, reducing technical 
burden, making it feasible to use with location specific 
training and analysis. However, it is important to note 
that further research using a higher number of raters 
than the three experienced ones used in this study may 
change this finding.

Whilst our study is only proof of concept, our results 
indicate that applying machine learning for clinical or 
remote assessment may be greatly beneficial. For exam-
ple, a telehealth application could assess someone using 
the available video camera in readily available devices 

Fig. 4 Histogram comparing the difference in the median assessor score 
between the seen and unseen participants for the 50% (right: ABI: n = 21, 
HCs: n = 17) network. 75%, 90% and 100% networks were omitted due to 
the corresponding small sample size of the unseen participant group

 

Fig. 3 Histogram illustrating the distribution of predicted scores subtract-
ing median assessor score for each of the four networks
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such as a phone, tablet, or computer. After the initial 
algorithm training is complete, this could be fully auto-
mated, without requiring training and validation of 
the treating clinician’s ability to accurately categorise 
a patient’s gait impairment in accordance with the sub-
jective scale. A key benefit this provides is that of con-
sistency; there is no variation due to factors such as an 
individual clinician’s experience or biases, anchoring 
to other recent assessments or inter-rater variability. 
The clinicians may still undertake the role of overseeing 
the test to ensure it is performed correctly, and action-
ing the results via an intervention plan, but the analysis 
is automated and performed as if it were examined by a 
consensus group of experienced assessors. Whether this 
automation of the assessment leads to clinically meaning-
ful changes in treatment and outcomes requires further 
study.

Implementing a location specific system, while poten-
tially beneficial, requires some time burden to create. It 
took approximately one day to label 50% of participants, 
using one trial for each participant. The networks then 
took approximately two days of unsupervised training 
using Tensorflow on a computer with a Nvidia GeForce 
RTX 2080 Super graphics card. Once this is complete, a 
server can be setup to automate the data collection, anal-
ysis, and reporting. Timing of our analyses revealed that 
the results could be obtained within one minute of test 
completion using the current system, which will likely 
improve with enhanced processing power and more effi-
cient algorithms in the future. With respect to how it 
could be implemented in a clinical setting, a fixed web-
cam could be mounted to a wall in the rehabilitation cen-
tre, which the clinical assessor uses to record the trial on 
a phone/tablet/computer. This video could be automati-
cally sent to a local server where the machine learning 
algorithm can be automated to identify the landmarks, 
whether via custom trained models such as the one in 
this study or using the pre-trained models such as Mov-
enet [38]. The server then calculates the rating and sends 
the results back to the phone/tablet/computer. This can 
be done with limited privacy issues, as it does not require 
internet connection. On a larger scale, there is the poten-
tial for remote assessment with patients using their 
smartphone in their own home. This would be a powerful 
method for community rehabilitation, providing much 
larger training sets that can be used for specific analy-
ses that encompasses a wider range of environments. 
However, this has potential privacy issues at present, but 
future edge-based systems may be able to overcome this.

Our study has limitations. This study was limited by 
a relatively small sample size (landmark training ABI: 
n = 42, HCs: n = 34; subjective score prediction ABI: 

Table 2 The accuracy, mean square error (MSE) and difference between scores for the predicted scores for the four networks 
compared to the mean of the three assessors. Also shown is the difference between scores between each individual assessor and the 
50% network’s predictions for only the unseen participants
Comparison Accuracy (%) MSE Absolute difference between scores

0 1 2 3
All data included
50% vs. Amed 60.4 0.49 99 60 5 0
75% vs. Amed 68.9 0.38 113 47 4 0
90% vs. Amed 62.8 0.46 103 56 5 0
100% vs. Amed 67.1 0.42 110 49 5 0
Unseen data only
A1 vs. A2 (unseen) 57.5 0.66 46 31 1 2
A1 vs. A3 (unseen) 66.3 0.38 53 26 1 0
A2 vs. A3 (unseen) 67.5 0.36 54 25 1 0
50% vs. Amed (unseen) 58.8 0.45 47 32 1 0
50% vs. A1 (unseen) 47.5 0.68 38 38 4 0
50% vs. A2 (unseen) 52.5 0.51 42 37 1 0
50% vs. A3 (unseen) 63.8 0.40 51 28 1 0
Amed = median value of the three Assessors; A1 = Assessor 1; A2 = Assessor 2; A3 = Assessor 3;

Table 3 Agreement matrix applying a quadratic weighted 
kappa with standard error between each of the assessors and 
50% machine learning network for unseen participants only

50% Unseen Net-
work Predictions

Assessor 3 Asses-
sor 2

Assessor 1 0.41 ± 0.11 0.71 ± 0.19 0.58 ± 0.18
Assessor 2 0.55 ± 0.13 0.73 ± 0.11 -
Assessor 3 0.59 ± 0.17 - -

Table 4 Contingency table showing the agreement between 
the 50% machine learning network and the median of the 
assessors scores after binary conversion of the scoring to 
impaired (score ≥ 2) or unimpaired (score ≤ 1)

Assessor Median
Impaired Unimpaired

50% ML Impaired 49 7
Unimpaired 6 18
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n = 42, HCs: n = 5) that necessitated the application of 
computationally expensive validation (nested cross-val-
idation) to provide a realistic generalisation of the net-
work’s true performance [33]. The sample size may have 
impacted the network, causing the network to under-
predict scores due to the median of scores being heavily 
distributed around scores 1–2, albeit this was only with 
small effect size (d = 0.156 to 0.217 across 50%, 75%, 90%, 
and 100% networks). Despite this, our comparison of par-
ticipants used in training versus unseen participants had 
relatively low variances (Fig. 4; Table 2) and similar agree-
ment (Table  3) indicating that our sample size allowed 
for accurate data to be obtained. Future studies should 
examine the performance of this methodology with 
larger sample sizes, where scoring data may be normally 
distributed amongst both training and test sets. This may 
enable the training of networks with no statistically sig-
nificant under- or over-prediction of scores. Additionally, 
it enables the cross-validation of training models that are 
less computationally expensive and reflect what would 
typically be applied in a commercial setting [39], i.e. a 
simple 80(train):20(test) cross-validation method.

The performance of our machine learning algorithm 
to label anatomical landmarks may have been impacted 
by the presence of physical markers on participants that 
were used for 3D gait analysis in a separate analysis [40, 
41]. However, other papers have used this technology 
without markers to good effect [42, 43]. Kahn, Clark 
[17] performed their assessment with 3 assessors with 
> 15 years’ experience, finding that between assessors 
there was moderate inter-rater reproducibility. Whilst 
this may have been caused by the application of the scale 
with limited precision, potentially causing large differ-
ences between raters (i.e., between 0 and 1), it is also 
testament to the difficulty of subjective rating of com-
plex phenomena even when done by highly experienced 
clinicians. This research may provide a possible solution 
for the moderate inter-rater reproducibility described 
by Kahn, Clark [17]. Where assessors experienced scor-
ing variations when exposed to the same phenomenon, 
potentially due to the ordinal scale (e.g., 0–4), the net-
work would predict an ordinal number independent of 
the current assessor by applying a composite of previous 
assessments used to train the network, thereby theoreti-
cally eliminating variance between assessors. This could 
be further studied by having a greater number of asses-
sors results used in the training model, taking advantage 
of the law of large numbers; however, for this study we 
prioritised selecting a relatively small number of highly 
experienced, homogenous assessors over a larger number 
of more variably experienced assessors.

The study was also limited by the lighting conditions in 
the room. Lights were controlled via overhead fluorescent 
lights, however lighting external to the room affected 

the exposure and subsequent visibility of some joints in 
a small proportion of the videos. More control for light-
ing in future studies could increase accuracy of anatomi-
cal landmark placement; however, this increased control 
comes at the cost of less generalisability of the algorithm 
to different environments. This could be problematic in 
the event of changes to the environment (for example, 
switching to newer LED lighting with different spectral 
bandwidths and luminous ratings). Our data are also not 
directly generalisable to telehealth, as we controlled the 
positioning of the camera and maintained consistency of 
the background and the environment videos were cap-
tured in. However, with further network training using 
data from home environments, it is reasonable to assume 
that this methodology would be able to accurately assess 
impairment. However, further studies in home-based set-
tings and different environments are required.

Conclusion
In conclusion, the restoration of a normal appearance 
during walking is often an important goal for people with 
ABI [44, 45]. Clinicians commonly describe abnormal 
movement deviations in terms of their visual impact and 
likely subconsciously compare a patient’s presentation to 
what they expect healthy or “normal” movement patterns 
to be [46]. Our results indicate that machine learning can 
quantify this, with similar agreement to experienced cli-
nicians ratings of arm movement abnormality for people 
living with ABI. This may open the door to more consis-
tent and less biased remote and local assessment. Future 
research could examine if application of similar systems 
provides clinical benefits for patients and determine if 
it is responsive to change amongst larger sample sizes. 
Future application of this methodology could be applied 
to the trunk or lower limbs to capture movement abnor-
mality more objectively and simply in clinical settings.
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