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Abstract
Objective To avoid deviation caused by the traditional scale method, the present study explored the accuracy, 
advantages, and disadvantages of different objective detection methods in evaluating lower extremity motor 
function in elderly individuals.

Methods Studies on lower extremity motor function assessment in elderly individuals published in the PubMed, 
Web of Science, Cochrane Library and EMBASE databases in the past five years were searched. The methodological 
quality of the included trials was assessed using RevMan 5.4.1 and Stata, followed by statistical analyses.

Results In total, 19 randomized controlled trials with a total of 2626 participants, were included. The results of the 
meta-analysis showed that inertial measurement units (IMUs), motion sensors, 3D motion capture systems, and 
observational gait analysis had statistical significance in evaluating the changes in step velocity and step length 
of lower extremity movement in elderly individuals (P < 0.00001), which can be used as a standardized basis for 
the assessment of motor function in elderly individuals. Subgroup analysis showed that there was significant 
heterogeneity in the assessment of step velocity [SMD=-0.98, 95%CI(-1.23, -0.72), I2 = 91.3%, P < 0.00001] and step 
length [SMD=-1.40, 95%CI(-1.77, -1.02), I2 = 86.4%, P < 0.00001] in elderly individuals. However, the sensors (I2 = 9%, 
I2 = 0%) and 3D motion capture systems (I2 = 0%) showed low heterogeneity in terms of step velocity and step length. 
The sensitivity analysis and publication bias test demonstrated that the results were stable and reliable.

Conclusion observational gait analysis, motion sensors, 3D motion capture systems, and IMUs, as evaluation means, 
play a certain role in evaluating the characteristic parameters of step velocity and step length in lower extremity 
motor function of elderly individuals, which has good accuracy and clinical value in preventing motor injury. However, 
the high heterogeneity of observational gait analysis and IMUs suggested that different evaluation methods use 
different calculation formulas and indicators, resulting in the failure to obtain standardized indicators in clinical 
applications. Thus, multimodal quantitative evaluation should be integrated.
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Introduction
According to the World Health Organization (WHO), 
by 2050, the number of people aged 60 or over will reach 
2 billion, and the number of people aged 80 or over will 
triple to 426 million [1]. As the population ages, diseases 
and disabilities associated with ageing and behavioral 
limitations are increasing [2]. Without timely interven-
tion, the risk of sarcopenia, spinal cord injury, and fall 
injury may increase [3]. The individual and age differ-
ences between elderly individual’s affects movement 
ability and disorder performance differently, such as 
bradykinesia, myotonia and balance dysfunction, thus 
increasing the challenge of assessment. At present, the 
clinical scale is commonly used in the evaluation of lower 
extremity motor function in elderly individuals. Symp-
toms, signs and other related indicators were system-
atically recorded and scored to evaluate the severity of 
injury and the change of treatment effect. This method is 
simple to use and does not require expensive professional 
equipment. For clinicians, information of the patient’s 
motor function can be obtained initially, which is condu-
cive to the next diagnosis and treatment. However, due to 
confounding factors, such as physiological, psychological, 
and behavioral factors of elderly individuals, this scale 
is not reliably robust, thereby limiting the assessment 
[4]. How to make an effective and accurate objective 
quantitative assessment of lower extremity motor func-
tion in elderly individuals is still a challenge to overcome 
for assessing and preventing impairment of the ageing 
population.

Therefore, the present study selected randomized con-
trolled trials (RCTs) to conduct a meta-analysis of clini-
cal objective detection methods for the assessment of 
lower extremity motor function in elderly individuals. 
The detection methods included motion sensors, obser-
vational gait analysis, IMUs, 3D motion capture systems, 
and surface electromyography(sEMG). The purpose 
of the present study was to summarize the quantitative 
assessment methods of lower extremity motor function 
in elderly individuals to provide a reference for clinical 
application.

Methods
The present meta-analysis was reported in accordance 
with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement [5]. 
The protocol of this systematic review was published 
in the International Prospective Register of Systematic 
Reviews (PROSPERO-CRD 42023430185).

Search strategy
Studies on lower extremity motor function assessment 
in the elderly were searched from January 2018 to March 
2023 in the PubMed, Web of Science, Cochrane Library 

and EMBASE databases. MeSH terms and text words 
were included in the search terms. The search strategy 
was modified for each specific database, with keywords 
and concepts remaining identical. The main concepts 
were as follows: elderly, lower extremity, sensors, sur-
face electromyography, inertial measurement units, gait 
analysis, and motion capture systems. These are currently 
the most mainstream evaluation methods, with high 
clinical recognition. A large amount of literature can be 
retrieved, with high accuracy and reliability. The search 
strategies for all databases are provided in Table 1.

Selection criteria
Following Morgan’s PICOS/PECOS program, the 
inclusion criteria and exclusion criteria were formu-
lated [6]. The inclusion criteria were as follows: (1) 
study subjects included the elderly aged 60–80 years; 
and (2) interventions included sEMG, gait analysis, 
IMUs, 3D motion capture systems, and motion sensors 
to assess motion function during lower extremity tasks. 
(3) The multiple comparisons met the following crite-
ria: (a) comparison between the movement disorder 
group and the healthy group; (b) comparison between 
the movement characteristic parameters of the elderly 
before and after the evaluation; and (c) comparison 
of the lower extremity motor function characteris-
tic results with gold standard clinical scale results. (4) 
Regarding the outcome indicators: the primary indica-
tor was step velocity, and the secondary indicator was 
step length. (5) The study was an RCT.

Articles were excluded based on the following crite-
ria: (1) duplicate publications or literature; (2) incom-
plete research data or test data could not be extracted; 
(3) review and systematic review; and (4) full text not 
available.

Screening, selection process, and data extraction
Two researchers with systematic training indepen-
dently searched the relevant literature, read the title 
and abstract of the literature, and conducted prelimi-
nary screening according to the inclusion criteria. The 
full text was then read, and the literature that did not 
meet the inclusion criteria was screened out. The liter-
ature data were extracted, and cross-checks were con-
ducted. Differences were resolved through discussion. 
The extraction contents included author, year of publi-
cation, sample size, age of study subjects, intervention 
methods, and outcomes.

Assessment of methodological quality and risk of bias
The risk of bias and methodological quality of the 
included trials were independently assessed using the 
Cochrane Risk of Bias (RoB2) assessment tool [7]. 
RoB2, as proposed by the Cochrane Collaboration, is a 
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widely accepted tool to evaluate the quality of an RCT 
in the biomedical field. The evaluation items were 
comprised of the following seven aspects: (1) random 
sequence generation; (2) allocation concealment; (3) 
blinding of participants and personnel; (4) blinding of 
outcome assessment; (5) incomplete outcome data; (6) 
selective reporting; and (7) other bias. For each indica-
tor, “low risk of bias”, “high risk of bias”, and “unclear” 
were used to assess bias. If the included studies fully 
met, partially met, or inconsistently met with the 
above criteria, the possibility of bias was small, moder-
ate, or high, respectively (quality grades of A, B, or C, 
respectively).

Statistical analysis
EndNote X9 was used to deduplicate and filter the 
literature found in databases. Excel 2010 was used to 
extract data and basic information. Statistical analysis 
of the data was performed using RevMan 5.4.1 (The 
Nordic Cochrane Centre, The Cochrane Collabora-
tion, Copenhagen, Denmark). Continuity variables 
were extracted from the outcome variables of this 
study. Measurements were calculated using weighted 
mean difference (WMD) or standard mean difference 
(SMD) [8], and the size of the combined effect was 
analyzed using 95%CI.

Table 1 Search strategies for all databases
Database Search strategies Addi-

tional
filters

PubMed (((((((((((Electromyographies[Title/Abstract]) OR (Surface Electromyography[Title/Abstract])) OR (Electromyographies, 
Surface[Title/Abstract])) OR (Electromyography, Surface[Title/Abstract])) OR (Surface Electromyographies[Title/Abstract])) 
OR (Electromyogram[Title/Abstract])) OR (Electromyograms[Title/Abstract])) OR (“Electromyography“[Mesh])) OR (((Gait 
Analyses[Title/Abstract]) OR (Analysis, Gait[Title/Abstract])) OR (“Gait Analysis“[Mesh]))) OR (motion capture system[Title/
Abstract])) OR ((inertial sensor[Title/Abstract]) OR (inertial measurement unit[Title/Abstract]))) AND ((((((((((“Lower 
Extremity“[Mesh]) OR (Extremities, Lower[Title/Abstract])) OR (Lower Extremities[Title/Abstract])) OR (Lower Limb[Title/
Abstract])) OR (Limb, Lower[Title/Abstract])) OR (Limbs, Lower[Title/Abstract])) OR (Lower Limbs[Title/Abstract])) OR (Mem-
brum inferius[Title/Abstract])) OR (Extremity, Lower[Title/Abstract])) AND ((Elderly[Title/Abstract]) OR (“Aged“[Mesh])))

Filters:
in the 
last 5 
years
Sort 
by: 
Most 
Re-
cent

Web of Science TS=((((((((((((Electromyographies[Title/Abstract]) OR (Surface Electromyography[Title/Abstract])) OR (Electromyographies, 
Surface[Title/Abstract])) OR (Electromyography, Surface[Title/Abstract])) OR (Surface Electromyographies[Title/Abstract])) 
OR (Electromyogram[Title/Abstract])) OR (Electromyograms[Title/Abstract])) OR (“Electromyography“[Mesh])) OR (((Gait 
Analyses[Title/Abstract]) OR (Analysis, Gait[Title/Abstract])) OR (“Gait Analysis“[Mesh]))) OR (motion capture system)) OR ((in-
ertial sensor) OR (inertial measurement unit))) AND ((((((((((“Lower Extremity“[Mesh]) OR (Extremities, Lower[Title/Abstract])) 
OR (Lower Extremities[Title/Abstract])) OR (Lower Limb[Title/Abstract])) OR (Limb, Lower[Title/Abstract])) OR (Limbs, 
Lower[Title/Abstract])) OR (Lower Limbs[Title/Abstract])) OR (Membrum inferius[Title/Abstract])) OR (Extremity, Lower[Title/
Abstract])) AND ((Elderly[Title/Abstract]) OR (“Aged“[Mesh]))) )

Date 
of 
pub-
lica-
tion: 
Last 5 
years

Cochrane library 
and Embase

1 MeSH descriptor: [Aged] explode all trees (255,190)
2 (Elderly): ti, ab, kw (57,900)
3 #1 OR #2 (293,731)
4 MeSH descriptor: [Lower Extremity] explode all trees (10,856)
5 (Extremities, Lower): ti, ab, kw OR (Lower Extremities): ti, ab, kw OR (Lower Limb): ti, ab, kw OR (Limb, Lower): ti, ab, kw 
OR (Limbs, Lower): ti, ab, kw OR (Lower Limbs): ti, ab, kw OR (Membrum inferius): ti, ab, kw OR (Extremity, Lower): ti, ab, kw 
(23,471)
6 #4 OR #5 (30,797)
7 #3 AND #6 (6841)
8 MeSH descriptor: [Electromyography] explode all trees (4197)
9 (Electromyographies): ti, ab, kw OR (Surface Electromyography): ti, ab, kw OR (Electromyographies, Surface): ti, ab, kw 
OR (Electromyography, Surface): ti, ab, kw OR (Surface Electromyographies): ti, ab, kw OR (Electromyogram): ti, ab, kw OR 
(Electromyograms): ti, ab, kw (2910)
10 #8 OR #9 (6043)
11 MeSH descriptor: [Gait Analysis] explode all trees (63)
12 (Gait Analyses): ti, ab, kw OR (Analysis, Gait): ti, ab, kw (4923)
13 #11 OR #12 (4923)
14 (inertial sensor): ti, ab, kw OR (inertial measurement unit): ti, ab, kw (170)
15 (motion capture system): ti, ab, kw (342)
16 #14 OR #15 (507)
17 #10 OR #13 (10,783)
18 #16 OR #17 (11,132)
19 #7 AND #18 (445)
20 #3 AND #18 (2434)
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A heterogeneity test was first performed. Heteroge-
neity was evaluated by the I2 statistic, which was clas-
sified as low, moderate, or high with I2 < 25%, 25 − 50%, 
and > 50%, respectively [9]. If I2 < 50% or P > 0.05, there 
was no significant heterogeneity among the included 
studies, and the fixed effect model was adopted. Oth-
erwise, the random effect model was adopted [10]. 
P < 0.05 was considered statistically significant. With 
high heterogeneity (I2 > 50%), a heterogeneity analysis 
was performed using subgroups. Stata SE12.0 was used 
for meta-regression to further explore the sources of 
heterogeneity. A sensitivity analysis was performed to 
evaluate the consistency of the results. Begg’s [11] and 
Egger’s [12] tests were used to evaluate potential pub-
lication bias.

Results
Study selection
A total of 1119 studies were initially searched, 340 
duplicates were eliminated by Endnote, resulting in 
779 papers. After reading the titles and abstracts of the 

studies, 618 studies were retained. After reading the 
full text studies that did not meet the inclusion crite-
ria were excluded. Finally, a meta-analysis of 19 stud-
ies was conducted (Fig.  1). The sample size was 2626 
cases, with 1306 cases in the experimental group and 
1320 cases in the control group. The characteristics 
and outcome measures of each included study are 
shown in Table 2.

Risk of bias
The quality of the included literature was evaluated 
according to the Cochrane Review Manual, and the 
methodological quality evaluation was graded as B. 
Regarding random sequence generation, 19 studies 
described the methods used to generate the sequences 
in detail and were evaluated as having a low risk of 
bias. In terms of allocation concealment, none of the 19 
studies reported the allocation scheme concealment, 
which was evaluated as unclear. Regarding blinding, 
none of the included studies had implemented blind-
ing, and all of the studies were rated as high risk. All 

Fig. 1 .PRISMA flowchart of the study selection process. RCTs, randomized controlled trials
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studies reported outcomes that were consistent with 
the study proposal and had a low risk of reporting bias. 
The included literature reported subjects’ baseline sta-
tus before intervention, and there were no significant 
differences between the two groups before interven-
tion. The quality evaluation of the included literature 
is shown in Fig. 2(a) and (b).

Meta-analysis
All included studies used step velocity as an outcome 
measure of lower extremity motor function, and some 
studies used step length as a secondary measure. The 
19 studies involved a total of 2626 elderly individuals, 
including those with motor dysfunction and healthy 
elderly individuals. The reliability and validity of 
the four evaluation methods on the changes in lower 
extremity motor function characteristic parameters 
were analyzed.

In total, 18 studies [13–30] reported changes in 
the assessment of step velocity during lower extrem-
ity movement in elderly individuals, and 16 studies 
[13–16, 19–26, 28–31] reported changes in the assess-
ment of step length. Because there was high het-
erogeneity among different evaluation methods for 
step velocity (I2 = 85%, P < 0.00001) and step length 
(I2 = 91%, P < 0.00001), a random effects model was 
selected for analysis. At the same time, there were 
statistically significant differences in the evaluation 
of step velocity [SMD=-0.98, 95%CI (-1.23, -0.72), 

P < 0.00001] and step length [SMD=-1.4, 95%CI(-1.77, 
-1.02), P < 0.00001] between the experimental group 
and the control group, which showed high sensitivity 
to changes in gait characteristic parameters in elderly 
individuals (Figs. 3 and 4).

Subgroup analysis
To further explore the sources of heterogeneity, sub-
group analysis of the included literature was performed 
according to different evaluation methods. The results 
showed that there was high heterogeneity in the evalu-
ation of step velocity of the elderly by IMUs [SMD=-
0.52, 95%CI(-0.86, -0.19), I2 = 85%, P < 0.00001] and 
gait analysis [SMD=-1.09, 95%CI(-1.52, -0.67), I2 = 79%, 
P < 0.00001]. While sensors [SMD=-0.88, 95%CI(-
1.26, -0.51), I2 = 9%, P < 0.00001] and 3D motion cap-
ture systems [SMD=-2.06, 95%CI(-2.46, -1.66), I2 = 0%, 
P < 0.00001] showed low heterogeneity. Similarly, in 
the measurement of step length, the sensors [SMD=-
0.95, 95%CI(-1.31, -0.59), I2 = 0%, P < 0.00001] and 3D 
motion capture systems [SMD=-2.08, 95%CI(-2.49, 
-1.68), I2 = 0%, P < 0.00001] showed low heterogene-
ity. These results could indicate that sensors and 3D 
motion capture evaluation methods are highly stan-
dardized in clinical use. However, there was high het-
erogeneity in the IMUs (I2 = 88%, P = 0.00001) and gait 
analysis (I2 = 97%, P = 0.01).

The forest maps showed that there was significant 
heterogeneity among different research methods for 

Table 2 Characteristics of the randomized controlled studies
References N Age [mean ± sd or mean (25%, 75% 

quartiles)]
Type of interventions Outcome index (m/s, m)

T C T C
Beck, Y 2018 101 19 64.5 ± 9.3 77.8 ± 3.9 IMU step velocity
Ismailidis 2021 22 46 65.9 ± 9.1 66.8 ± 7.4 IMU step velocity, step length
Lee 2020 74 52 69.6 ± 5.7 71.4 ± 4.9 IMU step velocity, step length
Noh 2021 290 456 74.2 ± 5.4 72.2 ± 4.9 IMU step velocity, step length
Qiu 2018 82 142 72.4 ± 4.7 72.0 ± 4.2 IMU step velocity, step length
Rehman 2020 37 56 70.1 ± 9.3 71.0 ± 7.1 IMU step velocity
Zago 2018 22 22 69.4 ± 6.1 69.4 ± 6.1 IMU step velocity, step length
Buongiorno 2019 16 14 74.9 ± 7.6 73.5 ± 6.4 sensor step velocity, step length
Ismailidis P 2021 24 48 66.1 ± 10.3 66.6 ± 7.2 sensor step velocity, step length
Morris 2019 18 18 63.4 ± 9.5 63.4 ± 9.5 sensor step velocity, step length
Gallagher 2019 13 13 68.5 ± 6.3 68.5 ± 6.3 3D motion capture system step velocity, step length
Maeda 2018 19 30 67.2 ± 9.7 65.1 ± 2.4 3D motion capture

system
step velocity, step length

Maier 2019 12 12 61.3 ± 11.4 61.3 ± 11.4 3D motion capture system step velocity, step length
Wang 2021 44 44 65.7 ± 7.7 65.7 ± 7.7 3D motion capture system step velocity, step length
Godi 2021 298 84 70.0 ± 7.8 71.5 ± 8.2 Gait analysis step velocity
Peixoto 2019 33 33 72.7 ± 4.0 72.4 ± 4.0 Gait analysis step velocity, step length
Perring 2020 15 15 72.3 ± 8.8 73.3 ± 8.8 Gait analysis step velocity, step length
Rehman 2019 119 184 66.9 ± 10.5 70.0 ± 7.7 Gait analysis step velocity, step length
Guzik 2020 65 65 61.7 ± 10.8 61.3 ± 11.4 Gait analysis step length
T, experimental group; C, control group; m/s: meters per second; m: meters
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step velocity and length (Figs. 5 and 6). The funnel plot 
showed that studies were symmetrically distributed on 
both sides of the combined effect size in the assess-
ment analysis (Fig. 7a and b). This result may be due to 
the large methodological heterogeneity of the included 
literature or due to the included studies having a large 
degree of bias in the aspects of assignment hiding and 
implement-subject double-blind method. These fac-
tors led to large differences in the statistical analysis 
results.

Meta Regression
Subgroup analysis showed that there was high hetero-
geneity in the evaluation of lower extremity character-
istic parameters by IMUs and gait analysis. Because 
fewer than 10 studies were included for gait analysis, 
the small number of studies may explain this result. 
Therefore, we did not conduct an in-depth study, but 

further explored the sources of heterogeneity affecting 
the evaluation of IMUs and performed a meta-analysis 
in terms of publication year and country. The results 
suggested that publication year had a statistically sig-
nificance effect on heterogeneity (P < 0.05), while pub-
lication country had no statistically significance effect 
on heterogeneity (P > 0.05). These findings suggested 
that publication year was one of the source factors 
of heterogeneity. However, other factors cannot be 
excluded. The included studies were from 2018, 2020 
and 2021, and they showed that the development of 
IMUs in motor function assessment greatly changed. 
At the same time, due to the late rise of IMUs and the 
instability of clinical trials, they are not as widely used 
in clinical practice as other methods. The details of all 
studies are provided in Additional file 1.

Fig. 2 Performance (a) and summary plot (b) of each type of bias in all studies
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Sensitivity analysis
For the sensitivity analysis, each paper was eliminated 
one by one for the IMUs and gait analysis with high 
heterogeneity. The combined effect size was re-esti-
mated and compared to the previous combined effect 
size excluded. The results showed that the combined 
effect size had no significant change before and after 
excluding each article, indicating that the results of 
this study were stable (Fig. 8a and b).

Assessment of publication bias
According to the funnel plot results, the studies were 
symmetrically distributed on both sides of the com-
bined effect size for the evaluation analysis of step 

velocity and step length. Because some studies devi-
ated from the funnel plot confidence interval, Begg’s 
and Egger’s tests were necessary to assess publication 
bias. The results showed that there was significant 
publication bias between different evaluation methods 
for step velocity (Egger’s test, t=-2.74, P = 0.015; Begg 
’s test, P = 0.012). Using the random effects model, 
the heterogeneity test indicated that Q = 119.863 and 
P = 0.000. The combined result of the effect indicators 
was − 0.998 [95%CI of (-1.259, -0.737)]. Therefore, it 
was necessary to use the shear compensation method 
to evaluate the stability of the combined results. 
After the data of six virtual studies were included, 
meta-analysis of all studies was performed again. 

Fig. 4 Forest plots of step length changes in the elderly by different assessment methods. CI: confidence interval; I2: heterogeneity statistic

 

Fig. 3 Forest plots of step velocity changes in the elderly by different assessment methods. CI: confidence interval; I2: heterogeneity statistic
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The heterogeneity test indicated that Q = 202.176 and 
p = 0.000. Using the random effects model, the com-
bined result of the effect indicators was − 0.626 [95%CI 
was (-0.903, -0.348)]. The shear compensation method 
suggested that the results were statistically significant 
after the inclusion of six studies. Because there was no 
reversal, the combined results were robust. The Begg’s 
and Egger’s tests indicated that step length did not 
show significant publication bias (Egger’s test, t=-1.13, 
P = 0.277; Begg’s test, P = 0.115). The details of all stud-
ies are provided in Additional file 2.

Discussion
The gait data are composed of spatiotemporal param-
eters, kinematic parameters, dynamic parameters, and 
myoelectric parameters. The kinematics of elderly indi-
viduals can identify abnormal gait [32]. Step velocity is 
the gait indicator that changes earliest in the elderly and 
has the highest correlation with daily living ability [33]. 

What’s more, it is known as the “sixth vital sign,” and its 
decline is a marker of ageing, various disease states, and 
early death [34]. Therefore, the present study used step 
velocity as an index for the lower extremity movement 
evaluation of the elderly by various evaluation methods. 
Step length, was also included in the present study to 
evaluate the motor function of the extremities of elderly 
individuals.

The RCT results of the 2626 participants included in 
the present study showed that the IMUs, sensors, 3D 
motion capture systems, and gait analysis had statistical 
significance in evaluating the changes in step velocity and 
step length of lower extremity movement in elderly indi-
viduals, which could be used as a standardized basis for 
the assessment of motor function in elderly individuals. 
The meta-analysis indicated that sensors and 3D motion 
capture systems had low heterogeneity, suggesting high 
reliability in clinical applications. In contrast, IMUs 
and gait analysis displayed high heterogeneity that was 

Fig. 5 Subgroup analyzes of step velocity changes in the elderly by different assessment methods
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Fig. 7 Funnel plot of the changes in characteristic parameters in the elderly by different assessment methods. The left panel (a) shows the step velocity 
result, and the right panel (b) shows the step length result

 

Fig. 6 Subgroup analyzes of step length changes in the elderly by different assessment methods
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reasonably explained through meta- regression and sen-
sitivity analysis. However, the reliability and consistency 
of the exercise paradigm of the two assessment methods 
are still controversial in the assessment of lower extrem-
ity exercise in elderly individuals.

Elderly individuals face a enormous risk of motor func-
tion impairment [35]. Daily gait assessment can monitor 
physical conditions that may worsen and prevent future 
health problems, such as bradykinesia, myotonia, pos-
tural instability, tremors and balance dysfunction [36]. 
The present study demonstrated that although quanti-
tative motor function assessment methods have been 
applied in clinical practice, there are still human errors, 
making it difficult to accurately plan follow-up treatment 
or rehabilitation programs. Different data indicators and 
methods lead to significant heterogeneity, suggesting that 
there is a lack of standardized parameters to measure the 
quality of motor function in the clinic. Thus, multimodal 
quantitative evaluation needs to be integrated, allowing a 
better understanding of age-related differences in motor 
characteristics, which can help to understand gait abnor-
malities in elderly individuals, and identify therapeutic 
targets for motor function impairment [37].

Analysis of highly heterogeneous results from IMUs and 
gait analysis
The IMU and sEMG discussed in the present study 
can sense the movement changes or muscle states of 
the human body, and are widely used. sEMG is a non-
invasive and dynamic detection method that accu-
rately reflects muscle activity and function status in 
real time [38]. However, due to the different muscles 
involved in different studies and the various consid-
erations of accuracy, the data features included in the 
selection of normalized analysis vary. Therefore, we 
did not perform an inductive analysis of the evalua-
tion of lower extremity motor function in elderly indi-
viduals. Although the included IMUs showed high 

heterogeneity, they have good interpretative efficiency 
for processing changes in gait data [39].

Due to the low cost and high computing power, IMUs 
have become one of the main means of motor function 
evaluation. In 2021, using the efficiency and conve-
nience of IMUs, Noh et al. assessed the risk of falls in 
elderly individuals. Compared to healthy elderly indi-
viduals, the results suggested that IMUs are useful in 
clinical applications. At the same time, integration of 
IMUs into the Berg balance test, the Up and Go test 
(TUG), and the six-minute walk test [40] allows assess-
ment of balance outcomes in elderly fall-prone patients 
[41], as well as helps to prevent falls. Moreover, mul-
tidimensional data collection can improve the predic-
tion accuracy of fall risk [42] and provide immediate 
support for the elderly [43]. All of these results were 
in agreement with the analysis results of the present 
study.

The high heterogeneity of IMUs in the present 
study may be explained by several aspects. First, the 
calibration problem of IMUs is a major difficulty to 
overcome. Some authors have proposed correspond-
ing solutions for the major problems of the drift of 
IMUs estimates and the calibration between IMUs and 
extremities [44]. However, due to the lack of regulatory 
standardization of data collection and analysis in the 
application of IMUs, there has never been a consen-
sus. In addition, due to the lack of standardized data 
collection and analysis methods, and the high cost 
and inconvenience of maintenance, the adaptabil-
ity of IMUs in clinical settings remains limited [45]. 
Moreover, when assessing the movement state of the 
extremities, the inherent shortcoming of the need to 
wear sensors in the fixed position of the body restricts 
the normal actions of the elderly and prevents them 
from accurately obtaining movement information in 
the natural state [46].

Fig. 8 Sensitivity analysis. (a) is the IMU and (b) is the gait analysis
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Similarly, as another evaluation method with high 
heterogeneity in the study, the observational gait anal-
ysis results may be related to the numerous measure-
ment parameters involved. Due to the fluctuation of an 
individual’s lower extremity control ability and walking 
environment changes, gait analysis is manifested as the 
difference between different individuals, different tests 
of the same individual, and different gait cycles of the 
same individual, resulting in inconsistent gait param-
eters and high variability. Because the ultimate goal 
of walking is to efficiently move the entire body from 
one position to another, a quantitative description of 
the kinematics or dynamics of the whole-body move-
ment during exercise should be the most appropriate 
method to integrate the local elements of the gait cycle 
and provide a measure of walking effectiveness. There-
fore, it is important to simplify the vast amounts of 
gait data.

High evidential reliability of the 3D motion capture system
Because of its objective and quantitative evaluation of 
human motion function, the 3D motion capture sys-
tem has potential advantages in accuracy, cost, time, 
and development difficulty, making it a mainstream 
human motion measurement method. In different 
fields, such as medical rehabilitation and motion anal-
ysis, the stability, operation efficiency, application flex-
ibility, and system cost reduction of motion capture 
technology have improved in recent years [47, 48]. 
3D motion capture system is divided into mechani-
cal, optical, acoustic and electromagnetic four kinds. 
Mechanical and optical methods are mainly used to 
evaluate lower extremity motor function in elderly 
individuals. The mechanical motion capture system 
uses the exoskeleton system to record the movement 
tracks of the human body in real time through sen-
sors such as angle and displacement, so as to accu-
rately present the six degrees of freedom information 
of the body. The optical motion capture system uses 
an infrared camera system to identify and process 
specific light spots by affixing some special “markers” 
on key parts of the body, such as joints, hips, elbows, 
wrists, etc., so as to obtain the movement tracks [49]. 
The four studies included in the present study showed 
that the 3D motion capture system has gradually dem-
onstrated its superiority in the field of rehabilitation 
medicine. There is good consistency in the evaluation 
of kinematic parameters, such as step velocity and step 
length. At the same time, the low heterogeneity of this 
method further verifies its clinical feasibility.

Multimodal data analysis
In the process of collecting literature with step veloc-
ity and step length as outcome indicators, we found 

that the number of literature that could be included 
was reduced. However, the number of studies that 
processed these characteristic parameters by means 
of machine learning and deep learning increased sig-
nificantly. Multidimensional and multidata systems, 
such as sEMG and gait analysis, usually generate a 
large number of high-dimensional measurement data. 
Because it is not possible to analyse every data point 
in the clinic, it is necessary to seek appropriate meth-
ods to reduce the amount of data analyzed. Machine 
learning and deep learning have become popular top-
ics in several fields. Studies have indicated that using 
machine learning and deep learning data process-
ing methods to extract and normalize the extracted 
record results can provide reliable guidance for cli-
nicians in the diagnosis of motor function in elderly 
individuals.

Common machine learning algorithms, such as 
K-nearest neighbour (KNN), support vector machine 
(SVM), and random forest (RF), have been used to 
classify elderly fallers with classification accuracies 
between 69% and 100% [13, 38, 50]. Typical deep learn-
ing algorithms include convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and deep 
reinforcement learning (RL). These algorithms have 
been applied in the assessment of the motor function 
of elderly extremities by virtue of their strong learn-
ing ability, wide coverage, good adaptability, high 
data-driven upper limit, and good portability. Motion-
capture systems and IMUs [51] provide objective 
contextual information in an automated manner by 
combining decision trees [50] and deep learning [52]. 
The trained network has been validated to monitor 
older adults at increased risk of falls or with any severe 
gait impairment, with an accuracy of 89.13%. How-
ever, deep learning has a high demand for hardware 
requirements and computing power. Deep learning 
also requires as much real data as possible to ensure 
diversity in the dataset, to reduce the impact of interin-
dividual differences in physiological signals, and make 
the model more robust. Furthermore, the model design 
is complex, dependent on data, and not highly inter-
pretable. In the case of unbalanced training data, gen-
der and racial discrimination, will occur, and bias easily 
exists [53–55]. Due to these limitations, deep learning 
cannot be widely used in the clinic. However, a motion 
evaluation system combining sensor technology, a 
three-dimensional motion capture system, gait analy-
sis, and a machine learning algorithm is an inevitable 
trend in extremity function evaluation, and it is also an 
inevitable result of promoting rehabilitation medicine 
in the direction of personalized, accurate, remote and 
intelligent development.
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Limitations
Although the present study increased the statistical effi-
ciency to a certain extent, there were several limitations. 
First, due to the small number of included studies and 
small overall sample size, the efficacy of the meta-anal-
ysis results may be insufficient, indicating that additional 
original studies with large samples are needed. Second, 
some small sample studies were included in the pres-
ent meta-analysis, which may affect the credibility of the 
results. Finally, although we explored possible sources 
of heterogeneity through subgroup analysis, the sources 
were not conclusively identified.

Future studies should explore precision rehabilita-
tion as the concept, obtain multisource and multimodal 
data, and explore the correlation among fusion data, fea-
ture selection, and key attribute selection. For the deep 
learning model, a single outcome index obtained from 
the fusion of multivariate data, such as time series and 
spatial series, can be included. The relationship between 
the multimodal data based on objective detection and 
the evolution characteristics of the time dimension can 
be summarized to further analyse the accuracy and effec-
tiveness of various evaluation methods for the detection 
of motor function in elderly extremities.

Conclusion
Observational gait analysis, motion sensors, 3D motion 
capture systems, and IMUs, as evaluation means, play a 
certain role in evaluating the characteristic parameters 
of step velocity and step length in lower extremity motor 
function of elderly individuals, which has good accuracy 
and clinical value in preventing motor injury. However, 
the high heterogeneity of gait analysis and IMUs sug-
gested that different evaluation methods use different cal-
culation formulas and indicators, resulting in the failure 
to obtain standardized indicators in clinical applications. 
Thus, multimodal quantitative evaluation needs to be 
integrated. A deep learning algorithm may improve high 
heterogeneity by extracting and normalizing feature vec-
tors, but the high requirements for data collection limit 
its clinical application. It is necessary to further explore 
the application limitations of each evaluation method 
and to refine the interrelationship and time-dimensional 
evolution characteristics of multimodal data based on 
objective detection. Through comprehensive and homog-
enized datasets, the accuracy and effectiveness of various 
evaluation methods for the detection of motor function 
in the elderly extremities can be improved.
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