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Abstract 

Background Patients with neurological disorders including stroke use rehabilitation to improve cognitive abili-
ties, to regain motor function and to reduce the risk of further complications. Robotics-assisted tilt table technology 
has been developed to provide early mobilisation and to automate therapy involving the lower limbs. The aim of this 
study was to evaluate the feasibility of employing a feedback control system for heart rate (HR) during robotics-
assisted tilt table exercise in patients after a stroke.

Methods This feasibility study was designed as a case series with 12 patients ( n = 12 ) with no restriction on the time 
post-stroke or on the degree of post-stroke impairment severity. A robotics-assisted tilt table was augmented 
with force sensors, a work rate estimation algorithm, and a biofeedback screen that facilitated volitional control 
of a target work rate. Dynamic models of HR response to changes in target work rate were estimated in system identi-
fication tests; nominal models were used to calculate the parameters of feedback controllers designed to give a speci-
fied closed-loop bandwidth; and the accuracy of HR control was assessed quantitatively in feedback control tests.

Results Feedback control tests were successfully conducted in all 12 patients. Dynamic models of heart rate 
response to imposed work rate were estimated with a mean root-mean-square (RMS) model error of 2.16 beats 
per minute (bpm), while highly accurate feedback control of heart rate was achieved with a mean RMS tracking error 
(RMSE) of 2.00 bpm. Control accuracy, i.e. RMSE, was found to be strongly correlated with the magnitude of heart rate 
variability (HRV): patients with a low magnitude of HRV had low RMSE, i.e. more accurate HR control performance, 
and vice versa.

Conclusions Feedback control of heart rate during robotics-assisted tilt table exercise was found to be feasible. 
Future work should investigate robustness aspects of the feedback control system. Modifications to the exercise 
modality, or alternative modalities, should be explored that allow higher levels of work rate and heart rate intensity 
to be achieved.
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Background
Patients with neurological disorders such as spinal cord 
injury (SCI) or stroke, and patients with acquired brain 
injury (ABI), use rehabilitation to improve cognitive abili-
ties, to regain motor function and to reduce the risk of 
further complications. One complication that can arise 
from prolonged bed rest or reduced mobility is orthos-
tatic hypotension (OH). OH is a physical condition where 
a person’s blood pressure drops considerably (systolic 
blood pressure decrease of at least 20 mmHg or diastolic 
blood pressure decrease of at least 10 mmHg) within 
three minutes of standing [1].

A common form of treatment for such patients is ver-
ticalisation with the help of tilt tables and passive move-
ment of the lower extremities [2]. Robotic rehabilitation 
devices have been developed and deployed clinically to 
assist in performing such therapies. The Erigo (Hocoma 
AG, Switzerland) is one example. It is a robotics-assisted 
tilt table suited to the early stages of rehabilitation that 
allows for progressive verticalisation up to 90◦ with the 
addition of an integrated, motorised stepping function to 
simulate gait [3]. The Erigo’s stepping function is essen-
tially passive: the lower extremities are mobilised by 
mechanically shifting the thighs back and forth without 
active patient participation, although the latest edition 
of the device includes a functional electrical stimulation 
(FES) module for activation of paralysed muscle.

On these grounds, our previous work adapted the Erigo 
by implementing a real-time visual feedback system and 
force sensors in the thigh cuffs to allow work rate esti-
mation [4]. This enables patients with at least partially 
retained motor function to actively participate in the 
rehabilitation exercise through volitional effort. Patients 
can adapt their leg forces to keep to a target work-rate 
profile displayed on the biofeedback screen. Studies 
involving mild-to-severe stroke impairment [5, 6] and 
spinal cord injury [7] established that meaningful physi-
ological responses could be developed and formal exer-
cise tests could be performed reliably while exercising 
using this modality. Furthermore, a pilot study, conduct-
ing experiments on four healthy participants, developed 
and successfully tested a method for automatic control of 
heart rate using this device [4].

A related approach to heart rate control using the 
Erigo, albeit using only stepping frequency and tilt angle 
to drive the exercise, and using only six healthy par-
ticipants, has also been proposed [8]. Because of the 
employment of only the standard device settings, and the 
lack of any biofeedback that facilitated active participa-
tion to increase work rate, participants remained passive 
and the magnitude of increase in heart rate was very lim-
ited, being only 9 beats/min above resting levels.

Integrating automatic heart rate control algorithms 
into rehabilitation platforms, such as the Erigo, could 
enhance prescription and monitoring of patients’ physi-
ological responses while exercising, thereby contribut-
ing to a safer rehabilitation process with desired target 
heart rate intensities being achieved more accurately. It 
is important to use feedback to control heart rate inten-
sity directly because a given force or work rate will lead to 
potentially very different heart rates in different patients: 
but with feedback, the compensator will, in principle, 
automatically find the correct and individual force or 
work rate that will lead to the target heart rate being 
reached.

Exercise with integrated heart rate control is expected 
to ensure active patient participation as the patient has to 
continuously adapt their output work rate to match the 
changing target. Active patient participation is presumed 
to improve therapeutic efficacy [9]. The use of heart 
rate as a proxy of exercise intensity has been extensively 
described for healthy able-bodied people and for patients 
with a very wide range of disease and impairment con-
ditions [10]. The latter reference includes specific guide-
lines for using HR in exercise testing and prescription 
and provides an extensive collection of background lit-
erature citations.

Before the putative benefits of integrating automatic 
heart rate control algorithms into clinical rehabilitation 
can be realised, the technical feasibility of this proposal 
must first be demonstrated. The present work therefore 
aimed to evaluate the technical feasibility of employing 
a feedback control system for heart rate during robot-
ics-assisted tilt table exercise in a clinical case series of 
patients after a stroke.

Methods
Study design and patients
This feasibility study was designed as a case series with 
12 patients ( n = 12 ). The study was conducted at Reha 
Rheinfelden, a specialised neurorehabilitation clinic in 
the northeast region of Switzerland. Eligible patients 
were recruited from the inpatient population, from those 
attending the clinic’s neurological daycare centre (NDC) 
and from outpatients. The sample size of n = 12 was 
specified a priori in the approved study protocol based 
on recommendations regarding the conduct of feasibility 
trials [11].

Inclusion criteria were: a diagnosis of first-ever stroke; 
age > 18 years; clinical stability; the ability to communi-
cate well, sustain attention and follow instructions; and 
the capacity of judgement. All degrees of post-stroke 
impairment severity were allowed and there was no 
restriction on the time post-stroke. The principal exclu-
sion criteria were severe cognitive impairment, a history 
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of cardiovascular or pulmonary disease that may have 
presented risk or abnormal physiological responses dur-
ing exercise, medications that may have influenced heart 
rate response to exercise (e.g. beta blockers), or patients 
with contraindications for the robotics-assisted tilt table 
according to the manufacturer’s instructions.

The study was reviewed and approved by the Ethics 
Committee of Northwestern and Central Switzerland 
(EKNZ, Ref. 2022-01935). Patients provided written, 
informed consent prior to inclusion in the study.

Equipment
All exercises were performed on a robotics-assisted tilt 
table (Erigo, Hocoma AG, Switzerland; Fig.  1). The tilt-
ing mechanism provides verticalisation up to 90° while 
the drives allow stepping-like motion at a rate of up to 
80 steps/min. The device includes a body harness and leg 
cuffs that are attached to the thighs just above the knee 
(Fig. 1a). Force sensors were integrated into the leg cuffs 
to allow volitional patient effort to be measured; leg force 
together with angular motion allowed total volitional 
work rate (WR) to be estimated as the product of force, 
lever arm and angular velocity, summed over the two 
legs. This estimated WR is referred to in the following as 
“actual” work rate in contradistinction to the target work 
rate.

A biofeedback monitor was positioned in front of the 
tilt table (Fig.  1b) to display a target work rate ( WR∗ ) 
and the actual work rate (WR); during active exercise, 
patients were instructed to focus on the display and to 
continuously adjust their volitional leg force to keep their 
work rate as close as possible to the target.

Heart rate (HR) was monitored using a chest-belt sen-
sor (H10, Polar Oy, Finland) and transmitted wirelessly 
to a custom control application implemented in Matlab/
Simulink (The MathWorks, Inc., USA) running in real 
time on a PC. This heart rate monitor also delivered raw 
RR intervals for separate analysis of heart rate variability 
(HRV). Blood pressure was monitored periodically dur-
ing each test to ensure patient safety. The overall experi-
mental setup is illustrated in Figs. 2 and 3.

Test procedures and outcome measures
Each patient took part in two test sessions, with each test 
session separated by at least 24  h. The first session had 
a planned duration of 70 min to 90 min and comprised 
a familiarisation with the Erigo and the measurement 
instruments, followed by a formal system identification 
test. The second session was a formal heart rate control 
test with a planned duration of about 60  min. Patients 
were instructed to avoid strenuous activity within the 
24 h before testing and not to consume caffeine at least 

Fig. 1 Erigo robotics-assisted tilt table
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3 h prior to testing. In all tests, the tilt angle was set to 
60◦ and the stepping cadence to the maximum of 80 
steps/min.

System identification
In the system identification tests, which are open-loop 
tests as far as heart rate is concerned, the target work 
rate WR∗ was defined as two periods of a square wave 

of period 6 min, with the two levels, WR∗
1 and WR∗

2 , set 
within the light-to-moderate exercise intensity range 
(Fig.  4). The specific work-rate levels were determined 
for each patient individually by evaluating the work rates 
applied and heart rate responses observed during the 
preceding familiarisation session.

Identification tests began with 3 min of passive move-
ment where the patient was instructed to relax while 

Fig. 2 Experimental setup—schematic. The control application continuously displays a target work rate, WR
∗ , on the biofeedback screen 

along with the actual work rate, WR. The latter is estimated from measured forces and angles. The locations of the force and position sensors are 
indicated with a red bar just below the thigh cuff and a red dot close to the hip joint, respectively. Heart rate is also recorded in real time

Fig. 3 Experimental setup—in situ 
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their legs were moved by the device. During the 15-min 
active phase, the patient was instructed to follow as 
closely as possible the square-wave target work rate dis-
played on the screen along with their measured work 
rate. The test concluded with a 3-min passive phase. HR 
was recorded for further analysis.

Heart rate response to changes in target work rate, 
considered mathematically as a mapping from WR∗ to 
HR, were modelled as the first-order, linear time-invar-
iant (LTI) transfer function

where the model (also referred to as the open-loop 
plant) is parameterised by a steady-state gain k and a 
time constant τ ; the units of k and τ are beats per min-
ute (bpm) per Watt (bpm/W) and seconds, respectively; 
s is the Laplace transform complex variable. The pur-
pose of the system identification procedure was to esti-
mate these parameters empirically using the test data; a 
separate model was identified for each individual patient. 
We employed a least-squares optimisation algorithm 
(function procest) from the Matlab System Identifica-
tion Toolbox (The MathWorks, Inc., USA), which is the 
standard method recommended for LTI models of the 
form Eq. (1), [12]. Several previous studies of HR control 
with able-bodied participants and using cycle ergometer 
or treadmill exercise modalities, e.g. [13], have demon-
strated that a linear time-invariant model such as Eq. (1) 
leads to accurate and robust HR control performance, 
thus providing the basis for this choice of model in the 
present study.

The goodness of fit of the estimated models was 
quantified using a normalised root-mean-square model 

(1)Po(s) =
k

τ s + 1
: WR∗

�→ HR

error (NRMSE), also called “fit”, and the absolute RMS 
model error ( RMSEI , where “I” denotes Identification):

In the above, HR is the measured heart rate, HR is the 
mean heart rate, and HRsim is the heart rate that was 
simulated using the estimated models. The summations 
range over the evaluation period up to the number of 
data points included, N. The square brackets, [.], indicate 
the units for these quantities.

Feedback control
In the feedback control tests, which are closed-loop tests 
as far as heart rate is concerned, the target heart rate HR∗ 
was set to a constant level within the light-to-moderate 
exercise intensity range for a duration of up to 20 min 
(Fig.  5). The target HR level was determined for each 
patient individually by evaluating the HR values meas-
ured during the system identification test, and initially 
setting HR∗ within the observed range. In practice, it was 
found necessary in 6 of 12 cases to adjust HR∗ manually 
during the first few minutes of the active phase of the 
feedback control tests to ensure patients could maintain 
the target and/or to keep the exercise intensity within the 
desired range. This is likely due to fatigue or other factors 

(2)

fit (NRMSE) [1] =



1−

√√√√√√√√

N∑
i=1

(HR(i)−HRsim(i))2

N∑
i=1

(HR(i)−HR)2




× 100 %,

(3)RMSEI [bpm] =

√√√√ 1

N

N∑
i=1

(HRsim(i)−HR(i))2.

Fig. 4 Target work rate profile for system identification
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that affected patients’ performance. The 20-min active 
phase of exercise was preceded and followed by 3-min 
passive phases (Fig. 5).

Automatic control of heart rate was implemented 
using a classical feedback control structure (Fig. 6; [14]). 
Measured heart rate HR (generic variable y) is fed back 
and compared to the target value HR∗ (generically, r) to 
obtain the tracking error e. The error is processed by the 
dynamic compensator [transfer function C(s)] that con-
tinuously adjusts the manipulated variable, also known as 
the control signal, that is to say the target work rate WR∗ 
(u) displayed to the patient, to minimise the error term. 
Variations in WR∗ then result in a measured HR that 
depends on the dynamic plant transfer function Po(s) , 
Eq.  (1). The term d represents the lumped effect of dis-
turbances that influence the heart rate, which principally 
comprises heart rate variability (HRV), [15].

The feedback compensator C(s) was designed with the 
aim of making the manipulated variable (target heart 
rate WR∗ , generic signal u) relatively insensitive to the 
HRV disturbance term d. To this end, we employed an 
input-sensitivity loop-shaping approach that is described 
in detail elsewhere, [15], and summarised here. For the 
generic feedback loop, Fig. 6, the transfer function link-
ing the input signals r and d to the manipulated variable 

u is known as the input sensitivity function, and it is 
given by (see ref. [14])

To make the magnitude of this function well behaved, 
that is to say, to make it free of peaking and to roll off 
at high frequency, it is constrained to take the form of a 
first-order transfer function with a specified bandwidth 
p, viz.

The factor 1/k, i.e. the inverse of the plant steady-state 
gain, appears by virtue of the compensator being con-
strained to have integral action (factor 1/s in C(s); see 
Eq.  (6), below) and therefore infinite steady-state gain; 
under this condition, Uo(0) in Eq.  (4) is seen to equal 
1/P(0) which, from Eq. (1), is equal to 1/k.

The feedback compensator C(s) that meets the above 
design goal can be derived in the following steps (this 
is a summary of the full derivation that can be found in 
[15]). In their generic rational forms, the plant and com-
pensator transfer functions are denoted as Po = B/A 
and C = G/H  where A, B, G and H are polynomials in 

(4)Uo(s) =
C(s)

1+ C(s)Po(s)
: r, d �→ u.

(5)Uo(s) =
p/k

s + p
: r, d �→ u.

Fig. 5 Target heart rate profile for feedback control

C(s) Po(s)
u (WR*) +

d
+r (HR*) e + y (HR)

−

Fig. 6 Structure of feedback control loop. The generic variables r, y and u represent, respectively, target heart rate HR∗ , measured heart rate HR, 
and target work rate WR

∗ , as indicated
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s. From Eq. (1), A = s + 1/τ and B = k/τ ; it remains to 
determine G and H.

The classical closed-loop characteristic equation, 
[14], is � = AH + BG . To achieve the design goals, the 
compensator is constrained to cancel plant poles and to 
include integral action by setting G = g0A and H = sH ′ , 
with g0 a constant. The characteristic equation is then 
� = AsH ′ + Bg0A which implies that A must be a fac-
tor of � , viz. � = A�′ , giving �′ = sH ′ + Bg0 . Substi-
tuting in the generic expression for Uo , Eq.  (4), gives 
Uo = g0A/�

′ . To further simplify Uo down to a first-
order transfer function as desired, we set �′ = A(s + p) 
to get Uo = g0/(s + p) which is exactly the form we set 
out to achieve: cf. Eq. (5).

Regarding stability, we note that the closed-
loop characteristic polynomial � has the form 
� = A�′ = A2(s + p) . Nominal closed-loop stability is 
thus guaranteed by virtue of stable A (the open-loop 
plant is stable) and choice of the design parameter p as 
a positive number.

Finally, the controller parameters are obtained by 
explicit solution of the reduced characteristic equa-
tion sH ′ + g0k/τ = A(s + p) = (s + 1/τ)(s + p) , giving 
g0 = p/k and H ′ = s + p+ 1/τ.

For the nominal plant Eq.  (1), the compensator that 
results in the desired form for the input sensitivity 
function, viz. Eq. (5), is thus given by

This expression is seen to have a very simple form: its 
parameters depend only upon the empirically-deter-
mined plant gain k and time constant τ obtained from 
system identification, and on the desired closed-loop 
bandwidth p which can be freely chosen to adjust the 
control performance. For all of the feedback control 
tests performed in this study, the bandwidth was set to 
f = 0.01 Hz, or p = 2π f = 0.0628 rad/s.

In summary, model parameters k and τ were esti-
mated individually for each patient using data from the 
system identification tests, and feedback compensators 
were calculated individually for each patient using the 
expression Eq. (6) with bandwidth p = 0.0628 rad/s.

In the feedback control tests, the accuracy of heart 
rate control was quantified using the difference 
between the actual HR response and the nominal HR 
as the root-mean-square tracking error ( RMSEC , where 
“C” denotes Control)

(6)C(s) =
g0A

sH ′
=

p
k

(
s + 1

τ

)

s
(
s + p+ 1

τ

) : e �→ u.

where HRsim is the nominal closed-loop heart rate 
response obtained by simulating the feedback loop 
(Fig.  6) with individual compensator and plant param-
eters, and with d = 0.

To obtain a measure of the intensity of changes in the 
manipulated variable u (i.e. target work rate WR∗ ), we 
used the average power of changes in the control signal, 
viz.

This outcome is important because it quantifies how 
dynamic the control signal is. Since the control signal in 
this application is the target work rate WR∗ that is pre-
sented to the patient, it is important that control signal 
power is low in a relative sense so that the patient can fol-
low this target as accurately as possible.

In a similar vein to evaluation of HR tracking accuracy, 
the accuracy of patients’ volitional work rate control was 
quantified using an RMS error, RMSEWR , defined as

The summations in Eqs.  (7), (8) and (9) range over 
the evaluation period up to the number of data points 
included, N.

Results
All 12 patients completed the two test sessions: there 
were no dropouts.

Study cohort
The study population of 12 patients had ages from 32 
years to 77 years, NIHSS scores ranging from 1 to 11, and 
FAC scores from 1 to 5 (Table  1). Seven patients were 
inpatients, three were from the daycare centre, and two 
were outpatients (summary, along with additional rel-
evant parameters, in Table 2).

System identification
The estimated steady-state gains and time constants 
varied quite widely: k was on the range 0.55  bpm/W to 
3.00 bpm/W and τ ranged from 24.5 s to 79.0 s (Table 3); 
mean RMS model error RMSEI was 2.16 bpm and mean 
fit was 44.7  %. Despite the wide dispersion of k and τ , 
the average of all 12 models had quite narrow bounds 
[95 % confidence intervals (CIs)] for the mean values of 

(7)RMSEC [bpm] =

√√√√ 1

N

N∑
i=1

(HRsim(i)−HR(i))2,

(8)P∇u [W2
] =

1

N − 1

N∑
i=2

(u(i)− u(i − 1))2.

(9)RMSEWR [W] =

√√√√ 1

N

N∑
i=1

(WR∗(i)−WR(i))2.
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k = 1.44 bpm/W, 95 % CI 0.94 bpm/W to 1.93 bpm/W, 
and τ = 45.3 s, 95 % CI 34.5 s to 56.1 s (Fig. 7). Further-
more, using a Kolmogorov-Smirnov test with Lilliefors 
correction, the sample distributions of k and τ were found 
to be not significantly different from normality ( p = 0.37 
for k, p = 0.12 for τ).

For patients 7 and 10, the optimisation algorithm failed 
to compute realistic model parameters, likely due to 
poor data quality from the corresponding identification 
experiments. Patient 7 had difficulty maintaining the tar-
get work rate during the identification test. This resulted 
in variations in heart rate that were not attributable to 
the square-wave work rate target alone. Patient 10 did 
manage to accurately follow the target work rate dur-
ing the identification test but, for reasons unknown, the 
heart rate displayed substantial and apparently random 
fluctuations.

Consequently, the parameters for patient 7 were set to 
the average values of the previous models (ID 1–6). For 

Table 1 Individual patient data, n = 12

ID: patient identification number; BMI: Body mass index; NIHSS: National Institutes of Health Stroke Scale; MRS; Modified Rankin Scale; FAC: Functional Ambulation 
Category; f: female; m: male; SD: standard deviation 

ID Sex Age [years] Height [cm] Mass [kg] BMI [ kg/m2] NIHSS MRS FAC

1 f 72 1.68 68.0 24.1 6 3 3

2 m 62 1.87 103.0 29.5 2 1 5

3 f 41 1.63 60.0 22.6 8 4 2

4 f 75 1.51 92.0 40.3 2 1 5

5 f 77 1.55 67.0 27.9 2 1 5

6 m 41 1.75 66.7 21.8 1 1 5

7 m 56 1.74 95.0 31.4 5 4 1

8 f 33 1.65 58.0 21.3 2 1 5

9 m 32 1.83 79.0 23.6 3 2 5

10 f 57 1.68 68.0 24.1 2 1 5

11 f 60 1.68 63.0 22.3 11 3 2

12 m 57 1.76 118.0 38.1 1 1 5

Mean (SD) 55.2 (15.6) 169.4 (10.5) 78.1 (19.3) 27.2 (6.4) 3.8 (3.1) 1.9 (1.2) 4.0 (1.5)

Table 2 Summary patient data, n = 12

NDC: Neurological Daycare Centre; NIHSS: National Institutes of Health Stroke Scale; MRS: Modified Rankin Scale; FAC: Functional Ambulation Category

Clinical data

Days since stroke Inpatients: 50 days (mean, n = 7)
NDC patients: 391 days (mean, n = 3)
Outpatients: 1425 days (mean, n = 2)

Type of stroke Ischaemic (10/12), Haemorrhagic (2/12)

Hemiparetic side Left (7/12), Right (4/12), n/a (1/12).

NIHSS 0 (0/12), 1 (2/12), 2 (5/12), 3 (1/12), 4 (0/12), 5 (1/12), 6 (1/12),
7 (0/12), 8 (1/12), 9 (0/12), 10 (0/12), 11 (1/12), 12−42 (0/12)

MRS 0 (0/12), 1 (7/12), 2 (1/12), 3 (2/12), 4 (2/12), 5 (0/12), 6 (n/a)

FAC 0(0/12), 1 (1/12), 2 (2/12), 3 (1/12), 4 (0/12), 5 (8/12)

Table 3 Estimated model parameters and goodness-of-fit

ID: patient identification number; SD: standard deviation
a Model parameters set to average of ID 1–6
b Gain manually set to empirical estimate

ID k [bpm/W] τ [s] RMSEI [bpm] fit [%]

1 2.32 51.6 1.94 57.6

2 0.62 25.7 1.70 49.4

3 1.42 62.8 1.49 47.4

4 2.14 42.0 1.54 63.4

5 0.91 43.1 1.13 43.3

6 0.81 26.4 2.49 44.0

7a 1.40 42.0 3.87 16.9

8 1.98 24.5 2.88 45.0

9 0.74 39.9 1.73 36.4

10b 3.00 79.0 4.59 45.0

11 1.35 40.2 1.36 44.2

12 0.55 66.4 1.14 43.5

Mean ± SD 1.44 ± 0.78 45.3 ± 17.0 2.16 ± 1.11 44.7 ± 11.2
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Fig. 7 Dispersion of individually-estimated model parameters. The star denotes the average of all models and the dashed box bounds the 95 % 
confidence intervals for the mean k = 1.44 bpm/W (95 % CI 0.94 bpm/W to 1.93 bpm/W) and τ = 45.3 s (95 % CI 34.5 s to 56.1 s). The legend 
on the right-hand side indicates individual patient identification numbers

Session 1 - Identification
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patient 10, k was manually constrained by visual inspec-
tion of this patient’s step responses to the value 3 bpm/W, 
and τ was then estimated by the optimisation algorithm.

For illustration, an exemplary data set from the system 
identification tests is provided: this shows the raw data 
(Fig.  8) and validation of the estimated model by quan-
titative comparison of measured and simulated outputs 
(Fig.  9). These data are from patient  8, chosen because 
the fit of 45.0 % is closest to the mean fit for all patients 
(Table 3). It is evident from the lower plot in Fig. 8 that 
this patient was able to follow the target work rate very 
precisely by continuous modification of their volitional 
effort.

Feedback control
Feedback control tests were successfully conducted in 
all 12 patients, albeit the test with patient 7 was termi-
nated quite early (after approximately 5 min) due to their 
inability to produce and sustain the target work rate. 
On average, the target heart rate was set to 94 bpm; this 
corresponds to 57 % of the average age-predicted maxi-
mal heart rate of 220 - age, which in turn lies within the 
“light” exercise intensity range as defined by the Ameri-
can College of Sports Medicine [10].

Overall, HR tracking accuracy was very good, with 
a mean root-mean-square tracking error RMSEC of 
2.00 bpm (Table  4). The range of RMSEC was 0.97  bpm 
to 4.43 bpm, whereby 9 of the 12 tests had an RMSEC of 
less than 2 bpm. The mean value of average control signal 
power P∇u was 0.170W2 (Table 4).

Patients were generally able to adjust their volitional leg 
effort to keep the measured work rate close to the target: 
the mean value of root-mean-square tracking error for 
work rate, RMSEWR , was 0.53 W (Table 4).

Two exemplary data sets from the feedback control 
tests, from patients 8 and 10, are provided for illustration 
(Fig. 10). The test for patient 10 was chosen because the 
RMS tracking error of 1.89  bpm is closest to the mean 
RMSEC for all patients who had P∇u less than the mean 
value of this outcome variable (Table  4). The test for 
patient 8 was chosen because, firstly, this patient’s system 
identification test was used for illustration above (Figs. 8 
and 9) and, secondly, because this control test has one of 
the highest RMS tracking errors, i.e. 4.16 bpm. Inclusion 
of this test thus provides a degree of empirical evidence 
of control system robustness.

For patient 10 (Fig. 10a), after the initial transient phase 
in the first five minutes, HR remained close to the tar-
get (upper plot). The control signal, i.e. the target work 
rate WR∗ , is seen to be very smooth (lower plot): in fact, 
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Fig. 9 Validation of estimated model for patient 8. The measured HR data are plotted alongside the model-simulated HR

Table 4 Outcome measures for feedback control tests

ID: patient identification number; SD: standard deviation

ID RMSEC [bpm] P∇u [ W2] RMSEWR [W]

1 1.33 0.016 0.16

2 1.44 0.183 0.35

3 1.36 0.027 0.46

4 1.16 0.013 0.31

5 0.97 0.040 0.44

6 2.90 0.697 0.58

7 4.43 0.234 1.25

8 4.16 0.228 0.43

9 1.97 0.354 0.67

10 1.89 0.011 0.22

11 1.22 0.046 0.71

12 1.17 0.193 0.77

Mean ± SD 2.00 ± 1.19 0.170 ± 0.201 0.53 ± 0.30
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Fig. 10 Feedback control tests for patients 10 and 8. The upper plots show the measured HR (blue), the simulated HR (black, continuous) 
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this patient had the lowest average control signal power 
of all tests ( P∇u = 0.011W2 , Table 4). There is some evi-
dence from about time t = 600  s onwards of a gradual 
reduction in work rate, presumably due to the feedback 
automatically compensating for the cardiovascular drift 
resulting from fatigue and other factors that is typically 
seen during prolonged exercise [16]. It is evident from 
the lower plot in Fig.  10a that this patient was able to 
follow the target work rate very precisely by continuous 
modification of their volitional effort: root-mean-square 
tracking error for work rate, RMSEWR , was 0.22 W, which 
was the second-lowest value across all patients (Table 4).

For patient 8 (Fig.  10b), HR varies quite widely, but 
remains on average at the correct target level. There is 
clear evidence in this test of fatigue onset: target work 
rate reduces substantially over the course of the test.

Discussion
The aim of this study was to investigate the feasibility of 
heart rate control during robotics-assisted tilt table exer-
cise in a case series of patients after a stroke.

Feedback control tests were successfully conducted in 
all 12 patients. Control accuracy was generally very high 
with a very low mean RMS tracking error, RMSEC , of 
just 2.00 bpm, which in relative terms is an error of 2.1 % 
since the mean heart rate was 94 bpm.

Three patients (6, 7 and 8) had RMSEC values greater 
than 2  bpm (Table  4), likely due to their relatively high 
magnitude of heart rate variability (see ref. [17] for a sep-
arate analysis of HRV in this study cohort, where HRV 
magnitude was measured in exercise and resting condi-
tions). Correspondingly, average control signal power 

P∇u for these patients was also relatively high (Table 4). 
High RMSEC and P∇u values are a consequence of HRV 
acting as the principal disturbance entering the feedback 
control loop (Fig. 6). As discussed in the Results, patient 
7 also had difficulty generating enough power to follow 
the target work rate, thus contributing further to the high 
RMSEC and P∇u outcomes in this case (Table 4).

Insight into the dependence of the primary outcomes 
RMSEC and P∇u on the magnitude of HRV can be 
gleaned by formal analysis of the correlations between 
these variables. It was found that there was a strong posi-
tive correlation between the total power (TP) frequency 
domain HRV metric (denoted HRV-TP) and RMSEC , 
when considering both exercise TP [correlation coef-
ficient r = 0.84 ( p = 0.0011 ), Fig.  11a] and resting TP 
[ r = 0.89 ( p = 0.00026 ), Fig.  11b]. On the other hand, 
there was only moderate correlation between exercise TP 
and P∇u [ r = 0.54 ( p = 0.083 ), Fig. 12a] and weak corre-
lation between resting TP and P∇u ( r = 0.33 [ p = 0.33 ], 
Fig. 12b). This relatively low dependence of average con-
trol signal power P∇u on HRV magnitude is likely a con-
sequence of the feedback design strategy that purposely 
specified a low-pass input-sensitivity function [Eq.  (5), 
Sect. "Feedback control"], thus making the control signal 
u insensitive to HRV at frequencies above the selected 
bandwidth p.

Note that patients 6 and 8, i.e. those with relatively high 
RMSEC values, are highlighted in Figs. 11 and 12. Patient 
7 was excluded from the correlation analysis because 
their HRV magnitudes rendered them an outlier: their 
TP values were 3030ms2 and 11 864ms2 in the exercise 
and resting conditions, respectively [17] (cf. values for 
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Fig. 11 Correlations between HRV total power magnitude HRV-TP and RMS tracking error RMSEC
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other patients in Figs. 11 and 12). These extreme TP val-
ues are approximately 3 standard deviations away from 
their respective means (for exercise TP, the factor was 
3.0; for resting TP, the factor was 2.8).

Feedback controllers were calculated individually for 
each patient based on the system identification tests 
that provided estimates of dynamic models of heart rate 
response to changes in exercise work rate. Model param-
eters were successfully estimated in 11 of 12 patients with 
a mean RMS model error of 2.00 bpm and fit of 47.2 % 
for these 11 (excluding RMS error and fit for patient 
7 in Table  3). Although patient 7 completed the system 
identification test, the estimation algorithm failed to 
deliver plausible values for k and τ , again likely due to this 
patient’s difficulty in maintaining the target work rate and 
their high level of HRV, leading to low quality input–out-
put data.

From a clinical deployment perspective, it would be 
desirable not to have to perform individual system identi-
fication tests for every patient and to then calculate indi-
vidual feedback controller parameters. The question thus 
arises as to whether a single nominal model, taken as an 
average over multiple patients, could be used to generate 
a single feedback controller that would provide accurate 
and robust performance for further patients who did not 
take part in system identification tests. The quite narrow 
bounds (95 % CIs) obtained for the mean k and τ param-
eters, Fig. 7, suggest that such an approach may be feasi-
ble. Furthermore, there have been multiple studies using 
treadmill and cycle ergometer exercise with able-bodied 
participants. These have demonstrated that a single feed-
back controller for heart rate, computed from an average 

linear time-invariant nominal model of the form Eq. (1), 
can provide highly accurate and robust performance 
when applied to participants whose individual dynamic 
model parameters are not known. This is despite the 
fact that considerable variation was present in the indi-
vidual parameters used to compute the nominal model 
[13]. Further investigation is required to test controller 
robustness in the context of robotics-assisted exercise in 
patients with neurological deficits.

A prerequisite for identification and control tests is 
the ability of the patient to perform volitional control of 
work rate by focusing on the target and actual values on 
the biofeedback screen. All patients rapidly understood 
this cognitive task and, in the feedback control tests, they 
were able to accurately follow the target work rate with 
an RMS tracking error of 0.53 W on average. The incor-
poration of visual feedback within the heart rate control 
setup, which is a challenging and stimulating cognitive 
task for the active processing networks of the central 
nervous system, may bring side benefits: studies that used 
visual feedback during treadmill-based gait rehabilitation 
showed positive effects on training outcomes in different 
cohorts, e.g. cerebral palsy, stroke or Parkinson’s disease, 
i.e. reduction in gait asymmetry, increased mobility [18] 
and improved balance [19, 20].

An important element of the study design was our 
choice of a commercially available, medically certified 
rehabilitation platform that is already widely deployed 
in clinical settings, namely the Erigo robotics-assisted 
tilt table. Our approach was to extend the functional-
ity of an established system by the addition of visual 
work rate feedback, supported by the integration of 
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leg-force sensors, to facilitate the implementation of 
physiological training and testing programmes, [5–7], 
and, in the present study, feedback control of heart 
rate. We have taken a similar approach in the context 
of robotics-assisted gait rehabilitation, e.g. using both 
exoskeleton [21, 22] and end-effector [23, 24] based 
systems. This approach underscores the importance 
of integrating cognitive biofeedback and promoting 
active patient participation in robotics-assisted reha-
bilitation therapies.

Other investigators have also investigated heart rate 
control using exoskeleton-type gait robots [25]. In 
that work, however, only treadmill speed, guidance 
force, and body weight support level were employed 
to influence HR. Since the three healthy participants 
remained passive, only a very limited HR response of 
80 bpm ± 10 bpm was demonstrated.

A limitation of the robotics-assisted tilt table as an 
exercise modality is that relatively low power can be 
generated by the legs alone, with a correspondingly 
low magnitude of heart rate response. This is due in 
part to the Erigo’s maximal cadence of 80  steps/min 
which is perceived to be slow, and which means that 
the force needed for a given work rate is relatively 
high; conversely, a lower force would be required if the 
cadence could be increased beyond this limit. In terms 
of magnitude of cardiopulmonary response, it would 
also be desirable to increase total work rate by the 
integration of the arms in the exercise.

The parameters of the patient-specific dynamic HR 
models were obtained at one specific tilt angle and 
stepping cadence, but the model parameters would 
be expected to change when different device settings 
are used. The extent to which this is so, and the con-
sequent effect on HR control performance, should be 
investigated in future work. Furthermore, it is impor-
tant in future work to develop guidelines that could 
be used to specify target HR tracking accuracy from a 
physiological perspective so that patient-independent 
controller performance can be assessed.

This study included a diverse cohort of patients with 
stroke spanning a wide age range and exhibiting vary-
ing levels of stroke-related gait impairments, but a 
limitation of our research pertains to the potential bias 
introduced by the exclusion criteria. Specifically, we 
excluded patients with severe cognitive impairment, 
atrial fibrillation, myocardial infarction, and those 
who were concurrently prescribed medications known 
to modulate heart rate response to exercise, such as 
beta-blockers: this may have resulted in the inclusion 
of generally healthier patients, potentially limiting the 
generalisability of the results.

Conclusions
Feedback control of heart rate during robotics-assisted 
tilt table exercise was found to be feasible in patients with 
neurological impairments following stroke. Future work 
should investigate robustness aspects of the feedback 
control system. Modifications to the exercise modality, 
or alternative modalities, should be explored that allow 
higher levels of work rate and heart rate intensity to be 
achieved.
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