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Abstract 

Background  The acute levodopa challenge test (ALCT) is a universal method for evaluating levodopa response (LR). 
Assessment of Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) is a key 
step in ALCT, which is some extent subjective and inconvenience.

Methods  This study developed a machine learning method based on instrumented Timed Up and Go (iTUG) test 
to evaluate the patients’ response to levodopa and compared it with classic ALCT. Forty-two patients with parkinson-
ism were recruited and administered with levodopa. MDS-UPDRS III and the iTUG were conducted in both OFF-and 
ON-medication state. Kinematic parameters, signal time and frequency domain features were extracted from sensor 
data. Two XGBoost models, levodopa response regression (LRR) model and motor symptom evaluation (MSE) model, 
were trained to predict the levodopa response (LR) of the patients using leave-one-subject-out cross-validation.

Results  The LR predicted by the LRR model agreed with that calculated by the classic ALCT (ICC = 0.95). When 
the LRR model was used to detect patients with a positive LR, the positive predictive value was 0.94.

Conclusions  Machine learning based on wearable sensor data and the iTUG test may be effective and comprehen-
sive for evaluating LR and predicting the benefit of dopaminergic therapy.
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Background
Levodopa response (LR) refers to patients’ reaction to 
levodopa or a dopamine receptor agonist [1, 2]. Patients 
with Parkinson’s disease (PD) exhibit clear and dramatic 
beneficial from dopaminergic therapy [3] due to the defi-
ciency of dopamine transmitters in the substantia nigra 
striatum pathway [4]. LR is a crucial factor in establish-
ing the clinical diagnosis of PD [5, 6], as well as in dis-
tinguishing PD from other forms of parkinsonism and 
customizing treatment [1, 3, 7, 8].

The acute levodopa challenge test (ALCT) is widely 
utilized to assess LR in clinical practice [2, 7]. During 
a classic ALCT, patient receive a load dose of levodopa 
and undergo evaluation of motor function using the 
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Movement Disorder Society’s Unified Parkinson’s Disease 
Rating Scale part III (MDS-UPDRS III) before and after 
medication administration. Despite its common use, the 
ALCT has several drawbacks. These include significant 
time consumption, dependency on specific investigators 
and locations, subjectivity in scale evaluation, and a lack 
of quantitative outcomes [9]. These limitations under-
score the need for additional, complementary quantita-
tive assessment strategies to effectively manage PD.

The development of microelectronics technology has 
enabled wearable devices to accurately collect spati-
otemporal motion parameters and assess human body 
movement [10–16]. These devices have been increas-
ingly adopted in the management of Parkinson’s disease 
[17–22], thanks to their high objectivity, precision, and 
reproducibility. Wearable sensors have been utilized in 
previous studies to evaluate the impact of levodopa on 
certain motor symptoms. One such system is the Parkin-
son’s Kinetigraph (PKG), a wearable device that records 
continuous real-time accelerometry data. It is the first 
device approved by Food and Drug Administration 
(FDA) for monitoring motor symptoms. The PKG sys-
tem comprises a watch worn on the more affected arm, 
which records data for 6–10 days before uploading it to 
a cloud server for motion analysis [23]. Previous research 
has employed the PKG to capture motion changes before 
and after levodopa administration [24] and to assess the 
daily effects of levodopa through sensor data [22]. How-
ever, there were limitations to using the standard PKG for 
assessing the levodopa responsiveness. The initial dose of 
levodopa in a standard 6-day PKG protocol is often not at 
its maximum therapeutic level, and D2 agonists may also 
be administered. Additionally, some patients may choose 
to rest after their first dose to allow the medication to 
take effect, which could mask the presence of bradykin-
esia. Consequently, PKG is more suitable for monitoring 
motor symptoms in home setting rather than observing a 
patient’s response to a single dose levodopa [25, 26].

Other popular approaches to objective assessments of 
PD symptoms include single or multiple wearable iner-
tial measurement units [19, 20, 27–30]. For instance, the 
APDM Mobility Lab system uses one to six synchro-
nized, wearable inertial sensors. This system is designed 
to monitor gait and balance quality through a wide range 
of measures derived from the upper and lower body [27]. 
JiBuEn gait analysis system [31] incorporates modules 
with inertial microelectromechanical system sensors 
embedded in smart shoes. These sensors collect motion 
signals and transmit them to the server, combined with 
four external sensor modules attached to the patient’s 
calf and thigh, was used to measure spatiotemporal 
gait parameters, ankle and knee joint kinematic param-
eters before and after levodopa [19]. Wearable sensors 

attached to patients’ ankles to detect and quantify PD 
motor states of levodopa challenge, when patients were 
performing the leg agility test [20]. However, existing 
motion monitoring studies during the ALCT have pre-
dominantly focused on the lower body or specific body 
parts. Consequently, the comprehensive assessment of 
motor symptoms by these methods may be constrained. 
To address this, the Timed Up and Go (TUG) test, a 
widely recognized tool for gait evaluation, has been 
adapted. The TUG test has been widely used as an assess-
ment tool for gait evaluation and it is a simple move-
ment paradigm composed of four movements, standing 
up, walking, turning around, and sitting down, which 
requires the participation of the whole body [10, 32, 33]. 
We hypothesize that TUG can provide a comprehensive 
reflection of the motor function of PD patients. In our 
study, patients were instructed to perform instrumented 
Timed Up and Go test (iTUG) while wearing sensors, 
both before and after receiving a load dose of levodopa.

In our study, an ambulatory measuring system com-
prising 10 inertial sensors was utilized to collect spati-
otemporal motion parameters during iTUG tests. This 
system was selected to evaluate motor symptoms and the 
responsiveness to levodopa in ALCT, with data collected 
before and after levodopa administration. Then we estab-
lished levodopa response regression models (LRR mod-
els), and tested the consistency between the LRR models 
and the results of classic ALCT. This study is the first 
study to utilize wearable device to evaluate the effects of 
levodopa by iTUG of participants before and after levo-
dopa. The well-established models are designed to reduce 
time expenditure, enhance the objectivity and compre-
hensiveness of clinical motor assessments during ALCT.

Methods
Subjects
Patients with Parkinsonism who were hospitalized in the 
Department of Neurology of Beijing Hospital from April 
2022 to March 2023 were screened consecutively. They 
were admitted for the purpose of establishing diagnoses 
or adjusting treatments. The inclusion criteria were as 
follows: (1) Diagnosis of Parkinsonism according to the 
2015 MDS Clinical Diagnostic Criteria for Parkinson’s 
Disease [3]; (2) Signed informed consent.

The exclusion criteria were as follows: (1) Unable to 
walk independently or complete the evaluation with the 
wearable device (Hoehn-Yahr stage of 4 or 5); (2) Hav-
ing history of ischemic or hemorrhagic stroke, head 
trauma or other focused brain injuries; (3) Neuroimag-
ing indicate the existence of diseases that may impact 
gait, such as intracranial space-occupying lesions, hydro-
cephalus or severe white matter lesions ( severe white 
matter lesions was defined as either confluent white 
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matter hyperintensities (Fazekas score 2 or 3) or irregu-
lar periventricular white matter hyperintensities extend-
ing into the deep white matter (Fazekas score 3) [34]; (4) 
Medical history indicates having musculoskeletal disease 
or other neurological diseases that may affect gait and 
balance; (5) Having severe cognitive dysfunction with a 
score of Mini-Mental State Examination (MMSE) ≤ 17 
[35]; (6) Medical history indicates contraindications to 
the use of levodopa-benzyl serine.

Instrumented TUG test
TUG test included sequentially standing up from a spe-
cific chair, walking five meters straight, turning 180 
degrees around, walking back in a straight line to the 
chair, turning around another 180 degrees, and sitting 
down on the chair. The iTUG was carried out with wear-
able inertial sensors. The GYENNO MATRIX (GYENNO 
SCIENCE CO., LTD., Shenzhen, China) was utilized 
to detect changes in both speed and direction during 
motion. The MATRIX consists of 10 inertial sensors (i.e., 
10 data recording channels) sampling at 100  Hz. Each 
inertial sensor consists of a (1) tri-axial accelerometer 
with range =  ± 16 g and sensitivity = 16,384 LSB/g, and a 
(2) tri-axial gyroscope with range =  ± 2000 dps and sen-
sitivity = 131 LSB/dps. Two wrist sensors were bilaterally 
placed on the dorsal side of the wrist. The chest sensor 
was placed on the sternum of the chest, and the lumbar 
sensor was attached to the fifth lumbar vertebra. Two 
thigh sensors were bilaterally placed 7 cm above the knee, 
while two shank sensors were bilaterally placed 7  cm 
below the knee. Two-foot sensors were bilaterally placed 
at the instep (dorsal side of the metatarsus) of each foot. 
All sensors were tightened to designated locations by 
straps. Please refer to previous research literature for 
specific attached position [36]. Signal data were stored in 
computers for feature extraction.

Clinical assessment
For all patients, we recorded the following data: age, gen-
der, disease duration, height, thigh length, calf length, 
score of Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA), levodopa 
equivalent dose (LED).

The acute ALCT was performed in the morning, fol-
lowing withdrawal of dopamine receptor agonists for 
72 h, other antiparkinsonian medications for 12 h and an 
overnight fast. The state of the patients at this time was 
defined as the OFF-medication state. We then conducted 
the first MDS-UPDRS III assessment, and the first iTUG.

After the first assessment, the patients were admin-
istered with levodopa. In drug-naive patients, the rec-
ommended dose was 250  mg (levodopa/benserazide 
200/50  mg) [1]. In patients under chronic treatment, a 

levodopa dose 50% higher than the regular morning dose 
was administered to perform a suprathreshold challenge 
[1, 32].

After approximately 1  h, the patients were asked to 
describe their subjective feelings on their levodopa 
intake. When they felt the best response, it was defined 
as the ON-medication state. Then we conducted the 
second MDS-UPDRS III assessment and iTUG. Two 
MDS-UPDRS assessments for each patient with PD were 
independently assessed by two neurology specialists, 
and the final results were averaged. Both assessors pos-
sess the qualification for MDS-UPDRS III scoring, have 
similar years of experience, and we have compared the 
consistency between the scores given by the two raters 
(ICC = 0.86, P < 0.05).

The time 45  min was considered as the minimum for 
being On-state by referring to the pharmacokinetic char-
acteristics of levodopa; the peak efficacy of levodopa 
occurs at 45–90 min after ingestion [1].

Feature extraction
The GYENNO MATRIX consists of 10 inertial sensors, 
and each sensor is assembled with a 3-axis accelerometer 
and a 3-axis gyro, containing 6 separate signals corre-
sponding to the single axis of the accelerometer and gyro, 
as illustrated in Eq. 1. Therefore, Eq. 2 shows that 60 sig-
nals (10 sensors × 6 signal/sensor) were recorded for each 
participant in a single iTUG trial.

The iTUG test was divided into standing up from chair, 
straight walk, turning and sitting down on the chair. We 
used prebuilt algorithms to extract kinematic features 
for these four stages. Standing and sitting were recog-
nized using sensors of bilateral thighs and shanks. The 
change in the lubmar horizontal rotation angle identify 
the start and end moments of the two turns. During the 
straight walk section, individual gait cycles were detected 
and 156 gait parameters were analyzed across the whole 
trial. During the turning, standing up from the chair, and 
sitting stages, 12, 5 and 5 parameters were investigated, 
respectively. Additionally, two features represent the 
duration of individual iTUG tests. Thus, we synthesized 
178 kinematic parameters for each iTUG trial by gait 
event (such as toe-off, heel-strike, gait cycle) recognition, 

(1)Sj =







ax1 ay1 az1 gx1 gy1 gz1
ax2 ay2 az2 gx2 gy2 gz2
... ... ... ... ... ...

axN ayN azN gxN gyN gzN







(2)

W =

(

Sleftwrist , Srightwrist , Schest , Slumbar , Sleftshank ,

Srightshank , Sleftthigh, Srightthigh, Sleftf oot , Srightf oot
)
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illustrating iTUG trial duration, motion profiles of the 
arms, lumbar spine, trunk, feet, and shanks and repre-
senting motion asymmetry for bilateral limbs, kinematic 
variability (standard deviation of parameters), and task-
related spatial/temporal characteristics (Table S1 in sup-
plementary file). Considering the effect of the dominant 
side, parameters related to limbs were calculated as the 
mean, maximum, minimum, and absolute difference 
between the 2 sides of the body. And the detail about fea-
ture construction on these 178 kinematic parameters are 
in the feature construction section of the supplementary 
file. Thus, a total of 170 kinematic features were included 
in the final analysis after feature construction. These syn-
thesized kinematic parameters are originated from a set 
of kinematic parameters which have been disclosed in 
the supplement file of our previous work [36, 37].

In addition, we introduced signal features, including 
22 features in the time domain and 45 features in the fre-
quency domain (Table S1 in supplementary file). A one-
second (Wi = 1  s) sliding window with a 0.5-s overlap is 
selected for processing the Sj data. A 402 (67 × 6) feature 
vector was obtained for each window, and the average 
value of all the windows was calculated to represent the 
entire signal.

Thus, 4190 (67 × 6 × 10 + 170) time domain, frequency 
domain, and kinematic parameters were used to describe 
a single iTUG test (Table S1 in supplementary file).

To interpret the pattern of motion clearly, parameters 
were categorized into 8 types: amplitude, asymmetry, 
axial, pace, variability, speed, frequency domain, and 

complexity. The amplitude, asymmetry, axial, pace, vari-
ability, speed parameters have been defined in our pre-
vious study [37]. Frequency domain parameters referred 
to the characteristics extracted after converting a signal 
from the time domain to the frequency domain in sig-
nal processing. This transformation is typically achieved 
through the Fourier Transform, which reveals the com-
position of the signal at different frequencies, such as 
components and distribution of frequency, power spec-
tral density. Complexity parameters were used to meas-
ure the complexity of the signal in the time domain or 
the frequency domain. These features help to analyze the 
structure, patterns, and dynamic changes of the signal, 
including impulse factor, waveform factor, clearance fac-
tor, skewness coefficient, autocorrelation coefficient, kur-
tosis coefficient, Euclidean amplitude fusion and so forth.

Response
%�MDS−UPDRSIII is defined as the measure of LR in 
classic ALCT and calculated with Eq.  3 (Table  1). An 
improvement of more than 30% in the total score on the 
MDS-UPDRS III after oral drug administration indicates 
a good response to dopaminergic drugs [1]. Patients with 
%�MDS−UPDRSIII ≥ 30% had a clear benefit from dopa-
minergic therapy (LR +); otherwise, there was no benefit 
from dopaminergic therapy (LR−).

We developed and compared two algorithms based 
on wearable sensors: the levodopa response regression 
model (LRR model) and the utility of motor symptom 

Table 1  Comparison between the LRR model and MSE model

%�MDS - UPDRSIII is defined as the measure of LR in classic ALCT

LR levodopa response. LRR the levodopa response regression model. MSE motor symptom evaluation model

Models Explanations

LRR model
Definition of outcome fLRR(x

∗) was the algorithm trained to predict the LR in classic ALCT noting %�MDS−UPDRSIII based on features 
extracted from iTUG tests noting x∗ %�MDS−UPDRSIII was calculated as follows:

%�MDS−UPDRS =
ScoreMDS−UPDRSIII,OFF−ScoreMDS−UPDRSIII,ON

ScoreMDS−UPDRSIII,OFF
 (3)

Calculation of predicted outcome %�LRR represented the predicted LR with fLRR(x∗)

Measures of Agreement ICC(1,1), RMSE, MAE, and Rho were calculated between LR in classic ALCT and the predicted ones 
(i.e.%�MDS - UPDRSIII and %�LRR)

MSE model
Calculation of outcome fMSE(x

∗) was the algorithm trained to predict scores on MDS-UPDRS III based on features extracted from iTUG tests 
noting x∗ , and both ScoreMDS−UPDRSIII,OFF and ScoreMDS−UPDRSIII,ON were employed as outcome

Calculation of predicted outcome %�MSE represented the predicted LR calculated with fMSE(x
∗) as follows:

%�MSE = fMSE ,OFF(x∗)− fMSE ,ON(x∗)
fMSE ,OFF (x

∗) (4)

fMSE ,ON(x
∗)and fMSE ,OFF (x

∗) represented ON- and OFF-medication scores on MDS-UPDRS III predicted byfMSE(x
∗) , 

respectively

Measures of Agreement ICC(1,1), RMSE, MAE, and Rho were calculated between LR in classic ALCT and the predicted ones 
(i.e.%�MDS - UPDRSIII and %�MSE)          
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evaluation model (MSE model). For the LRR model, 
%�LRR represents the predicted LR; for the MSE 
model, subjects performed iTUG tests under both 
ON- and OFF-medication statuses, and then his or her 
motor symptom severity scores were calculated with 
the MSE model for each iTUG (Table  1). %�MSE was 
finally calculated with Eq. 4 (Table 1) to represent the 
predicted LR.

We examined agreement between %�MDS - UPDRSIII 
measured in the classic ALCT (i.e., LR in the classic ALCT) 
and LRs measured by the LRR model and MSE model. The 
intraclass correlation coefficients (ICC(1,1)s) [38], root 
mean squared error (RMSE), mean absolute error (MAE), 
and correlation coefficients (Rho) [39] were used to meas-
ure the agreement between %�MDS - UPDRSIII and %�LRR 
or %�MSE . Measures for %�LRRand %�MDS - UPDRSIII 
were calculated as follows, and measures for %�MSE and 
%�MDS - UPDRSIII were calculated with %�LRR replaced by 
%�MSE:

Recall, precision and accuracy, calculated as follows, were 
used to measure the performance of those algorithms for 
distinguishing patients who were positive or negative for 
levodopa (1 = LR + (positive for levodopa), 0 = LR− (nega-
tive for levodopa)).

True positive (TP) = the number of cases correctly classi-
fied as LR + ;

False positive (FP) = the number of cases incorrectly clas-
sified as LR + ;

True negative (TN) = the number of cases correctly clas-
sified as LR−;

False negative (FN) = number of cases incorrectly classi-
fied as LR−;

(5)MSE =
1

N

N
∑

i=1

(%�LRRi − %�MDS−UPDRSIIIi)
2

(6)RMSE =
√
MSE

(7)MAE =
1

N

N
∑

i=1

|%�LRRi − %�MDS−UPSRSIIIi|

(8)Rho =
cov(%�LRR, %�MDS−UPDRSIII )√
var(%�LRR)var(%�MDS−UPDRSIII )

(9)Recall =
TP

TP + FN

(10)Precision =
TP

TP + FP

Motor symptom evaluation model
For motor symptom evaluation models (MSE model), 
patients were evaluated under both the OFF-medication 
state and the ON-medication state. Total scores on the 
MDS-UPDRS III were the main endpoints of the MSE 
model. Extreme gradient boosting models (XGBoost) [40] 
were used to map features to the scores. The “objective” 
hyperparameter was set as “reg:squarederror”, "eta” was set 
as 0.25, “min_child_weight” was set as 5, “max_depth” was 
set as 4 while keeping other hyperparameters as default.

Feature selection was embedded in the training process. 
First, feature importance was assessed through XGBoost 
algorithm so that feature importance score of each feature 
for all the iTUG features could be obtained from a trained 
XGBoost predictive model. Second, the first 50 features 
with the largest importance score (gain) were selected for 
further analysis. Third, tenfold cross-validation as train-
ing validation and leave-one-subject-out cross-validation 
(LOOCV) as testing validation were used to evaluate the 
performance of the models by starting with the top 5 high-
est gain features and adding 5 more features at a time until 
all the 50 features were tried to be included in the predic-
tive model (5 features, 10 features, 15 features, …), yield-
ing 10 feature sets totally. For individual candidate feature 
set, we built models for 42 epochs, as 42 participants were 
included in this study. Detailly, for each epoch, one subject 
with 2 records (before and post drug) was left out as testing 
validate sample, other 41 subjects were used to developed 
XGBoost model with tenfold cross-validation evaluating 
training performance, and total scores of the left-out sub-
ject were predicted with the developed models. In order 
to eliminate collinear features, we adopt the Pearson cor-
relation coefficient as the measure of feature correlation, 
and randomly remove one of the two features if the cor-
relation coefficient is greater than or equal to 0.6. Thus, 
we constructed 42 models predicted 42 individuals, train-
ing and testing validations were performed with tenfold 
cross-validation and LOOCV, respectively. MAE, RMSE, 
and R-squared between the predicted and original MDS-
UPDRS III total scores were calculated to illustrate the per-
formance. The model structure with the highest R-squared 
value indicates the best fit to the data and selected as the 
best MSE model. During the feature and model selec-
tion section, we used constant hyperparameters aimed to 
ensure feasibility.

(11)Accuracy =
TP + TN

TP + FP + TN + FN

(12)Specificity =
TN

TN + FP
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As we mentioned in "Response" section participants’ 
symptom severity scores were calculated with the above 
selected best MSE model for each iTUG (ON, OFF). 
And %�MSE was finally calculated with Eq.  4 (Table 1) 
to represent the predicted LR. Finally, ICC, RMSE, 
MAE, and Rho were calculated between LR in classic 
ALCT,%�MDS - UPDRSIII and the predicted ones %�MSE.

Levodopa response regression model
LR ( %�MDS - UPDRSIII was calculated with Eq.  3) was 
defined as the effect on the total MDS-UPDRS III score 
induced by the classic ALCT. A total of 8380 (4190 × 2) 
motion features were used to represent movement 
changes among medication statuses, calculated with 
Eqs.   14 and 15. FeatureOFF  represents 4190 fea-
tures extracted for the off-medication iTUG test, and 
FeatureON  represents 4190 features extracted for the 
on-medication iTUG test.

XGBoost algorithm was used to map the above move-
ment change features to %�MDS - UPDRSIII . The same 
methods as the MSE model were employed in the levo-
dopa regression model (LRR model), including the fea-
ture selection procedure and validation method. Then 
ICC, RMSE, MAE, and Rho between the predicted LR, 
%�LRR and LR in classic ALCT, %�MDS - UPDRSIII were 
calculated to illustrate the performance. The model 
structure with the highest R-squared value indicates 
the best fit to the data and selected as the best in ten-
fold cross-validation. LOOCV was used as testing vali-
dation, the high performance in which was regarded as 
high generalizability.

Statistical analysis
Demographics and clinical characteristics were sum-
marized using either means and standard deviations or 
frequencies and percentages as appropriate. Statistical 
significance was achieved for results in which P < 0.05 
(2-sided). The importance of the selected features is 
measured by the correlation coefficient and the gain 
index in the XGBoost importance function. In addition, 

(13)

R− squared = 1−

n
∑

i=1

(

yorigin_i − ŷpredict_i
)2

n
∑

i=1

(

yorigin_i − 1
n

n
∑

i=1

ŷpredict_i

)2

(14)
%�Frelative = (FeatureOFF − FeatureON )/FeatureOFF

(15)%�Fabsolute = (FeatureOFF − FeatureON )

the features are classified into several categories, and 
the importance of a certain feature category is meas-
ured by the proportion of the sum of gains of features 
in the class over the sum of gains of all features. Statis-
tical analyses were conducted using R version 4.1.0 (R 
Foundation for Statistical Computing, Vienna, Austria) 
with RStudio version 1.4.1717 (RStudio, PBC., Boston, 
MA).

Results
Patient population
Forty-two patients with Parkinsonism were included. 
Twenty-six of the 42 patients (61.9%) had a response 
to levodopa with a decrease of MDS-UPDRS III score 
of more than 30% in ALCT. The demographic data of 
42 participants are listed in Table  2, while the MDS-
UPDRS III scores underlying different medication con-
ditions are illustrated in Fig. 1.

MSE model
For MSE model, among all candidate models, those 
incorporating 40 features performed best with 
R-squared achieved 0.73(± 0.05) in the tenfold cross-
validation. These models were consequently selected 
as the optimal MSE models for predicting the total 
scores of MDS-UPDRS III (Table  3). For 42 models 
featuring the 40 selected features, the performance 
metrics varied as follows: RMSE from 8.94 to 11.57, 
R-squared from 0.63 to 0.83, and MAE from 7.45 to 
9.34. In LOOCV, models with 40 features demonstrated 
robustness with MAE, RMSE, ICC, and Rho values of 
8.28, 10.47, 0.80, and 0.83, respectively. Subsequently, 
the predicted MDS-UPRS III scores in LOOCV were 
utilized to ascertain LR %�MSE using Eq.  4. The ICC 
between %�MSE and %�MDS - UPDRSIII was 0.45 (Table 4 
& Figure S1).

LRR model
Among the candidate models for the LRR, those incor-
porating 35 features demonstrated the best perfor-
mance in tenfold cross-validation with R-squared value 
achieved 0.87(± 0.04). These models were selected as 
the final LRR models for predicting %�MDS - UPDRSIII

(Table  5). For 42 models utilized 35 selected features, 
the range of performance metrics was as follows: 
RMSE from 0.06 to 0.1., R-squared from 0.75 to 0.94, 
and MAE from 0.05 to 0.08, respectively (Fig.  2). In 
LOOCV, those models yielded MAE, RMSE, ICC, and 
Rho values of 0.05, 0.06, 0.95, and 0.96, respectively 
(Table 4 and Figure S1).
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Table 2  Clinical characteristics of participants

Quantitative variables following a normal distribution were represented with Mean and Standard Deviation (mean ± SD). Non-normal quantitative and qualitative or 
ordinal variables were summarized with Median (M) and Interquartile Range (IQR) (M[Lower Quartile Part (Q1), Upper Quartile Part (Q3)]) and number of samples and 
population percentage N(%), respectively

PD Parkinson’s Disease. DLB Dementia with Lewy bodies. MSA Multiple System Atrophy. VP Vascular Parkinsonism. PDS Atypical parkinsonism including DLB, MSA, VP. 
%�MDS−UPDRSIII : is recover rate calculated with Eq.  3. Responsive to levodopa: was measured by Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale 
part III in the acute levodopa challenge test with a value Yes indicting %�MDS−UPDRSIII ≥30%. MMSE Mini-Mental State Examination Scale; MoCA Montreal Cognitive 
Assessment Scale, MDS-UPDRS III Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale part III

Variable Overall PD PDS

n 42 31 11

Diagnosis (%)

DLB 1 (2.38) 1 (9.09)

MSA 8 (19.05) 8 (72.73)

PD 31 (73.81) 31 (100.00)

VP 2 (4.76) 2 (18.18)

Age, years 66.02 ± 7.61 66.00 ± 7.45 66.09 ± 8.43

Sex = male (%) 25 (59.52) 19 (61.29) 6 (54.55)

Disease duration, years 3.50 [2.00, 6.75] 5.00 [2.50, 8.50] 3.00 [1.75, 3.00]

MMSE scores 27.00 [25.00, 29.00] 28.00 [25.00, 29.00] 26.00 [23.50, 28.00]

MoCA scores 20.00 [17.00, 24.00] 20.00 [18.00, 24.00] 19.00 [13.50, 22.50]

Duration, Post drug 36.65 [32.14, 39.48] 36.17 [31.50, 38.55] 38.11 [35.93, 51.10]

Duration, Before drug 39.22 [35.06, 49.57] 36.78 [34.80, 45.46] 47.29 [38.17, 56.43]

Effective duration, Before drug 20.30 [17.32, 31.79] 19.12 [17.08, 26.09] 27.87 [20.37, 35.71]

Effective duration, Post drug 18.47 [15.88, 22.82] 18.11 [15.68, 21.27] 23.02 [18.56, 33.08]

Hoehn-Yahr stage, Before drug 2.00 [2.00, 2.50] 2.00 [2.00, 2.50] 2.00 [2.00, 3.00]

Hoehn-Yahr stage, Post drug 2.00 [2.00, 2.00] 2.00 [2.00, 2.00] 2.00 [2.00, 2.50]

MDS-UPDRS III socres, Before drug 43.62 ± 18.84 44.35 ± 18.05 41.55 ± 21.71

MDS-UPDRS III socres, Post drug 26.67 ± 14.22 24.45 ± 13.14 32.91 ± 15.91

%�MDS−UPDRSIII 0.37 ± 0.22 0.44 ± 0.22 0.19 ± 0.12

Responsive to levodopa = Yes (%)1 26 (61.90) 23 (74.19) 3 (27.27)

Fig. 1  Distribution of MDS-UPDRS III Total Scores for PD and PDS Patients. The score distributions are presented for two patient groups: left panel 
for PD patients and right panel for PDS patients. The scores of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale, Part III 
(MDS-UPDRS III) are depicted for a cohort of 42 subjects, each represented by a horizontal line. The dot on the left side of each line indicates 
the OFF-medication score, while the dot on the right side signifies the ON-medication score on the MDS-UPDRS III scale. Subjects with purple 
dots are identified as responsive to levodopa treatment. PD Parkinson’s Disease, PDS Atypical parkinsonism including DLB, MSA, VP; MDS-UPDRS III 
Movement Disorder Society-Unified Parkinson’s Disease Rating Scale, Part III
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Distinguish patients with a positive LR
When the LRR model was used to distinguish patients 
with a positive result from those with a negative result, 
the accuracy was 0.93, and the positive predictive value 
was 0.94 (Table  6 and Figure S2). Firstly, LRR model 
utilized the motion features which could represent the 

movement changes between two different medication 
statues for each participant. Secondly, MSE model con-
tains two models while LRR model has only one, which 
may generate more bias. These reasons may make LRR 
model outperform MSE model. 

Table 3  MSE model performance in tenfold cross-validation

Bold font indicates performance of the selected final MSE model. mean ± SD Mean and Standard Deviation

RMSE root mean squared error. MAE mean absolute error

Number of features Number of models RMSE (mean ± SD) R-squared (mean ± SD) MAE (mean ± SD)

5 42 11.70 ± 0.59 0.65 ± 0.03 9.49 ± 0.52

10 42 11.19 ± 0.60 0.67 ± 0.04 9.17 ± 0.50

15 42 11.42 ± 0.67 0.65 ± 0.05 9.43 ± 0.52

20 42 10.37 ± 0.51 0.71 ± 0.04 8.48 ± 0.43

25 42 10.54 ± 0.59 0.71 ± 0.04 8.64 ± 0.50

30 42 10.59 ± 0.67 0.70 ± 0.05 8.76 ± 0.55

35 42 10.43 ± 0.50 0.72 ± 0.03 8.54 ± 0.43

40 42 10.23 ± 0.62 0.73 ± 0.05 8.34 ± 0.49
45 42 10.55 ± 0.57 0.71 ± 0.04 8.57 ± 0.48

50 42 10.42 ± 0.68 0.72 ± 0.05 8.51 ± 0.54

Table 4  Agreement between %�LRR,%�MSE and %�MDS - UPDRSIII(LOOCV)

ICC, RMSE, MAE, and Rho between LRs in classic ALCT and the predicted ones are presented here

LOOCV: leave-one-subject-out cross-validation. RMSE root mean squared error. MAE mean absolute error. ICC intraclass correlation coefficients. Rho correlation 
coefficients. %�LRR,%�MSE and %�MDS - UPDRSIII were defined in Table 1. MSE Motor symptom evaluation model. LRR Levodopa response regression model

Model MAE RMSE ICC Rho Number of Features N P of Absolute Error

MSE 0.21 0.28 0.45 0.56 40 42  < 0.05

LRR 0.05 0.06 0.95 0.96 35 42

Table 5  LRR model performance in tenfold cross-validation

Bold font indicates performance of the selected final LRR model. mean ± SD Mean and Standard Deviation

RMSE root mean squared error. MAE mean absolute error

Number of features Number of models RMSE (mean ± SD) R-squared (mean ± SD) MAE (mean ± SD)

5 42 0.13 ± 0.01 0.73 ± 0.06 0.11 ± 0.01

10 42 0.12 ± 0.01 0.76 ± 0.06 0.10 ± 0.01

15 42 0.10 ± 0.01 0.82 ± 0.05 0.08 ± 0.01

20 42 0.09 ± 0.01 0.82 ± 0.05 0.08 ± 0.01

25 42 0.08 ± 0.01 0.86 ± 0.05 0.07 ± 0.01

30 42 0.09 ± 0.01 0.86 ± 0.04 0.07 ± 0.01

35 42 0.08 ± 0.01 0.87 ± 0.04 0.07 ± 0.01
40 42 0.09 ± 0.01 0.85 ± 0.03 0.07 ± 0.01

45 42 0.09 ± 0.01 0.85 ± 0.04 0.07 ± 0.01

50 42 0.09 ± 0.01 0.85 ± 0.04 0.07 ± 0.01
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Model response on PD and PDS
The absolute errors of the model predictions for PD 
were 0.230 (± 0.190) for the MSE model and 0.050 
(± 0.046) for the LRR model. Similarly, for PDS, the abso-
lute errors were 0.155 (± 0.159) for the MSE model and 
0.050 (± 0.030) for the LRR model. Statistical analysis 
revealed that the differences in absolute errors between 
the PD and PDS datasets for both models were not sig-
nificant (MSE: P = 0.257, LRR: P = 0.638), indicating that 
the models performed comparably across both patient 
groups (Fig. 3). 

Fig. 2  Ten-fold Cross-Validation Performance Metrics for the MSE and LRR Models. This figure illustrates the performance of 42 models, each 
constructed through a leave-one-subject-out approach, across various metrics. Error bars are presented for each metric to indicate variability. 
The upper end of each dashed error bar signifies the mean performance metric plus one standard error, while the lower end indicates the mean 
minus one standard error. A–C correspond to the Motor Symptom Evaluation (MSE) model with 40 selected features. Panel A: RMSE (Root Mean 
Squared Error) for MSE, with values ranging from 8.94 to 11.57. Panel B: R-squared for MSE, with values ranging from 0.63 to 0.83, indicating 
the proportion of variance explained by the model. C MAE (Mean Absolute Error) for MSE, with values ranging from 7.45 to 9.34. D–F correspond 
to the Levodopa Response Regression (LRR) model with 35 selected features. D RMSE for LRR, with values ranging from 0.06 to 0.10. E R-squared 
for LRR, with values ranging from 0.75 to 0.94. F MAE for LRR, with values ranging from 0.05 to 0.08. RMSE Root Mean Squared Error; R-squared, 
Coefficient of Determination; MAE Mean Absolute Error, MSE Motor Symptom Evaluation model, LRR Levodopa Response Regression model

Table 6  Model Performance on Distinguish Patients with a 
Positive LR (LOOCV)

LOOCV leave-one-subject-out cross-validation. MSE Motor symptom evaluation 
model. LRR Levo-dopa response regression model

Performance MSE LRR

Accuracy 0.60 0.93

Balanced accuracy 0.64 0.93

Recall 0.46 0.92

Precision 0.80 0.96

Specificity 0.46 0.92

Positive predictive value 0.81 0.94

Negative predictive value 0.80 0.96
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Global and Local model explanation
The LRR model had 35 features, as listed in Table S2. 
As shown in SHapley Additive exPlanations (SHAP) 
summary dot plot (Fig.  4A), the contributions of the 
feature to the model were evaluated using the mean 
(|SHAP|) values and exhibited in descending order. 
One feature described the motor characteristics of the 
lumbar and contributed 41% to the LRR model. Ten 

and seven features describe the motor characteristics 
of the bilateral feet and thighs, respectively. lumbar, 
bilateral feet and thighs contributed most to the LRR 
model (85%). When classified by physical meaning, 
16 and 15 features representing characteristics of the 
frequency domain and limb symmetry were enrolled 
and contributed 66% and 23% to the LRR model, 
respectively.

Fig. 3  Comparative Analysis of LRR and MSE Model Performance on PD and PDS Data. A and C depict before-and-after comparison plots 
for the MSE and LRR models, respectively. These plots illustrate the correspondence between original (red dots connected by straight lines) 
and predicted (blue dots connected by straight lines) values for both models on PD and PDS datasets. The ideal alignment for an accurate 
model is indicated by the points lying on the same horizontal line. B and D present paired comparison plots with error bars, which quantify 
the absolute error for the MSE and LRR models when predicting PD and PDS data. The error bars represent the variability in the predictions. The 
term ’n.s.’ indicates that the absolute error between the models’ predictions for PD and PDS was not found to be statistically significant, suggesting 
comparable performance on both datasets. LR Levodopa response, PD Parkinson’s Disease, PDS Atypical parkinsonism, MSE Motor Symptom 
Evaluation model, LRR Levodopa Response Regression model
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In addition, the SHAP dependence plot depicts how 
individual feature affects the output of the prediction 
model (Fig. 4B–E). The SHAP values for specific features 
exceeding zero push a higher levodopa response. For 
example, compared with the OFF status, the 1st peak of 
dominant frequency of y-axis of angular velocity single 
of lumbar sensor decreased 0.0081 (Lumbar_gyry_1st 
PoDF_abs < −  0.0081, Fig.  4B), the maximum clearance 
factor of angular velocity single of x-axis between left and 
right thighs decreased by 7.3% (Thigh_gyrx_CF (max)_
rev < -0.073, Fig. 4C), the minimum Power of 1.0–4.0 Hz 
of angular velocity single of y-axis between left and right 
feet decreased 0.039 (Feet_gyrx_1.0–4.0  Hz Band Power 
(min)_abs < -0.039, Fig. 4D), and the minimum Power of 

5.0–5.5  Hz of acceleration signal of x-axis between left 
and right wrists (Wrist_accx_5.0–5.5  Hz Band Power 
(min)_rev < -0.987, Fig.  4E) decreased by 98.7% in the 
ON status push the decision towards a higher levodopa 
response.

Figure 5 visually displayed how individual SHAP value 
of features move the model output from our baseline 
expectation %�MDS - UPDRSIII under the background 
data distribution, to the final model prediction f(x) given 
the evidence of all the features. The value f(x) = 0.307 
was calculated as the sum of expected baseline value 
(E[f(x)] = 0.377) and contributions of all the 35 features 
included in the model (Sum of SHAP values = -0.0695), 
detailed SHAP values of features were listed in Table S3.

Fig. 4  Global model explanation by the SHAP values. A SHAP summary plot. Levodopa response increases with the SHAP value of a feature. 
A dot is made for SHAP value in the model for each single patient, so each patient has one dot on the line for each feature. The colors of the dots 
demonstrate the actual values of the features for each patient, as red means a higher feature value and yellow means a lower feature value. The 
dots are stacked vertically to show density. B–E SHAP dependence plot of top 4 important features. Each dependence plot shows how individual 
feature affects the output of the model, and each dot represents a single patient. SHAP values are represented by the y-axis, and actual values 
are represented by the x-axis. The SHAP values for specific features exceeding zero push a higher levodopa response. For example, with Lumbar_
gyry_1st PoDF_abs < -0.0081, Thigh_gyrx_CF (max)_rev < -0.073, Feet_gyrx_1.0–4.0 Hz Band Power (min)_abs < -0.039 and Wrist_accx_5.0–5.5 Hz 
Band Power (min)_rev < -0.987 push the decision towards a higher levodopa response. PoDF peak of dominant frequency, CF clearance factor, AC 
Coefficient autocorrelation coefficient, Amp amplitude, MI movement intensity, SD standard deviation, RoM range of motion, P2P peak to peak 
value. Notation on features: Features ending with “rev” and “abs” were calculated between ON and OFF medication statuses according to Eqs. 14 
and 15, respectively. Different domains separated with “_” were used to interpret the features listed: the first domain indicates body parts attached 
to sensors, the second domain indicates the signal used to calculate the specific feature, and the third domain indicates signal indices calculated 
with signal data. In addition, for sensors attached to bilateral feet, shanks, thighs, and wrists, signal indices were calculated integrating left and right 
limbs, with “min” referring to the minimum value between left and right limbs, “max” referring to the maximum value between left and right limbs, 
and “abs” referring to the absolute difference between left and right limbs. For example, to calculate Thigh_gyrx_CF (max)_rev, leftThigh_gyrx_CF 
and leftThigh_gyrx_CF were calculated with the signal data of the y-axis of the gyro sensor attached on the left and right thighs, respectively. Then, 
we calculated the maximum value of the leftThigh_gyrx_CF and leftThigh_gyrx_CF, noting the Thigh_gyrx_CF (max). Finally, the relative difference 
in the Thigh_gyrx_CF (max) was calculated between the ON and OFF medication statuses according to Eq. 5. The feature named Swing Std_abs, 
a kinematic parameter, measured the standard deviation of all the measurements of left swing through the whole test
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Discussion
In this study, we proposed an approach, wearable sen-
sors combined with instrumented TUG test—iTUG, to 
evaluate LR. We developed an XGBoost model based 
on total scores on the MDS-UPDRS III. The LRR model 
showed high agreement of the levodopa response with 
that of the MDS-UPDRS III (ICC = 0.95) and good 
discrimination of patients with a positive response 
from those with a negative response (accuracy = 0.93). 
Compared to previous studies [19–22], our proposed 
method evaluated LR based on more comprehensive 
spatiotemporal features captured by ten body parts and 

a complete set of continuous movements with multi-
ple sensors. After the feature and model selection, we 
selected models with 35 features describing informa-
tion of five body parts including lumbar, shanks, thighs, 
feet and wrists. Our method was able to predict the 
%�MDS−UPDRS  (Eq.  3) directly while other study [22] 
predicted the ON and OFF score as classification prob-
lem. Through the application of iTUG, it can solve the 
problems of multi-time point evaluation caused by 
classic ALCT that consume manpower and time, and 
enhance the objectivity and comprehensiveness of clini-
cal motor assessments.

Fig. 5  Water Fall Plot Based on SHAP Value of a Specific Patient with %�MDS - UPDRSIII = 0.267 and the Predicted LR Value %�LRR = 0.307. The 
waterfall plot visually displayed how individual SHAP value of features move the model output from our baseline expectation %�MDS - UPDRSIII 
under the background data distribution, to the final model prediction f(x) given the evidence of all the features. The x-axis represents 
the predicted value, and the y-axis represents the features and corresponding values of the specific patient. The red bars represent positive 
effects on the predicted value, while the yellow bars represent negative effects on the predicted value. The f(x) in the top right corner represents 
the predicted value %�LRR . PoDF peak of dominant frequency, CF clearance factor, AC Coefficient autocorrelation coefficient, Amp amplitude, MI 
movement intensity, SD standard deviation, RoM range of motion, P2P peak to peak value
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The lumbar, bilateral feet, thighs, wrists, and shanks 
contributed to the LRR model, and the first three 
explained 85% of the model. Aghanavesi et  al. con-
structed Treatment Response (TRS) Index from Multi-
ple Sensors (the wrists-worn and ankles-worn, TRIMS), 
found good relationships of TRIMS (Rho = 0.93, 
ICC = 0.83) and upper-limb response index (Rho = 0.89) 
with TRS, and concluded the fusion of upper- and 
lower-limbs sensor data provided accurate PD motor 
states estimation and responsive to treatment [11]. Also, 
in their leg agility tasks, the researchers calculated and 
selected spatiotemporal features from the sensor data to 
predict the motor states of the patients, and identified 
that the skewness of the magnitude of orientation of the 
ankle could serve as a predictor for clinical scale scores 
[20]. Khodakarami et  al. conducted a study that uti-
lized the PKG, a wrist-worn sensor, to measure motor 
symptom severities measured by UPDRS Part III in PD 
patients, and the area under the receiver-operator curve 
(AUC) was found to be 0.92 [22]. Samà et al. employed 
12 subjects with PD and asked them to wear a lumbar 
sensor and then perform various movement tasks, and 
found that UPDRS scores were correlated with specific 
values extracted from inertial signals with correlation 
coefficients as high as 0.91 [41], indicating a significant 
relationship between the sensor data and the clinical 
assessment scores. Further, those features seemed more 
relevant than features extracted from wrist motion 
information with a sensing units which included min-
iature gyroscopes [42]. The most contributed feature 
described the sagittal plane motor characteristics of the 
lumbar and contributed 41% to the LRR model. These 
finding underscores the potential of motion informa-
tion of lumbar, feet, and wrists detected by inertial sen-
sors can be indicative in assessing PD-related motor 
symptoms.

Compared to kinematic parameters, signal features 
(acceleration signal recorded by accelerometers: 27%, 
angular velocity signal recorded by gyroscope sen-
sors:73%) explained 98% of the model. This seems dif-
ferent to another study [11], where indicated that 
accelerometers captured more information in relation to 
TRS, but for lower limbs the majority of the selected fea-
tures were originated from gyroscope sensors.

We utilized XGBoost algorithm in our study as it has 
several aspects which outperform other models. First, 
XGBoost does not require strict statistical assumptions 
about the data distribution, it can handle complex inter-
actions between features. Second, it can perform feature 
selection automatically to some level to ignore features 
that could not provide useful information for model pre-
diction, which it is a proper method in our study as we 
have lots of features. However, in addition to XGBoost 

algorithm, other models should also be considered to 
make the research more comprehensive. As XGBoost 
has its own limitations, such as interpretability, it is less 
interpretable compared to linear regression, overfitting, 
especially when hyperparameters were not properly 
tuned.

Our proposed LRR model showed high agreement of 
the levodopa response with that of ALCT (ICC = 0.95). 
However, some limitations and feature extension 
need to be considered to make the current study bet-
ter. First, our extrapolated population was limited. The 
MDS-UPDRS III scale score was a discrete variable 
from 0 to 132 points; however, the subjects included 
in this study had relatively mild motor impairment. 
The results require extensive validation in multicenter 
confirmatory experimental studies, as only 42 people 
were included in this study. We will continue to design 
comprehensive clinical trials to verify the results. 
Second, this sensor-based assessment of our current 
study could be implemented in the typical clinical set-
tings as our assessment system GYENNO MATRIX is 
approved by the National Medical Products Adminis-
tration (NMPA), U.S. Food and Drug Administration 
(FDA), and Conformitè Europëenne Medical (CE Medi-
cal), however it may not be suitable for personal use at 
home. Third, participants had to wear 10 sensors dur-
ing the test, although we followed standard procedure 
to help participants to wear these sensors and no par-
ticipants complained about the process, sensor number 
minimization should be considered in our future study 
to enable participants to have better compliance with 
wearable sensors.

Previous studies have proposed several reliable tools, 
such as Motor Fluctuation Indices to estimate motor 
fluctuations, base-peak difference and levodopa response 
in PD [43, 44]. These algorithms demonstrate good sen-
sitivity and specificity. Our research demonstrates that 
the integration of wearable sensor-derived kinematics 
and signal features, coupled with machine learning algo-
rithms, holds significant potential for assessing the LR 
in ALCT. LR is a critical indicator that can be utilized 
to identify motor fluctuations in PD patients [43]. These 
fluctuations pose one of the most formidable challenges 
in PD management [44]. By leveraging our approach, 
which involves performing the iTUG test before and after 
levodopa administration, we can potentially automate the 
detection of motor fluctuations in PD patients.

Conclusions
We explored the feasibility of coupling machine learning 
and the kinematics and signal characteristics of wear-
able sensors from iTUG in the evaluation of levodopa 
response. We evaluated this method in 42 patients with 
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parkinsonism through ALCT at the hospital. Consist-
ency between wearable devices and clinical scales was 
established by fitting machine learning models, and rela-
tively good results were obtained (ICC higher than 90%). 
Machine learning based on wearable sensor data and 
the iTUG test may be effective and comprehensive for 
evaluating LR and predicting the benefit of dopaminergic 
therapy.
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