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Abstract
Background Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains 
beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-
load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain 
the differing effects after volume-matched high-load and low-load BFR training.

Methods Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, 
n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for 
isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training 
volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0–75%–0% MVC) with multi-channel 
surface electromyography (EMG) from the extensor digitorum.

Results The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 
26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in 
force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change 
in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor 
units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to 
the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals 
(p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were 
consistently reduced with training for the two groups.

Conclusions BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision 
control due to activation of MUs with lower recruitment thresholds and higher discharge rates.
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Background
Blood flow restriction (BFR) training has gained attention 
as an effective method for enhancing muscle strength 
and endurance using low-load resistance exercises [1, 2]. 
This training involves applying a specialized cuff or band 
to the proximal part of a trained limb, resulting in occlu-
sion pressure that restricts arterial inflow and venous 
outflow during exercise [3, 4]. Compared to traditional 
resistance training, BFR training enhances mechanical 
tension through cell swelling and metabolic stress involv-
ing lactate and reactive oxygen species (ROS) [4, 5]. This 
enhancement of mechanical tension contributes to mus-
cle hypertrophy and protein synthesis by activating sev-
eral cellular signaling pathways such as the mammalian 
target of rapamycin (mTOR) and/or the MAPK [mitogen-
activated protein kinase] pathways [6]. Metabolic stress 
in a hypoxic condition adds to the post-exercise release of 
hormones (such as growth hormone and IGF-1) that pro-
mote muscle hypertrophy and strength gains [7]. Despite 
the acknowledged facilitatory role of BFR in enhancing 
strength gains with low loads, there is an ongoing debate 
about the optimization of BFR application, such as the 
use of higher resistance loads for BFR training [8, 9].

The effects of traditional resistance training vary with 
the load used. High-load training, typically above 75% 
of one’s one-repetition maximum (1RM) [10], primarily 
aims to enhance muscle power and maximal strength. 
Low-load training, roughly 30–60% of 1RM (or MVC), 
is recommended for improving muscle endurance [11]. 
These protocols trigger distinct neuromuscular adapta-
tions and motor unit (MU) recruitment strategies. High-
load training tends to recruit a greater number of MUs 
of higher recruitment thresholds, promoting higher dis-
charge rates and synchronization of MUs during mus-
cle contractions. In contrast, low-load training favors 
the recruitment of slow-twitch, fatigue-resistant fibers, 
which have lower recruitment thresholds [12–14]. Inter-
estingly, along with a superior strength gain, high-load 
resistance training could induce a greater increase than 
low-load resistance training in the efficiency of muscle 
activation to produce the same relative submaximal 
torques with lower EMG amplitude [15]. However, tra-
ditional high-load training may not necessarily contrib-
ute positively to force precision control. Bellew [2002] 
reported that older adults who received 12 weeks of 
high-intensity training on the quadriceps exhibited a 
significant increase in muscle strength, while force pre-
cision control under sub-maximal force levels remained 
unchanged after training [16]. In fact, strength-trained 
individuals often demonstrate larger force variability 
than do skill-trained individuals [18], as high-load train-
ing is associated with stronger MU synchrony [17] and 
larger inter-spike intervals [slower firing rates] of active 
MUs [18].

By analogy, the effects of BFR training are expected to 
vary with the load used, but research in this area is lim-
ited. Biazon et al. (2019) compared traditional high-load 
(HL) training, high-load training with BFR (BFR-HL), 
and low-load training with BFR (BFR-LL) over 10 weeks 
of leg extension training [8]. They found that all three 
groups showed similar significant improvements in maxi-
mum dynamic strength (1-RM), muscle cross-sectional 
area, and pennation angle of the trained muscles. Mus-
cle activation was higher in the HL and BFR-HL groups 
than in the BFR-LL group before and after training. May 
et al. (2022) reported that HL (70% 1RM) and LL (20% 
1RM) + BFR training produced similar outcomes in mus-
cle strength, protein growth markers, and muscle size 
after 7 weeks of training [19]. It is worth noting that train-
ing volume (total work performed) influences strength 
gains [20, 21]. Strength gains reported in combined BFR 
and HL or LL protocols in the previous works could be 
confounded by variations in the total training volume, 
which were not adequately controlled. Moreover, to date, 
adaptive changes in the activation strategy of MUs for 
BFR-HL and BFR-LL training remain unclear. Current 
evidence simply shows that BFR has an immediate effect 
on changes in MU behaviors, including increases in the 
recruitment of larger MUs and the firing rate of smaller 
MUs during low-intensity exercise [22].

The aim of this study was to investigate the vary-
ing training effects on force control and the underlying 
adaptive changes in motor unit behaviors following 3 
weeks of high-load and low-load BFR resistance training 
at equivalent training volumes. Since the remodeling of 
motor units is influenced by resistance load [16–18] and 
the application of BFR [22], force precision control based 
on motor unit activation strategies can be interactively 
modified through BFR training with varying loads. Our 
hypotheses were: (1) High-load BFR training protocols 
would yield superior strength gains compared to low-
load BFR training protocols; (2) Low-load BFR training 
protocols would yield superior force precision control 
compared to high-load BFR training protocols; (3) Motor 
unit (MU) activation strategies during force scaling differ 
with the load used in BFR resistance training, with lower 
recruitment thresholds, higher discharge rates, and lower 
MU synchrony enhancing force steadiness for the low-
load protocol.

Methods
Participants
Twenty-eight healthy young adults (15 males and 13 
females, age: 22.7 ± 1.7 years, body mass: 61.4 ± 15.4  kg, 
height: 166.7 ± 9.2  cm) with no regular exercise hab-
its were recruited for the present study. The partici-
pants were randomly assigned to two groups: blood 
flow restriction with high-load (BFR-HL) (7 males and 
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7 females) or blood flow restriction with low-load (BFR-
LL)(8 males and 6 females). None of the participants 
had engaged in strength training for at least 6 months 
or used supplements, anti-inflammatory medications, 
or anabolic steroids during the experiment. No partici-
pants had history of diagnosed hypertension (systolic 
blood pressure > 140/90 mmHg), cardiovascular or pul-
monary diseases, neuromuscular disease, or musculo-
skeletal disorders. The study protocol was approved by 
the Institutional Human Research Review Board (Jen-
Ai Hospital Institutional Review Board, project number 
111 − 43). All participants signed a consent form before 
the experiment.

Experimental protocol and setup
In the initial laboratory visit, we collected anthropomet-
ric data and assessed the maximal voluntary contraction 
(MVC) of each participant. Subsequently, we measured 
the baseline capacity for force scaling using trapezoi-
dal force tracking with visual feedback in the pre-test. 
Grouped into either BFR-HL or BFR-LL, participants 
underwent BFR training sessions across visits 1 to 9, 
with 24-hour gaps separating training visits. During the 
4th and 7th visits, we re-evaluated MVC to adjust the 
training load for subsequent training and post-test force-
tracking. The post-test was conducted on the 10th labo-
ratory visit and involved the same measurements (MVC 
and trapezoidal force tracking) as the pre-test (Fig. 1(A)).

MVC of wrist extension was determined, when partici-
pants were seated with the forearm and palm positioned 
within a plastic splint on a wooden platform. The MVC 
of wrist extension was the peak value of three maximum 
contraction trials, separated by 3-minute rest periods. 
In the trapezoidal force-tracking task, instructions given 
to the volunteers were: ‘Please track the trapezoidal 
target-line displayed on the computer monitor by care-
fully adjusting your wrist extension force.’ The partici-
pants exerted isometric wrist extension force with their 
non-dominant limb to match a target signal displayed on 
a computer monitor (Fig.  1(A)). This target signal com-
prised an 11-second ramp-up phase, an 11-second ramp-
down phase, and a 16-second static isometric contraction 
at 75% of MVC. The high target force was employed to 
aim at activating the full spectrum of trained motor units 
within the established decomposition limit (80% MVC) 
for utilization with the software of EMG Works ver-
sion 4.3 (Delsys Inc., USA). Each tracking trial, includ-
ing 3-second latent periods at the start and end, took 
44 s to complete. During the pre-test and post-test, each 
subject performed 3 trials of the force-tracking task with 
at least 1  min of rest for recovery between trials. Force 
precision control (or force scaling) was assessed based 
on the performance of the static isometric contraction 
in the window of interest (14th–28th seconds). The force 

outputs of wrist extension during the MVC and trapezoi-
dal isometric contraction were measured with a force 
transducer (Model: MB-100; Interface Inc., Scottsdale, 
AZ) and sampled at 1 kHz with an analog-to-digital con-
verter with 16-bit resolution (DAQCard-6024E; National 
Instruments Inc., Austin, TX) using a custom LabVIEW 
program (National Instruments Inc., Austin, TX, USA). 
Concurrently with the force signals, we employed a 
multi-electrode EMG system comprising a sensor array 
(Bagnoli sEMG system; Delsys Inc., Natick, MA) to cap-
ture muscle activity in the extensor digitorum. The EMG 
sensor array consisted of five pins (each with a diameter 
of 0.5 mm) arranged in a 5 * 5 mm square configuration. 
This array was positioned along a line extending from the 
lateral epicondyle of the elbow to the second metacarpal 
bone, situated at a distance of 50–70 mm from the lateral 
epicondyle. Pairwise differentiation of the five pin elec-
trodes generated four channels of surface EMG. These 
signals were subjected to amplification (gain: 1000) and 
band-pass filtering (cutoff frequencies: 20 and 450  Hz) 
before being digitized at a rate of 20 kHz.

Each subject completed a total of nine training sessions 
of isometric wrist extension within three weeks (3 days/
week). They completed the training protocols by appli-
cation of an inflated cuff (540 mm long x 68 mm width) 
(SAGA Fitness, SAGA Fitness International, Australia) 
on the muscle belly of the biceps brachii of the non-dom-
inant limb (Fig. 1(A)). The occlusion pressure was set at 
70% of the systolic blood pressure (SBP) after predeter-
mination of the SBP with an electronic sphygmomanom-
eter (466  mm long x 45  mm width, Model: HEM-121, 
Omron, Healthcare Co., Ltd. Kyoto, Japan) in the begin-
ning of the training session. Cuff occlusion was applied 
for six minutes before the resistance training. During the 
training session, participants in the BFR-HL group were 
trained with four sets of 10 repetitions of brief isometric 
wrist extension of 75% MVC at a rate of 1 Hz guided by a 
metronome. The force exertion and the target force were 
visually guided on the computer monitor. In the BFR-LL 
group, the participants were trained with eight sets of 15 
repetitions of isometric wrist extension of 25% MVC at a 
rate of 1 Hz. To prevent exhaustion, 30s rest periods were 
interleaved between contraction sets for the BFR-HL and 
BFR-LL groups. The total training volume of a training 
session (sets × repetition × intensity) for the two groups 
was identical (BFR_HL: 4 sets* 10 repetitions * 75% MVC; 
BFR_LL: 8 sets* 15 repetitions * 25% MVC).

Data analysis and signal processing
The strength gain following the BFR training was defined 
as normalized change in MVC value ((post-test -pre-
test)/pre-test)*100%. The force signal during force-
tracking initially underwent low-pass filtering (cutoff 
frequency, 6 Hz) to eliminate high-frequency noise, with 
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Fig. 1 The experimental setup and sample data of force tracking. (A) Experimental flowchart and measurements for trapezoidal force tracking in the 
pre-test and post-test (top plot) and combined resistance exercise with blood flow restriction during wrist extension training (bottom plot). The mis-
matches between force trajectory and target line in the regions of interest were quantified using root mean square of force fluctuations and linear devia-
tion (LD). During the training session, the BFR-HL and BFR-LL groups underwent resistance training with varying loads but equivalent training volumes 
(intensity*repetitions*set). The training volumes of each session for the BFR-HL and BFR-LL group were 75% MVC*10 repetitions*4 sets and 25% MVC*15 
repetitions*8 sets. (B) Sample decomposition results of multi-channel surface EMG, resulting in motor unit spike trains. Recruitment thresholds for each 
identified motor unit were determined by aligning the force trajectory with the timing of the first discharge event. Discharge properties in the regions of 
interest, including mean and coefficient of variation (CV) of inter-spike interval, were also evaluated. (HL: high load; LL: low load)
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a focus on the effects of visuomotor processes on force 
output in the 0- to 4-Hz band [23]. In both the pre-test 
and post-test, only force data within the window of inter-
est were analyzed. Force fluctuations were characterized 
as force output after removal of the linear trend. In terms 
of root mean square (RMS), the size of force fluctuations 
represents the capacity for force precision control. Addi-
tionally, we calculated the approximate entropy (ApEn) of 
force fluctuations [24, 25]. Force fluctuation signals were 
down-sampled to 100  Hz before ApEn calculation with 
the following parametric settings: dimensions, 2; lag, 1; 
radius, 0.2 times the variance of the signal. ApEn, which 
ranges from 0 to 2, quantifies the regularity of physiologi-
cal time series. Lower ApEn values indicate more regular 
force fluctuations. Higher values signify greater irregular-
ity, reflecting a more automatic control with less attentive 
regulation of force employed [26].

Post-decomposition analysis of the surface EMG was 
performed in EMG Works version 4.3 (Delsys Inc.), based 
on an artificial intelligence computation algorithm [27, 
28] for differentiating superimposed action potentials 
in surface EMG signals into motor unit action potential 
(MUAP) waveforms and discharge events of motor units 
(Fig. 1(B)). The accuracy of the decomposition algorithms 
was cross-validated using the decompose–synthesize–
decompose–compare (DSDC) approach [27–29] and 
two-source methods [30]. Only MUs with a decomposi-
tion accuracy exceeding 90% were selected for further 
analysis. The inter-spike intervals (ISI) of these identified 
MUs within the window of interest were averaged to cal-
culate the mean inter-spike interval (M_ISI). Discharge 
variability of a MU in the window of interest was repre-
sented by the coefficient of variation of the inter-spike 
intervals (CV_ISI). During the ramp-up phase (0–75% 
MVC), the recruitment thresholds (Rec_th) of motor 
units were identified. These thresholds corresponded to 
the normalized force level (% MVC) at the moment when 
the first firing of the motor unit occurred (Fig.  1(B)) 
[26]. To characterize the common synaptic inputs to 
the pool of motor neurons, classical cross-correlation 
was employed [31, 32]. The smoothed time-varying fir-
ing rate signal of a MU was estimated by convoluting the 
impulse trains of MUs with a Hanning window (window 
length: 400 ms). Cross-correlation of the smoothed fir-
ing rate of MU pairs was then calculated, resulting in a 

peak value that occurred within 100 ms in the center of 
the cross-correlation plot. For variance stabilization, the 
cross-correlation plots of smoothed discharge rates were 
remapped using Fisher’s z transformation [32]. The nor-
malized correlation peak of a MU pair was defined as the 
common drive index (CDI).

Statistical analysis
In terms of MVC, differences in the force generation 
capacity between pre-test and post-test for the BFR-LL 
and BFR-HL groups were examined by paired t statis-
tics on an individual basis. Group differences in normal-
ized change in MVC value ((post-test-pre-test)/pre-test) 
between the BFR-LL and BFR-HL groups following BFR 
training was compared with independent t statistics 
and Cohen’s d. To examine variations in tracking per-
formance due to BFR training, paired t-test were used 
to contrast tracking performance (FFRMS and FFApEn) 
between the pre-test and post-test for the BFR-HL and 
BFR-LL groups. Group differences in normalized changes 
in tracking performance (FFRMS and FFApEn) between 
the BFR-LL and BFR-HL groups were examined with 
independent t statistics and Cohen’s d. In case of viola-
tions of data homogeneity examined with Levene’s test, 
Welch’s t-test was used to correct the problem by accu-
rate approximation of the degrees of freedom under the 
assumption of unequal variances. Considering varia-
tions in the number of motor units (MUs) resulting from 
decomposition across participants, motor unit variables 
before and after BFR training were compared based on 
pooled MU data. For relatively large sample sizes, per-
mutation Hotelling’s T2 test and post-hoc permutation 
paired t-tests were applied to contrast differences in Rec_
th, mean ISI, and CV_ISI of pooled motor units between 
pre-test and post-test for the two groups. The influence 
of BFR training on CDI for the BFR-HL and BFR-LL 
groups was examined using permutation paired t-tests. 
Data were analyzed in SPSS version 22.0 and MATLAB 
2018 (MathWorks Inc.). Mean values ± standard devia-
tions are reported in the text, figures, and tables.

Results
Table  1 presents the means and standard deviations of 
MVC for both groups before and after BFR resistance 
training. Paired t-statistics revealed consistent increases 

Table 1 The contrast of maximal voluntary contraction (MVC) between the high-load (BFR-HL) and low-load (BFR_LL) groups
MVC (NT) Pre-test Post-test Normalized Change Statistics
BFR-HL 89.49 ± 29.02 110.97 ± 34.90††† 26.96 ± 16.33% t26 = 2.473, p = 0.020
BFR-LL 92.67 ± 31.72 100.85 ± 32.70† 11.16 ± 15.34% Cohen’s d = 0.935
MVC: maximal voluntary contraction; BFR-HL: high-load group; BFR-LL: low-load group
†: Post-test > Pre-test, p < 0.05; †††: Post-test > Pre-test, p < 0.001

Cohen’s d = 1.511

Cohen’s d = 0.762
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in MVC following training in both the BFR-HL (t13 = 
-5.655, p < 0.001; Cohen’s d = 1.511) and BFR-LL groups 
(t13 = -2.850, p = 0.014; Cohen’s d = 0.762). The BFR-HL 
group exhibited a greater strength gain in MVC than 
that of the BFR-LL group (BFR-HL: 26.96 ± 16.33%, BFR-
LL: 11.16 ± 15.34%)(t26 = 2.473, p = 0.020; and Cohen’s 
d = 0.935)(Table 1).

All participants in the BFR-HL and BFR-LL groups 
were able to maintain target force during force tracking 
for the entire duration of each trial. Table 2 displays the 
means and standard deviations of force tracking perfor-
mance for both groups before and after BFR resistance 
training. The results of paired t-tests indicated that the 
size of force fluctuations (FFRMS) in the BFR-LL group 
decreased after training (t13 = 3.474, p = 0.004; Cohen’s 
d = 0.924), contrasting with the insignificant trend 
observed in the BFR-HL group (t13 = 0.501, p = 0.625; 
Cohen’s d = 0.019). Additionally, the normalized change 
in FFRMS varied by group, with the BFR-LL group exhib-
iting a more negative normalized change compared 
to the BFR-HL group (t19.53= 2.078, p = 0.050; Cohen’s 
d = 0.785). For the approximate entropy of force fluctua-
tions (FFApEn), the results of paired t-tests indicated that 
the FFApEn in the BFR-LL group potentiated after train-
ing (t13 = -4.880, p < 0.001), contrasting with the trend 
observed in the BFR-HL group (t13 = -1.163, p = 0.266; 
Cohen’s d = 1.291). The normalized change in FFApEn was 
marginally dependent on group (t26 = -1.749, p = 0.092; 
Cohen’s d = 0.661), with the BFR-LL group demonstrat-
ing an increasing trend of normalized change compared 
to the BFR-HL group.

The numbers of MUs decomposed from multi-elec-
trode EMG from all participants across three trials for 
the BFR-HL group in the pre-test and post-test were 
988 and 1131, respectively. The numbers of decomposed 
MUs for the BFR-LL group in the pre-test and post-test 
were 976 and 987, respectively. Figure  2(A)-(C) illus-
trate the training-related changes in MU variables dur-
ing force-tracking for the BFR-HL and BFR-LL groups. 
Permutation Hotelling’s T2 test results indicated that 
MU variables differed significantly before and after BFR 
resistance training in both groups (BFR-HL: p < 0.001; 
BFR-LL: p < 0.001). Post-hoc analysis with permuta-
tion t statistics revealed that in the post-test, the MU 

Table 2 The contrast of force fluctuation properties during force tracking between the high-load and low-load groups
MVC (NT) Pre-test Post-test Normalized Change Statistics

FFRMS(%MVC) BFR-HL 2.09 ± 0.79 1.94 ± 0.85 0.00 ± 42.52% t19.53 = 2.078, p = 0.050
BFR-LL 1.94 ± 0.73 1.29 ± 0.32** -27.51 ± 22.05% Cohen’s d = 0.785

FFApEn BFR-HL 0.285 ± 0.068 0.305 ± 0.065 10.08 ± 26.21% t26 = -1.749, p = 0.092
BFR-LL 0.273 ± 0.059 0.337 ± 0.056††† 26.83 ± 22.50% Cohen’s d = 0.661

MVC: maximal voluntary contraction; BFR-HL: high-load group; BFR-LL: low-load group

FFRMS: root mean square of force fluctuations; FFApEn: approximate entropy of force fluctuations
**: Post-test < Pre-test, p < 0.005; †††: Post-test > Pre-test, p < 0.001

Fig. 2 The contrasts of motor unit variables between the pre-test and 
post-test. The mean and standard deviations of recruitment threshold (A), 
mean inter-spike interval (M_ISI) (B), and coefficient of variation (CV-ISI) (C) 
of inter-spike interval in the pre-test and post-test for the BFR-HL and BFR-
LL groups. Each small dot represents variables of an individual motor unit 
in the BFR-HL or BFR-LL group
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recruitment threshold (Rec_th) of the BFR-HL group 
increased (p < 0.001), while the mean MU Rec_th of the 
BFR-LL group decreased (p < 0.001), relative to those in 
the pre-test (Fig.  2(A)). For the BFR-HL group, mean 
ISI was significantly larger in the post-test than in the 
pre-test (p = 0.002). Conversely, mean ISI was signifi-
cantly smaller in the post-test than in the pre-test for the 
BFR-LL group (p < 0.001) (Fig.  2(B)). Both the BFR-HL 
(p = 0.003) and BFR-LL (p < 0.001) groups demonstrated 
significant post-test declines in CV_ISI. Figure  3 illus-
trates the contrast in CDI between the pre-test and post-
test for the BFR-HL and BFR-LL groups. The two groups 
displayed parallel decreasing trends in CDI with BFR 
resistance training, indicating a lower level of CDI in the 
post-test (p ≤ 0.002).

Discussion
In a volume-matched condition, both BFR-HL and BFR-
LL consistently led to improvements in maximal volun-
tary contraction of wrist extension. However, BFR-HL 
training resulted in superior improvement in maximal 
voluntary contraction compared to BFR-LL training. 
Notably, only BFR-LL training improved force precision 
control of wrist extension during force tracking, as evi-
denced by smaller force fluctuations with lower regular-
ity in the post-test; BFR-HL training did not show such 
improvements. The load-dependent differences in force 
precision control during force-tracking were associated 
with variations in adaptive changes in motor unit (MU) 
activation strategies. BFR-LL training favored the recruit-
ment of MUs with lower recruitment thresholds and 
higher firing rates. In contrast, BFR-HL training tended 

to activate MUs with higher recruitment thresholds and 
lower firing rates. Both BFR training protocols reduced 
the discharge variability of MUs and MU synchrony 
within a MU pair. These findings highlight the distinct 
effects of BFR training on neuromuscular adaptations 
and force control, with load playing a significant role in 
determining the outcomes.

Differential force behaviors with training load for BFR 
protocols
The present results regarding the superior force genera-
tion capacity following BFR-HL training were inconsis-
tent with previous studies [8, 33], where the total training 
volume was not exactly matched. The ongoing debate 
concerning strength improvements in blood flow restric-
tion (BFR) training of varying loads persists, potentially 
due to a lack of comparability in total strength volume 
between BFR-HL training and BFR-LL training. Theo-
retically, BFR-HL training is more susceptible to exces-
sive metabolic accumulation and the early development 
of fatigue responses [34, 35]. With matched training vol-
umes, this study revealed better post-test strength gain in 
MVC after 3 weeks of BFR-HL training (26.96 ± 16.33%) 
compared to BFR-LL training (11.16 ± 15.34%)(Table  1). 
Interestingly, BFR-LL training not only enhanced post-
test MVC but also improved force precision control, 
as evidenced by a significant reduction in the sizes of 
post-test force fluctuations (Table  2). The improvement 
in force scaling after BFR-LL training was also associ-
ated with an increasing trend of the complexity of force 
fluctuations (or enhanced ApEn) (Table 2). The additive 
accuracy mechanism proposes that force fluctuations 

Fig. 3 The contrasts of common drive index (CDI) between the pre-test and post-test. Each small dot represents a CDI value of a motor unit pair in the 
BFR-HL or BFR-LL group
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(or intermittency) serve as a means to correct tracking 
deviations [36, 37]. In this context, the adaptive increase 
in force fluctuation complexity might be interpreted 
as an improved automatic response for tracking devia-
tion correction that requires less information processing 
and attentive control following BFR-LL training [38]. In 
parallel, young adults consistently demonstrate higher 
movement complexity than aged individuals [39], who 
experience a loss of behavioral repertoire due to degen-
erative changes. The distinct performance benefits 
observed for BFR-HL and BFR-LL training may not be 
attributed to metabolic stress, as phosphocreatine deple-
tion and intramuscular pH decrease were similar for dif-
ferent BFR training protocols with the same total work 
volume [40]. Some non-metabolic factors, such as MU 
recruitment and cellular swelling, may account for the 
mechanic differences. The present findings have practical 
implications for the use of BFR resistance training. When 
training volume is appropriate, power-type athletes 
may benefit more from BFR-HL training for strength 
improvement. Despite yielding less strength gain, BFR-
LL training enhances force precision control, which is 
crucial for pistol shooters, surgeons, and rehabilitative 
patients who need to regain muscle strength and the abil-
ity to control their movements precisely to avoid action 
errors or re-injury.

Load-dependent adaptive changes in motor unit 
activation strategy
This study revealed that adaptive changes in MU acti-
vation strategies depended on the training loads in the 
BFR protocols, as illustrated in Fig. 2(A)-(C). BFR could 
induce metabolic and/or mechanical stress, which can 
influence how motor units behave and selective hyper-
trophy muscle fibers [41–43] for low-load resistance 
exercise. Fatela et al. (2019) reported an immediate 
effect of BFR that shifts MU recruitment pattern with 
a more negative regression slope between MU recruit-
ment threshold and firing rate [44]. Hence, BFR not only 
recruits additional MUs with higher thresholds but also 
facilitates the firing of MUs with lower thresholds, com-
pared to non-BFR conditions. The present study further 
indicates distinct adaptive changes in MUs in response 
to resistance training with different loads under BFR. 
BFR-LL training led to a decrease in the mean recruit-
ment threshold of MUs, with shorter inter-spike inter-
vals during post-test force-tracking, whereas an opposite 
trend was noted for BFR-HL training (Fig. 2(A), (B)). In 
the context of the reduction in recruitment threshold 
after BFR-LL training, the CNS can more readily access 
MUs with lower thresholds and discharge at higher rates 
during post-test force-tracking, emphasizing endurance-
related neural adaptations. In contrast, BFR-HL train-
ing involves the recruitment of higher-thresholds MUs 

with longer inter-spike interval during post-test force-
tracking. The scenarios suggest an expansion of the MU 
recruitment pool for effective force generation after BFR-
HL training, aligning with the prediction of the onion-
skin motor unit control scheme [45].

Although a direct causal link between force precision 
and MU behaviors remains to be firmly established, the 
observed adaptations in MU recruitment strategy and 
rate coding have the potential to influence load-depen-
dent differences in force precision control following 
BFR training. After BFR-LL training, the increase in dis-
charge rate of lower-threshold MUs was likely to reduce 
the size of force fluctuations (Table  2), as shorter inter-
spike intervals facilitate fusion of twitch forces gener-
ated by these MUs. Additionally, post-test reductions 
in discharge variability (Fig.  2(C)) and MU synchrony 
(Fig.  3) were also beneficial for improving force steadi-
ness, as variability in motor unit discharge rates can 
largely account for fluctuations in motor output during 
isometric contraction [46, 47]. It is noteworthy that BFR-
LL training could lead to reduced discharge variability 
and force fluctuations at higher exertion levels (such as 
75% MVC) in this study, a phenomenon not observed 
with short-term traditional low-intensity endurance 
training. Traditional low-load resistance training might 
indeed reduce discharge variability at much lower exer-
tion levels (20% MVC) [48], underscoring the additional 
benefits of BFR during low-intensity resistance training. 
On the other hand, BFR-HL training resulted in the addi-
tional recruitment of higher-threshold MUs (Fig.  2(B)), 
which are more effective in force development. However, 
the decrease in discharge rate of the MUs (Fig. 2(B)) was 
not conducive to force precision control (Table  2), as it 
led to ineffective fusion of twitch forces for longer inter-
spike intervals. Apparently, the detrimental effect on 
force steadiness cannot be compensated by concurrent 
decrease in discharge variability following BFR-HL train-
ing (Fig. 2(C)).

Methodological considerations
There were some methodological concerns in this study. 
First, this study did not replicate previous works exam-
ining MU adaptations to resistance training of vary-
ing loads without BFR by including a non-BFR control 
group, as the primary focus of this study was to delin-
eate the training effects of BFR with HL and LL proto-
cols. While this study addressed MU remodeling related 
to training under BFR, we cannot dismiss the possibility 
of load-dependent MU adaptation occurring with tra-
ditional resistance training of matched volume without 
BFR. A review article by Duchateau et al. (2006) [49] con-
cluded that non-BFR strength training with heavy loads 
(70% of maximum) did not improve either steadiness or 
discharge rate variability. Conversely, light-load training 
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was effective in reducing discharge and force variability 
in the index finger for older adults [50]. Nonetheless, 
accumulating evidences suggest that recruitment strate-
gies and discharge behaviors of motor units differs with 
BFR application [22, 48, 51]. BFR tends to increase mus-
cle excitation during a single low-load [48] and high-load 
[51] contraction, by activating MUs with higher recruit-
ment thresholds. For motor units of similar size, they 
discharged at higher rates following BFR training [22, 
48]. Expanding on prior research, the current study fills 
knowledge gaps by comparing MU adaptations between 
high-load and low-load training under BFR. Second, the 
same motor units were not precisely tracked across the 
training intervention, even though electrode positioning 
was performed carefully in both the pre-test and post-
test. As a result, the study pooled data from recorded 
motor units, approximately 1000 MUs, assuming no dis-
tribution differences in recruitment thresholds of these 
MUs before and after BFR training. The research focus 
was primarily on global changes in the discharge behav-
iors of a population of motor units rather than individual 
units. Additionally, it is important to note that this study 
focused on contrasting the short-term training ben-
efits of BFR-HL and BFR-LL training. Future research 
is needed to differentiate the long-term training ben-
efits between these two training regimens. The use of 
various BFR training protocols (such as occlusion pres-
sure), the design characteristics of BFR devices (such as 
cuff material and width), and exercise protocols (such as 
concentric or eccentric exercise) may influence the spe-
cific adaptive changes in motor unit and force behaviors 
observed with each type of resistance training. Finally, 
the relatively small sample size in this study may have 
limited data homogeneity and statistical power to gener-
alize the findings of this research. Despite these concerns, 
our findings still provide novel evidence of the differen-
tial impacts on force regulation following BFR-HL and 
BFR-LL training.

Conclusion
This study is the first to report differential training ben-
efits and the underlying motor unit physiology for short-
term BFR-HL and BFR-LL training with matched training 
volumes. Specifically, BFR-HL training leads to superior 
strength gains compared with BFR-LL training. However, 
BFR-LL training is associated with improved force preci-
sion control, a benefit not observed in BFR-HL training. 
The variations in the capacity for force scaling observed 
with BFR training associated with differing motor unit 
activation strategies. Force scaling following BFR-HL 
training tends to recruit MUs with higher thresholds. In 
contrast, improved force scaling after BFR-LL training 
involves adaptive changes in rate coding by increasing 
the discharge rate of MUs with lower thresholds.
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