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metabolic cost, therapies and devices may be better opti-
mized to improve mobility (Fig. 1A).

Measurements of metabolic cost are too slow to detect 
the contributions of different stride phases. Current 
methods to calculate energy from oxidative reactions 
include measuring respiratory CO2 production by ingest-
ing water with a radioisotope (‘doubly labelled water 
method’), measuring oxidative heat production using a 
chamber (‘direct calorimetry’), and measuring O2 con-
sumption from respiration (‘indirect calorimetry’) [10]. 
Indirect calorimetry is the fastest and most commonly 
used method for measuring metabolic cost during loco-
motion; however, it still requires averaging several min-
utes of breaths to be reliable [11–13]. A typical walking 
stride lasts about one second meaning current methods 
can only measure the mean metabolic cost following a 
bout of steady-state walking. Experiments that approxi-
mated the cost of the swing phase by recording cycli-
cal leg swinging [14] and by measuring blood flow from 
injected microspheres in animals that are then sacrificed 
[15] suggest that the stride-mean metabolic cost does 

Introduction
Metabolic cost is a critical measure used to character-
ize movement behavior [1–3]. Healthy walkers naturally 
adopt an energetically optimal stride cycle, for example, 
by walking with a step length [4] and knee flexion angle 
[5] that minimizes metabolic cost. Pathologies like stroke 
and cerebral palsy alter patients’ walking stride resulting 
in increases to metabolic cost by 60 to 300% [6, 7]. Such 
increases in metabolic cost correlate to drastic reduc-
tions in people’s mobility and overall quality of life [8, 9]. 
If we understand how stride cycle phases contribute to 
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not necessarily represent the contributions of individual 
phases (‘within-stride metabolic cost’).

Several model-based methods of estimating within-
stride metabolic cost have been proposed but remain 
inconclusive. Umberger developed a set of equations to 
estimate metabolic cost from muscle parameters and 
used this to produce the first estimation of within-stride 
metabolic cost from a forward simulation of walking 
[16]. Other groups used EMG-driven simulations [17] 
or equations based on joint kinetics instead of muscle 
parameters [18]. However, when comparing those meth-
ods to each other, their estimations of within-stride 
metabolic cost are relatively inconsistent (Pearson corre-
lation: r = 0.29, n = 6 estimations, Fig. 1B) [19]. Currently, 
there is no way to validate these model-based estimations 
for within-stride metabolic cost since measurements 
from indirect calorimetry only obtain a stride mean. This 
motivates the development of an alternative method to 
estimate within-stride metabolic cost that is supported 
by indirect validation approaches.

We hypothesized that applying a set of perturbations 
creates a set of instances of the behavior where the differ-
ences in the time series between each perturbed instance 
can be attributed to the different magnitudes and timings 
of the applied perturbation. By applying perturbations 
repeatedly to a specific part of the gait cycle for several 
minutes, we can induce changes in the stride-mean meta-
bolic cost as well as in the biomechanical time series (e.g., 
kinematics, kinetics, and muscle activations) [19–21]. We 
postulated the variation across the set of perturbed walk-
ing strides would be representative of the fluctuations in 

metabolic cost within the stride cycle so long as the set 
contained a large number of different perturbations. If 
true, this would enable a method to extract key features 
of within-stride metabolic cost. Our approach is inspired 
by prior studies that utilized ankle perturbations to 
assess time series of joint impedance during the stance 
phase [22, 23] as well as studies that used elastic bands 
and added mass to estimate the cost of stance and swing 
phases [24, 25]. To the best of our knowledge, using of a 
perturbation-based approach for estimating within-stride 
metabolic cost time series is novel.

Using this concept, extraction of within-stride behav-
iour from a collection of perturbed instances, we devel-
oped an alternative method to estimate within-stride 
metabolic cost that we refer to as our ‘perturbation-based 
method’. Our method estimates within-stride metabolic 
cost using measurements from a set of perturbed walking 
strides. We then evaluated our method’s ability to consis-
tently reproduce model-based estimates of within-stride 
metabolic cost.

Materials and methods
Overview
We created two datasets; a dataset generated using a 
neuromechanical simulation and a dataset collected 
from human experiments [20, 26, 27]. Each of these 
datasets contain walking kinematics, kinetics, and mus-
cle activation time series during 35 different perturbed 
walking conditions and one unperturbed, normal walk-
ing condition (36 walking conditions per dataset). The 

Fig. 1 Motivation. (A). Limitation of assessing stride-mean metabolic cost using breath-by-breath measurements. The upper figure illustrates an interven-
tion resulting in a cost reduction (depicted in green) during push-off and a cost increase (depicted in brown) during swing. The stride-mean metabolic 
cost (displayed in bars) does not enable differentiation of these effects. The lower section of the figure illustrates how comprehending the costs associ-
ated with various phases could facilitate the enhancement of interventions. (B). Limited consistency between estimations of within-stride metabolic cost 
using model-based methods. The mean correlation between estimations is 0.29 (95% confidence interval (CI) = 0.03–0.43) [16, 19, 38, 41, 42]
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‘perturbation’ applied during each of the 35 perturbed 
walking conditions was a force profile applied to the 
COM.

Our perturbation-based method was initially devel-
oped and tuned using the dataset from the neuro-
mechanical simulation [26, 27]. Tuning consisted of 
adjusting which kinematic, kinetic, and muscle activation 
time series from the neuromechanical simulation were 
used for estimating within-stride metabolic cost. The 
timeseries included from different combinations of kine-
matic, kinetic, and muscle activation data will be referred 
to as ‘derived time series’. The choices from tuning were 
made based on the perturbation-based method’s perfor-
mance at estimating other kinematic, kinetic, and muscle 
activation time series.

We indirectly validated our perturbation-based 
method by evaluating its ability at estimating 10-model 
based metabolic cost timeseries. First we inputted the 
kinematic, kinetic, and/or muscle activation data into 10 
model-based methods in order to generate within-stride 
metabolic cost timeseries (five models per dataset). We 
then indirectly validated our perturbation-based method 
based on its ability at reproducing the five model-based 
metabolic time series from the neuromechanical dataset 
and the five model-based metabolic time series from the 
human experimental dataset. Re-evaluating our method 
in two distinct datasets avoids dataset bias [28]. Finally, 
we assessed the perturbation-based method’s estimate of 
within-stride metabolic cost when using V̇ O2 and V̇ CO2  
data from the human experiment.

Simulation dataset
We adapted a neuromechanical simulation from Song 
and Geyer to walk under force perturbations from a waist 
tether [26, 27]. Specifically, we used a two-dimensional 
variant that restricts motion to the sagittal plane [26]. 
We simulated perturbations with forward forces applied 
at the hip of a model with seven rigid segments in Sim-
scape First Generation Multibody (MathWorks, Natick, 
MA). In this framework, we simulated 32 sinusoidal force 
profiles with peak timings covering the entire gait cycle 
and peak forces ranging from 0 to 24% of body weight, 
three constant force profiles, and an unperturbed walk-
ing condition.

The neuromechanical model’s walking control strategy 
was optimized for each perturbed walking condition (cf. 
Supplementary: Neuromechanical simulation dataset for 
tuning and in silico evaluation). Briefly, the cost function 
was piecewise with two different functions based on a 
conditional of a walking pattern that reached 20 s with-
out a fall. Firstly, the optimization would search for con-
trol parameters that increased the distance travelled with 
consistent stepping, the number of steps taken, and the 
time the simulation successfully walked without falling. 

Once a set of control parameters achieved a walking 
pattern that could walk for a simulated 20 s, the control 
parameters would be refined to match a target walking 
velocity of 1.25 ms− 1, minimize muscle activations, main-
tain a consistent walking pattern, and penalize unnatural 
range of motion.

Time series data (simulated kinematics, kinetics, and 
muscle activations) were extracted for each of the opti-
mized control strategies to constitute the neuromechani-
cal dataset. We then constructed 100 time series to serve 
as test data for tuning our perturbation-based method. 
These test time series were random linear combinations 
of the different biomechanical time series, so they were 
distinct from the model-based estimates that would be 
used later for evaluation.

Experimental dataset
We used biomechanical and indirect calorimetry data 
from previous human experiments [20] with a robotic 
waist tether [21] for the in vivo evaluation and applica-
tion of our perturbation-based method (Supplemen-
tary Data  1). Ten healthy participants (age: 28.0 ± 4.7 
years, body mass: 83.2 ± 12.2  kg, height: 1.80 ± 0.05  m; 
mean ± SD) walked under the same perturbations as in 
the neuromechanical simulation dataset. In this case, the 
perturbations were generated by a robotic waist tether 
controlled by a temporal algorithm that enables pull-
ing during a specific portion of the gait cycle with high 
consistency.

Perturbation-based method input signals
Our perturbation-based estimation method uses the 
stride-mean metabolic cost as well as within-stride bio-
mechanical time series to estimate within-stride meta-
bolic cost (Fig.  2C and F. Methods: Perturbation-based 
method). The biomechanical time series as well as addi-
tional mathematically derived combinations of those time 
series are considered potential estimates of within-stride 
metabolic cost (cf. Methods: Additional input signals and 
algorithm tuning). Our perturbation-based method first 
calculates the mean cycle from 0 to 100% of the stride 
for each biomechanical time series for each perturbation 
condition. Then each stride-normalized biomechanical 
time series is reduced to one scalar for each perturbation 
condition using a custom standardization method based 
on the deviation from unperturbed walking (Fig.  2, cf. 
Methods: Custom standardization method). A collection 
of these standardized scalar values of biomechanical data 
across all perturbations form a perturbed biomechanical 
set. Finally, we select the biomechanical set that matches 
the perturbed set of the stride-mean metabolic cost (cf. 
Methods: Time series estimation procedure). The origi-
nal biomechanical time series that most closely matched 
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the standardized set for the stride-mean metabolic cost is 
used as the estimate of within-stride metabolic cost.

We chose to estimate the metabolic cost of one side of 
the body rather than the whole body’s metabolic cost. The 
within-stride metabolic cost of one side of the body pro-
vides more descriptive and potentially useful information 
for interventions, such as assistive devices, than whole-
body cost, which cannot be attributed to a specific leg. 
Using model-based methods, we generated a set of five 
estimates of the within-stride metabolic cost to indirectly 
validate our perturbation-based method’s performance 
which were distinct from the five evaluations that were 
used in the neuromechanical dataset (cf. Supplementary: 
Model-based metabolic costs used; [18, 29–35]).

All kinematic, kinetic, and muscle activation time 
series as well as the derived signals (cf. Methods: Addi-
tional derived input time series and algorithm tuning) are 
stride-normalized and organized in matrices with one 
row for each percent of the stride cycle and one column 
for each of the 36 perturbation conditions.

 Xbts = [100 × 36] (1)

Each perturbation’s force profile was repeated over multi-
ple stride cycles for a sufficient duration to obtain steady-
state metabolic cost (40 s to obtain ten sufficiently stable 
strides in the neuromechanical simulations and 2 min to 
estimate the steady-state metabolic cost in the human 
experiments) [11].

The stride mean metabolic cost for every condition is 
also used as an input in our perturbation-based method.

 
−
Y = [1 × 36] (2)

This stride mean can be estimated from model-based 
metabolic costs as well as from respiratory V̇ O2 and 
V̇ CO2 measurements; hence this input is available when 
estimating the within-stride metabolic cost in human 
experiments.

Custom standardization method
Each time series is standardized using a custom method 
(Supplementary Data  1). First, we take the stride mean 
of each biomechanical time series for every perturbation 
condition.

Fig. 2 Flow of data for estimating and evaluating within-stride metabolic cost. (A). A perturbed dataset was gathered using force perturbations at the 
COM. Biomechanical time series (e.g., kinematics, kinetics, muscle activations) as well as stride-mean metabolic cost were measured for each walking 
condition. (B). These measurements are stride normalized and (C). then converted to a stride-mean for each walking condition. (D). The stride means 
for each biomechanical measurement are custom standardized by subtracting the unperturbed stride mean from each perturbed stride mean and 
then dividing by the range of deviations from unperturbed walking. (E). The custom standardized biomechanical time series are then compared to the 
custom standardized within-stride metabolic cost using the sum of square error. This process will be iterative, where an additional custom standardized 
biomechanical time series may be added if it reduces the sum of square error. (F). The biomechanical time series or combination of biomechanical time 
series that corresponded to the lowest sum of square error are selected. The unperturbed condition from the selected biomechanical time series is used 
as the estimate for within-stride metabolic cost. (G). The original model-based within-stride metabolic cost is only used for validation of our perturbation-
based method. Our perturbation-based method leverages information from stride-mean values that are experimentally available to indirect calorimetry
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−
Xbts = [1 × 36] (3)

Next, we calculate the deviation of each perturbed walk-
ing condition from the unperturbed walking condition.

 ∆
−
Xbts =

−
Xbts −

−
Xbts,0 = [1 × 36] (4)

where ∆
−
Xbts

 is the set of deviations from the unper-
turbed condition and −

Xbts,0 is the stride mean of the 
unperturbed condition.

Each set of deviations is then normalized by its range of 
deviations from unperturbed walking.
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)
− min

(
∆

−
Xbts

)



 = [1 × 36] (5)

where −
Xstand

is the standardized set of deviations from 
unperturbed walking for each biomechanical time series 
and nbins is the number of bins. The standardized set is 
enumerated to reduce the effects of floating-point differ-
ences between biomechanical measurements. The num-
ber of bins was set to 80 based on tuning (cf. Methods: 
Tuning of available data for metabolic cost estimation, 
Supplementary Data 2). This process is similar to Slade et 
al., (2022) [36].

In summary, this procedure converted the stride means 
of biomechanical time series to a range of standardized 
values ranging from 1 to 80. We also applied the same 
standardization procedure (Eqs. 4, 5) to the stride means 
of derived biomechanical time series as well as to the 
stride mean metabolic cost ( −

Y ).

Time series estimation procedure
We ran a minimization procedure that evaluates which 
standardized biomechanical time series best matches the 
standardized metabolic cost. First, we evaluate how well 
the standardized set of each biomechanical time series 
and each derived time series matches the standardized 
set of metabolic cost using a sum of square comparison

 
SSinitial =

∑ cond 36

c = 1

(
−
Xstand, c −

−
Y stand,c

)2

 (6)

where SS  is the sum of squares and c  represents each 
perturbation condition.

Then, we conduct a stepwise optimization procedure 
whereby we evaluate if adding another standardized bio-
mechanical time series or derived signals to the previous 
standardized set improves the SS

 

SSnew =
∑

cond35
c= 1

((
−
Xstand,c,j +

−
Xstand,c, prev opt SS

)
−

−
Y stand,c

)2  (7)

where −
Xstand,c, prev opt SS  is the standardized set that pro-

duced the best SS in the previous iteration and j repre-
sents a new biomechanical measurement or derived 
signal that is evaluated.

Finally, the time series of the biomechanical measure-
ment, derived signal, or combination of signals with the 
lowest SS  is then used to estimate within-stride meta-
bolic cost (Fig. 3). If the lowest SS results from one single 
biomechanical measurement or derived signal, the cor-
responding unperturbed time series is used to estimate 
within-stride metabolic cost.

 Yestimated = XSS opt = [100 × 1] (8)

where Yestimated  is the estimated within-stride metabolic 
cost, XSS opt is the time series of the biomechanical mea-
surement or derived signal that resulted in the lowest 
SS . In the event the lowest SS  is from a combination 
of biomechanical measurements and derived signals, we 
normalize each signal by its range and sum to serve as the 
estimate of within-stride metabolic cost

 

Yestimated =
∑

number of bts
i =1

Xbts SS opt, i

max (Xbts SS opt,i) − min (Xbts SS opt,i)
 (9)

where i  is the index of the biomechanical signals used to 
achieve the lowest sum of squares.

The approach of leveraging perturbations constitutes a 
paradigm shift compared to previous iterative improve-
ments of model-based methods. Our procedure of using 
data from the perturbed conditions to estimate the 
unperturbed condition intrinsically involves estimating 
(just) outside of test data, and it is known that overfit-
ting can be an issue in such a procedure. Some features 
of the perturbation-based method likely helped avoid this 
overfitting. We limited the number of inputs by using a 
standardization that converted each time series to a sca-
lar (Eqs. 3–5). We also generated a very large number of 
derived signals.

Additional derived input signals and algorithm tuning
We tuned two features of our perturbation-based 
method: the selection of which mathematical derived 
time series would be available for creating the estima-
tion of within-stride metabolic cost and the number of 
bins in the custom standardization procedure (cf. Meth-
ods: Additional derived input signals and algorithm 
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tuning). During the tuning, we evaluated which settings 
improved the lower-bound, 95% confidence interval of 
Pearson’s correlations between the estimated and the test 
time series. After tuning, the mean Pearson’s correlation 
between our perturbation-based method’s estimate and 
time series within the test set was 0.41 (95% CI = 0.33–
0.50). We evaluated the impact of the following options:

  • Options 1–2: The separation of positive and negative 
regions of the original biomechanical time series.

  • Options 3–5: The square, cube, or inverse of the 
original biomechanical time series.

  • Options 6–8: The subtraction, addition, or 
multiplication of all pairs of the biomechanical time 
series.

  • Option 9: An additional set of additions and 
multiplication of pairs of the mathematically derived 
time series (generated from options 1–8).

We restricted option 9 to stop after generating 4000 com-
binations because considering all the combination per-
mutations was not feasible. We also tuned the number of 
bins for standardizing biomechanical time series (Eq. 5). 
This tuning is similar to the sensor selection and bin opti-
mization in Slade et al. [36].

The tuning criterion was correlation performance 
against 100 test time series. The test time series used 
were distinct from the model-based metabolic costs 
to avoid biasing the evaluation of our method [28]. As 
test time series for tuning, we generated 100 time series 

based on random combinations of the biomechanical 
time series from the neuromechanical simulation dataset.

 

Ytuning,k = c1 |Xbts,1| + c2 |Xbts,2| . . .
cn |Xbts,n| = [100 × 36]

 (10)

where Ytuning,k  represents one of the 100 test time 
series,c1 to n are random coefficients between 0 and 1, 
Xbts,1 to Xbts,n  are the positive or negative portions of a 
randomly chosen number of biomechanical measure-
ment time series.

The perturbation-based method’s correlation with the 
100 test time series was evaluated for each of 512 (29) 
combinations of mathematically derived time series for 
bin numbers ranging from 10 to 100 (Supplementary 
Data 2).

Statistical analysis
As a measure of the uncertainty in the literature, we gen-
erated a cross-table with pairwise Pearson correlations 
between six previously reported plots of within-stride 
metabolic cost in the literature [19], and we calculated 
the mean and 95% confidence interval of the correlations 
(Fig.  1b). Due to the limits of a Pearson correlation at 
− 1 and 1, we converted each r-value to a Z-score using 
Fisher’s Z-transformation. Average Z-scores and z-score 
confidence intervals across the correlations in litera-
ture, between perturbation-based and neuromechanical 
model-based, and between perturbation-based human 
experimental model-based were converted back to 

Fig. 3 Illustration of how biomechanical and derived time-series are combined to produce a within-stride metabolic cost time series. Each column (A, 
B, C) in the figure represents a mathematical operation used to create a new time series. The final plot on the bottom right is the estimated within-stride 
metabolic cost. The specific combination shown here was used to estimate the Bhargava et al., 2004 metabolic cost in Table 1
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Pearson r-values for easier interpretation [37]. All analy-
ses were conducted in MATLAB 2021b.

Results
Once tuning was completed, and our perturbation-based 
method was finalized, we evaluated its performance 
at reproducing a variety of model-based estimates of 
within-stride metabolic cost. We calculated five within-
stride metabolic costs using model-based methods (cf. 
Supplementary: Model-based metabolic costs used in 
neuromuscular simulation dataset; [30, 32–35]). The 
mean Pearson’s correlation between the five different 
model-based within-stride metabolic costs and our esti-
mations of those using the perturbation-based method 
was 0.55 (95% CI = 0.22–0.77). This evaluation perfor-
mance constitutes an improvement of at least 50% com-
pared to the mutual consistency between model-based 

estimations in the literature for four out of five estima-
tions (Fig. 4A-E; Table 1).

We also indirectly validated our perturbation-based 
method in data from human experiments. In vivo, human 
walking experiments were conducted with a pertur-
bation from a robotic waist tether applied to the COM 
(cf. Supplementary: Human experimental dataset for 
in-vivo evaluation and application) [20]. In each condi-
tion, the tether applied pulling forces with a specific pro-
file repeatedly to stride cycles for a sufficient duration 
to induce a different steady-state gait. We applied the 
same perturbation-based method to our human experi-
mental dataset without any additional tuning or changes. 
Our estimation reproduced the above-mentioned five 
independent model-based estimations of metabolic cost 
with a mean Pearson’s correlation of 0.80 between the 
model-based metabolic costs and their estimations using 
the perturbation-based method (95% CI = 0.57–0.91, 
Table  2). This result is also greater than the correlation 
between model-based estimations currently in literature 
with an improvement of at least 75% (Fig. 4F-J) [19, 38].

After successfully completing the indirect validations, 
we applied our perturbation-based method to estimate 
within-stride metabolic cost based on V̇ O2 and V̇ CO2 
data from the human experiment (Fig.  5). When we 
divide the stride into the first double stance (1–15% of 
the stride), single stance (16–50%), push-off (51–65%), 
and swing (66–100%), their metabolic cost respectively 
accounted for 20, 49, 10 and 21% of the total. The esti-
mated cost of push-off is considerably lower than that 
of single stance. This is markedly different from the 

Table 1 Evaluation of perturbation-based method in 
neuromechanical dataset
Stride mean metabol-
ic cost input

Selected mathematically 
derived combination of 
biomechanical time series

Estimated 
versus actual 
time series 
correlation ┼

Bhargava
et al., 2004

(Soleus + tibialis anterior) * hip 
power + vastus medialis

0.76

Houdijk
et al., 2006

(COM power + vastus media-
lis) * rectus femoris + vastus 
medialis

0.22

Lichtwark
et al., 2005

(Soleus + tibialis anterior) * hip 
power + vastus medialis

0.77

Margaria,1968, 
muscle-based

Knee angle – hip moment 0.49

Umberger,
2003

(Stride time + vastus medialis) 
* hip power + vastus medialis

0.42

Mean Pearson correlation 0.55 (95% CI = 0.22–0.77)*

┼ The final column lists correlations between model-based within-stride 
metabolic costs and estimations of these costs using the perturbation-based 
method (Fig.  4 AE). The stride mean metabolic costs used as inputs for the 
perturbation-based estimation are named in the first column. The Pearson 
correlations serve as a measure of the estimation performance

* Mean Pearson correlation and confidence interval are calculated following 
Fisher Z transformation

Fig. 4 Evaluation of perturbation-based method. Evaluation of pertur-
bation-based method’s ability to reproduce within-stride metabolic cost 
of different model-based methods in our two datasets. Estimations from 
each model-based method are represented by black lines. Our pertur-
bation-based method’s estimations are represented with red lines. The 
left column shows evaluations in the neuromechanical simulation data-
set, and the right column shows evaluations in the human experiment 
dataset. (A). Umberger et al., 2003 [35], (B). Houdijk et al. 2006 [33], (C). 
Bhargava et al., 2004 [32], (D). Lichtwark et al., 2005 [34] (E). Margaria 1968, 
applied onto muscle work rate [30, 52], (F). Beck et al., 2019 [31], (G). Kim 
and Roberts, 2015 [18] (H). Margaria 1968, applied onto COM work rate [30, 
53], (I). Margaria 1968, applied onto joint work rate [30, 54] (J). Minetti and 
Alexander, 1997 [29]
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evolution of positive mechanical work performed by the 
leg onto the COM, which is about three times as much 
during push-off compared to single stance. As such, our 
perturbation-based estimation confirms that metabolic 
cost can be related to sources other than mechanical 
work [39, 40].

Our estimation that push-off accounts for about one-
tenth of the total metabolic cost is similar to the first 
estimation using a forward-dynamics musculoskeletal 
model-based approach (8% [16]) but is low compared 
to estimations from model-based methods that use only 
joint-based equations (39% [18] and 49% [19]). Our 

estimation of the cost of the swing phase (21%) is close to 
the mean from previous model-based studies (24%, 95% 
CI = 19–28% [16, 17, 19, 38, 41, 42]). This also supports 
previous estimations from experimental studies with per-
turbations to the swing or stance phase that suggest that 
the swing phase substantially contributes to the meta-
bolic cost of walking (swing phase contribution to meta-
bolic cost reported as 10, 12.5 and 17% [14, 24, 25]).

While our approach of using perturbations is innova-
tive and yields results consistent with existing litera-
ture, we acknowledge some limitations in our methods, 
results, and the application. One methodological limita-
tion is that our method solely relied on lower limb signals 
for estimating metabolic costs. Our evaluation replicated 
model-based costs using lower-limb data and a simpli-
fied neuromuscular model. Notably, we did not directly 
account for metabolic contributions from trunk and arm 
muscles [43]. Another methodological constraint is the 
tuning of the derived time series and the number of per-
turbations required to create the datasets. Adapting this 
method for other datasets might require expanding the 
types of derived time series. In terms of the results, we 
recognized that our perturbation-based method for esti-
mating within-stride metabolic cost is empirical. While 
this offers the advantage of being less biased than model-
based methods, this is not favorable for understand-
ing causal relationships, such as the impact of altering a 
specific gait impairment [27, 44, 45]. Application-wise, 
a drawback of our method is its reliance on datasets of 
walking under various perturbations which can be time-
consuming and physically demanding for participants.

Table 2 Evaluation of perturbation-based method in human experiment dataset
Stride mean metabolic cost input Selected mathematically derived combination of biome-

chanical time series
Estimated 
versus actual 
time series 
correlation ┼

Beck
et al., 2019

Hip angle – vastus medilias + gluteus maximus + vertical GRF 0.86

Kim and 
Roberts, 2015

(Positive portion of hip power) 0.41

Margaria, 1968
COM-based

(COM power positive portion) * soleus + vertical GRF 0.91

Margaria, 1968
joint-based

(COM power positive portion) * vastus medialis + vertical GRF 0.78

Minetti and Alexander, 1997 (COM power positive portion) * tibialis anterior + vertical GRF 0.83

V̇ O2  and
V̇ CO2

Hip angle – tibialis anterior + gastrocnemius + vertical GRF N/A #

Mean Pearson correlation 0.80 (95% CI = 0.57–0.91)*

┼ The final column lists correlations between model-based within-stride metabolic costs and estimations of these costs using the perturbation-based method 
(Fig. 4 FJ). The stride mean metabolic costs used as inputs for the perturbation-based estimation are named in the first column. The Pearson correlations serve as a 
measure of the estimation performance

* Mean Pearson correlation and confidence interval are calculated following Fisher Z transformation

# The final row shows the combination that was selected to plot the within-stride metabolic cost time series based on respiratory V Ȯ2 and V ĊO2 data. In this 
application, there was no reference to compare our estimation-performance against; hence no correlation is reported

Fig. 5 Application of the perturbation-based method to estimate within-
stride metabolic cost. The red line shows the perturbation-based estimate 
of within-stride metabolic cost using stride means of V̇ O2  and V̇ CO2  
from the human experiment dataset as inputs. The grey lines show previ-
ous estimations from model-based methods which have previously been 
published in the literature [19].
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To advance perturbation-based within-stride meta-
bolic cost estimation’s practicality, future research needs 
to tackle challenges concerning tuning, time efficiency, 
and validation. Developing algorithms with greater gen-
erality, such as neural networks, could mitigate reliance 
on specific tuned options. Investigating perturbation 
types yielding the most valuable data will streamline 
data collection efforts. Finally, exploring innovative indi-
rect validation methods could bolster confidence in the 
methodology.

Conclusion
The present work describes a perturbation-based method 
that can reproduce a wide variety of model-based, 
within-stride metabolic costs in two different datasets 
using a collection of perturbed conditions. The result 
suggests that the metabolic cost of push-off is lower than 
the preceding single stance phase and that the swing 
phase has a non-negligible metabolic cost. These findings 
may have important applications for designing rehabili-
tation strategies and assistive devices. For example, the 
finding of a large cost of single stance may help explain 
how an unpowered ankle exoskeleton that primarily pro-
vides torque during single stance could reduce metabolic 
cost despite increasing plantar flexor activation during 
push-off [46]. The trajectory of community research has 
incrementally reduced the time to estimate steady-state 
metabolic cost from several minutes using Douglas bag, 
mixing chamber, to 1–2 min with breath-by-breath sys-
tems [47] and fitted approximation methods [11, 48, 49], 
and finally, to a matter of seconds via a combination of 
sensors and fitting methods [50, 51]. The present work 
grants greater understanding of metabolic cost beyond 
what was previously possible by presenting within move-
ment cycle interpretability instead of more rapid inter-
pretation of steady-state metabolic cost.
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