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Abstract 

Background Transcranial direct current stimulation (tDCS) is capable of eliciting changes in cortical neuroplasti‑
city. Increasing duration or repetition of tDCS during the after‑effects of a first stimulation has been hypothesized 
to enhance efficacy. Computational models suggest sequential stimulation patterns with changing polarities to fur‑
ther enhance effects. Lasting tDCS effects on neural plasticity are of great importance for clinical applications.

Objective The study systematically examined the influence of different tDCS paradigms on long term potentiation 
(LTP)‑like plasticity in humans, focusing on stimulation duration, repetition frequency and sequential combinations 
of changing polarities as the underlying characteristics.

Methods Amplitude changes of motor evoked potentials (MEP) were measured in response to paired associa‑
tive stimulation (PAS) 6 h after application of different tDCS protocols. In total, 36 healthy participants completed 
the study, randomised into three groups with different stimulation protocols (N = 12 each).

Results tDCS was able to display lasting modulatory effects on the inducibility of LTP‑like plasticity in the human 
motor cortex 6 h after stimulation. TDCS with the anode on primary motor cortex significantly increased MEP ampli‑
tudes following PAS induction. Further analyses highlighted single stimulation block duration to be of higher impor‑
tance than repetitive protocols for efficacy of effects.

Conclusions tDCS is capable of inducing lasting changes in the brain’s capability to interact with future stimuli. 
Especially, effects on the inducibility of LTP‑like plasticity might only be detectable with specific tests such as PAS 
and might otherwise be overlooked. Refined tDCS protocols should focus on higher current and duration of single 
stimulations instead of implementing complex repetitive schedules.
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Background
Transcranial application of weak currents to the human 
primary motor cortex (e.g. via transcranial direct cur-
rent stimulation, tDCS) has been repeatedly shown to 
be capable of eliciting intracortical excitability changes 
[1–3]. Changes in cortical excitability might lead to a 
modulation of synaptic plasticity [4, 5] including associa-
tive long-term potentiation (LTP) and long-term depres-
sion (LTD). Long-term synaptic plasticity represents the 
basic mechanism for experience-dependent modification 
of synaptic transmission and has been described in virtu-
ally every brain region across species, including humans 
[6]. While most studies on LTP/LTD are conducted in 
rodents, LTP-like plasticity in humans can be assessed 
via amplitude changes of motor evoked potentials (MEP) 
following paired associative and transcranial magnetic 
stimulation (PAS) [7]. To assess the interplay of changes 
in cortical excitability (i.e. excitation-inhibition balance) 
and associative long-term plasticity, we used tDCS para-
digms that were intended to modulate excitation and PAS 
to read-out their effect on associative LTP [8].

Changes evoked by tDCS evolve during stimulation 
but persist for prolonged timeframes after stimulation, 
depending on stimulation polarity, duration and intensity 
[1, 3, 9, 10]. So far, most studies suggested that excitabil-
ity modulations induced by tDCS do not exceed 120 min 
[2, 11]. However, several findings suggest significantly 
longer tDCS effects depending on differing stimulation 
protocols: In animal models, repetition of tDCS during 
the after-effects of a first stimulation session has been 
shown to enhance efficacy [12]. In humans, repeated 
tDCS with an interstimulus interval (ISI) of 20 min could 
elicit prolonged enhancement in motor cortex excitabil-
ity for approximately 6 h when the anode was placed on 
the primary motor cortex, whereas temporally contigu-
ous stimulation or longer intervals between stimulation 
did not induce comparable effects [13]. Some studies 
even reported polarity-specific EEG differences follow-
ing repeated tDCS with an interstimulus interval (ISI) of 
20 min to last until the next day [14].

Based on recent computational models of neural 
network dynamics and synaptic plasticity, it has been 
hypothesized that tDCS triggers neural network remod-
eling and cell assembly formation [15]. In the same 
model, repetition of tDCS during after-effects of a prior 
stimulation (sequential stimulation) as well as reversing 
stimulation polarity during the ISI (biphasic/polypha-
sic stimulation) were proposed to enhance the duration 
and strength of stimulation effects [15]. In animal mod-
els, tDCS has been shown to increase survival of synaptic 
spines and preferential formation of new spines after a 
combined peripheral stimulation and tDCS [16]. Inter-
estingly, these changes outlasted 24 h and depended on 

a secondary stimulation paradigm to fully materialize. 
While most known tDCS effects might rely on func-
tional, short-term neural plasticity and/or a change in 
excitation-inhibition balance, it remains unclear, how 
lasting structural neuroplastic changes in humans are 
best induced and detected.

This study therefore systematically examined different 
tDCS paradigms regarding their influence on inducibility 
of LTP-like plasticity in humans, focusing on repetition 
frequency and sequential combination of changing polar-
ities as potential modifying characteristics. Based on 
recent findings indicating an important functional and 
anatomical connection between parietal lobe and motor 
cortex for coordination of hand movements, we chose a 
non-typical return electrode positioning over the pari-
etal cortex [17, 18]. We hypothesized that repeated tDCS 
significantly increases inducibility of LTP-like plasticity 
when the anode was placed on the primary motor cortex 
compared to sham stimulation and that reversing polar-
ity of tDCS during the ISI of two (or more; biphasic/poly-
phasic) tDCS blocks further increases stimulation effects 
compared to an ISI without stimulation. Secondly, we 
hypothesized that increasing the number of anodal stim-
ulation blocks significantly enhances LTP-like plasticity, 
even if the added stimulation duration remains constant. 
To detect these lasting (structural) changes neural plas-
ticity we applied a paired associative stimulation para-
digm several hours later.

Methods
Study population
In total, 36 right-handed, healthy participants finished the 
study protocol (18 females, age range 21–33 years, mean 
age 24.3 ± 2.8  years). Participants were randomised into 
three groups with different stimulation protocols (12 par-
ticipants each; 6 females each; no age difference between 
groups [p = 0.136]). A narrow age range was chosen to 
reduce potential age related sources of variance. A thor-
ough screening process including a structured interview 
[19] was implemented to rule out any relevant mental 
or somatic disorder or substance use (including smok-
ing and excessive caffeine use > 300 mg/d) as well as any 
CNS-active medication. Adhering to brain stimulation 
safety recommendations, subjects with metallic implants 
or ongoing pregnancy were excluded [20]. The screening 
process was complemented by self-report questionnaires 
that ruled out subjective experience of depressive symp-
toms (Beck Depression Inventory, BDI [21], total score 
2.3 ± 2.4; no group difference [p = 0.492]) or excessive 
daytime sleepiness (Epworth Sleepiness Scale, ESS [22], 
total score 5.3 ± 3.0; no group difference [p = 0.879]).

Participants were recruited via the internet, offi-
cial press communications and advertisements of the 
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University Medical Center Freiburg, University of 
Freiburg, Germany.

Study design
All experiments were conducted at the Department of 
Psychiatry and Psychotherapy of the University Medical 
Hospital Freiburg, Germany.

Following a screening visit, all participants concluded 
three study visits with tDCS according to the respec-
tive experimental protocol, followed by motor evoked 
potentials (MEP) measurements and paired associative 
stimulation (PAS; see Fig. 1). To avoid confounding meta-
plastic effects of repeated stimulation, a minimum break 
of 7 days between each study visit was implemented.

Each of the three study visits began with tDCS accord-
ing to the scheduled protocol. Following tDCS, par-
ticipants were instructed to spend the day avoiding any 
kind of activity involving physical activation (e.g. sportive 
activities) or daytime napping and to return to the study 
center in the afternoon. According to recent studies [13], 
we expected a window of peak effect size concerning 
inducibility of LTP-like plasticity starting 6  h after the 
end of tDCS. PAS was therefore induced and measured 
accordingly. MEPs were recorded prior to and 5, 30, and 
60 min after the end of PAS in addition to prior to, and 
immediately after tDCS.

Transcranial direct current stimulation (tDCS)
tDCS was delivered by a battery-driven, micro-proces-
sor-controlled CE-certified constant current stimulator 
(neuroConn GmbH, Illmenau, Germany) comprising 
target electrodes over the right motor cortex and pari-
etal return electrodes (5 × 7  cm each, sponges soaked 
with 10 ml saline solution) to allow for efficient stimu-
lation of the motor cortex. Electrode placement for the 
target electrode was guided by using TMS to define the 
motor cortical representational field of the abductor 

pollicis brevis muscle (as proposed by Nitsche et al. [1], 
while the return electrode was placed on an atypical 
location over the parietal cortex (P3 according to the 
10–20 system), following experimental settings capable 
of inducing long lasting tDCS effects [14] in addition 
to recent findings indicating an important functional 
and anatomical connection between parietal lobe and 
motor cortex for coordination of hand movements [17, 
18]. This electrode placement differs from classical elec-
trode montages with the return electrode placed over 
the contralateral supraorbital area (e.g. [23]). For effi-
cient flow of current and activation of neural structures 
under the electrodes a minimum distance of around six 
cm between both electrodes was chosen.

A constant current of 2 mA over each electrode was 
applied using a fade-in/fade-out design [30  s each] to 
decrease skin sensations during the beginning and end 
of the stimulation [24]. A standard sham protocol with 
30  s fade-in followed by 30  s fade-out at the begin-
ning and end of each block without active stimulation 
in between was applied for a duration corresponding 
to the respective anodal stimulation setting [25]. For 
each participant, one of the following predefined orders 
of experimental protocols was chosen in a pseudor-
andomized and balanced order based on study entry 
to prevent sequential effects: 1–2–3, 3–1–2 or 2–3–1. 
Polarity setting 1 was designed to induce strong effects 
by placing the anode on the primary motor cortex; set-
ting 2 was focused on optimizing effects of tDCS with 
the cathode on the primary motor cortex; while setting 
3 represented the sham condition for each experiment 
(nomenclature according to [26]).

For experiment B and C, more than one stimulation 
block was applied (biphasic/polyphasic). To stay within 
safety recommendations and to keep the conditions as 
comparable as possible, the total stimulation duration 

Visit 1/2/3

0‘
6 hour interval

tDCS 1/2/3 PAS-TMS

MEP MEP MEP MEP

5‘ 30‘ 60‘

MEP MEP

-5‘ -5‘ 45‘40‘
(TDCS 0 ) (TDCS 1) (TPAS 0 ) (TPAS 1) (TPAS 2 ) (TPAS 3 )

Fig. 1 General schedule of one study visit. Following a screening visit, all participants concluded three study visits with tDCS according 
to the respective experimental protocol during the morning followed by a 6‑h break. Afterwards, all participants received paired associative 
stimulation (PAS) on each visit. Immediately prior to  (TDCS 0) and after tDCS  (TDCS 1) as well as prior to  (TPAS 0) and 5, 30, and 60 min after PAS  (TPAS 
1–3), motor evoked potentials (MEP) were assessed. Study visits were separated by 1 week. Three differing tDCS protocols (1/2/3) were applied 
in a balanced, pseudorandomized order, once per visit, for each experiment (A/B/C)
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was kept constant (e.g. 20 min of tDCS with the anode 
on the primary motor cortex).

Experiment A implemented one singular block of stim-
ulation for a duration of 20 min to allow for the longest 
constant stimulation time at the chosen intensity with 
regards to standard safety criteria [20]. Polarity settings 
1–3 therefore comprised 20 min of tDCS with either the 
anode (A1) or cathode (A2) on the primary motor cortex, 
or sham tDCS (A3; see Fig. 2A).

Experiment B examined the effect of two sequential 
10 min stimulation blocks with the anode on the primary 
motor cortex, with either a 20  min interstimulus inter-
val (ISI; B1) or 20 min of tDCS with reversed polarity in 
between (B2). Two respective blocks of sham stimulation 
with an ISI of 20 min served as the sham condition (B3; 
see Fig. 2B).

Experiment C further prolonged the sequential stimu-
lation pattern, with C1 including four blocks of 5  min 
of tDCS with the anode on the primary motor cortex, 
with three ten minutes ISI in between. For experimen-
tal sequence C2, two of the three ISI were replaced by 
10  min of tDCS with reversed polarity each. To adhere 
to standard safety parameters, a total stimulation time of 
40 min could not be exceeded. Therefore, only two of the 
three ten minutes ISIs were exchanged (see Fig. 2C).

Paired associative stimulation—transcranial magnetic 
stimulation (PAS)
TMS was applied by standard criteria using a figure-of-
eight coil with an outer diameter of 90 mm connected to 
a Magstim 200 stimulator (The Magstim Company, Whit-
land, UK). Optimal coil placement was defined as tan-
gentially to the skull over the right primary motor cortex 
(M1) with the handle pointing in a posterior direction, at 
a lateral angle of 45° regarding the midline. To identify 
the optimal coil position for eliciting MEPs of maximal 
amplitude of the left abductor pollicis brevis (APB) mus-
cle (‘hotspot’), the coil was moved over M1 while admin-
istering 0.25  Hz stimuli (suprathreshold intensity). The 
identified coil position was then recorded using a stere-
otaxic, optically tracked navigation system, consisting of 
a camera (Polaris Vicra P6, NDI, Waterloo, ON, Canada), 
custom-made software (Visor2, eemagine GmbH, Ber-
lin, Germany), and passive sphere markers [27], and kept 
constant throughout measurements.

Resting motor threshold (RMT) was determined 
according to standard criteria [28], with stimulation 
intensity for MEP measurements adjusted to elicit 
MEPs with peak-to-peak amplitudes of on average 600–
1400  μV (SI 1  mV). At each measuring point, twenty 
TMS pulses were administered at a frequency of 0.1 Hz 
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Fig. 2 Overview of applied tDCS protocols. A Stimulation protocols for experiment A. Participants either received 20 min. of 2 mA tDCS 
with the anode on the primary motor cortex (A1), 20 min. of 2 mA tDCS with the cathode on the primary motor cortex (A2) or sham stimulation 
(A3). B Stimulation protocols for experiment B. Participants either received two blocks of 10 min. of 2 mA tDCS with the anode on the primary motor 
cortex (interstimulus interval [ISI] of 20 min.; B1), two blocks of 10 min. of 2 mA tDCS with the anode on the primary motor cortex, with 20 min. 
of 2 mA tDCS with reversed polarity in between (B2) or sham stimulation (B3). C Stimulation protocols for experiment C. Participants either received 
four blocks of 5 min. of 2 mA tDCS with the anode on the primary motor cortex (interstimulus interval [ISI] of 10 min.; C1), four blocks of 10 min. 
of 2 mA tDCS with the anode on the primary motor cortex with two blocks of 10 min. of 2 mA tDCS with reversed polarity in between (C2), or sham 
stimulation (C3)
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and the corresponding peak-to-peak amplitudes of 
these pulses were averaged using Signal Software (CED, 
UK). For optimal MEP recordings, participants were 
instructed to relax the targeted left APB muscle dur-
ing all measurements, which was monitored visually 
via a concurrent electromyogram (EMG). MEPs were 
recorded using silver/silver chloride electrodes (AMBU, 
Ballerup, Denmark) in a belly-tendon montage. Signals 
were band-pass filtered (20–2000 Hz), amplified using an 
Ekida DC universal amplifier (EKIDA GmbH, Helmstadt, 
Germany), digitized at a 5  kHz sampling rate using a 
MICRO1401mkII data acquisition unit (CED), and stored 
on a computer for offline analysis. MEPs with preceding 
muscle activity were excluded from analysis. MEPs were 
normalized by diving each post-PAS MEP with the cor-
responding pre-PAS MEP.

The chosen PAS protocol closely follows standard pro-
cedures [7]. In summary, the protocol comprised 200 
pairs of peripheral and cortical stimuli, given at a fre-
quency of 0.25 Hz (total duration ~ 13 min). The periph-
eral pulse was delivered to the median nerve of the left 
wrist at an intensity of 300% of the sensory percep-
tual threshold by a Digitimer DS7 electrical stimulator 
(Digitimer, Welwyn Garden City, Hertfortshire, UK) as 
constant current square wave pulses with a duration of 
1000 μs.

The interstimulus interval (ISI) between the peripheral 
and cortical stimulation was set to 25  ms. Participants 
were instructed to direct their attention to the stimu-
lated hand and count rarely occurring (4 stimuli in total), 
randomly intermittent, electrical stimuli to the thumb of 
the stimulated hand (200% perceptual threshold, cathode 
proximal, constant current square wave pulses, dura-
tion 200  μs), that were administered during the ISI to 
decrease influences of differing attention levels [29–31]. 
These stimuli were administered through an additional 
electrode placed distal to the peripheral electrode on the 
thumb.

Statistical analyses
MEP mean amplitudes were considered as primary out-
come parameters. To test for MEP amplitude differences, 
repeated-measures analyses of variance (ANOVA) with 
the within-subject factors condition (tDCS protocols) 
and timepoint  (TDCS 0–1,  TPAS 0–3) were conducted for 
each experiment. Simple two-tailed t-tests were con-
ducted post-hoc to test for differences between specific 
MEPs. In addition, one sample t-test comparing the sam-
ple mean against a hypothetical mean of 1 (due to nor-
malization) were conducted (Fig. 7).

Descriptive values are given as means and stand-
ard deviations. For the estimation of effect sizes, par-
tial ETA squared values were calculated (low: < 0.06; 

medium: ≥ 0.06 and < 0.14; large: ≥ 0.14). The level of 
significance was set at p < 0.05 (two-tailed). In cases of 
violations of sphericity, the Greenhouse–Geisser adjust-
ment was applied. For subgroup analysis PAS response 
was defined as reaching a normalized (to baseline) MEP 
amplitude greater than one at  TPAS 2 in the sham condi-
tion. All analyses were conducted with the statistical soft-
ware IBM SPSS Statistics (Version 29).

Results
No short‑term and long‑term MEP amplitude differences 
after tDCS
To control for immediate and delayed excitability 
increasing effects of the different tDCS protocols, we 
compared MEP amplitudes prior to and after tDCS 
 (TDCS 0–1). MEP amplitudes did not differ in any of 
the experiments (experiment 1: timepoint: F = 0.7, 
p = 0.792,  pETA2 = 0.007; condition: F = 0.6, p = 0.576, 
 pETA2 = 0.115; interaction timepoint x condition: F = 0.6, 
p = 0.576,  pETA2 = 0.115; experiment 2: timepoint: 
F = 1.1, p = 0.308,  pETA2 = 0.094; condition: F = 0.07, 
p = 0.932,  pETA2 = 0.014; interaction timepoint  ×  con-
dition: F = 0.07, p = 0.932,  pETA2 = 0.014; experiment 
3: timepoint: F = 1.2, p = 0.306,  pETA2 = 0.095; condi-
tion: F = 1.3, p = 0.312,  pETA2 = 0.208; interaction time-
point × condition: F = 1.3, p = 0.312,  pETA2 = 0.208).

Moreover, MEP amplitudes post tDCS and pre PAS 
did not differ in any condition (experiment 1: timepoint: 
F = 1.186,  p = 0.2840; condition: F = 2.927,  p = 0.0676; 
interaction timepoint ×  condition: F = 1.238,  p = 0.3030; 
experiment 2: timepoint: F = 3.180,  p = 0.6102; con-
dition: F = 2.229,  p = 0.1236; interaction time-
point  ×  condition: F = 0.5015,  p = 0.6102; experiment 
3: timepoint: F = 0.007446,  p = 0.9318; condition: 
F = 0.09192,  p = 0.9124; interaction timepoint  ×  condi-
tion: F = 0.5729, p = 0.5694).

Induction of long‑term potentiation‑like plasticity 
by paired associative stimulation
Effects of PAS on MEP amplitude were measured at three 
timepoints at 5, 30 and 60 min following PAS induction 
 (TPAS 1–3) and compared to a baseline measurement 
immediately prior to PAS  (TPAS 0; see Fig.  3). To assert 
the general feasibility of the chosen PAS paradigm, aver-
aged data across all sham conditions (A3, B3, C3; N = 36) 
was analyzed. Focusing on the timepoint displaying the 
largest effect on LTP-like plasticity, which was expected 
around 30  min after conclusion of PAS  (TPAS 2), MEP 
amplitudes significantly differed from baseline with 
PAS inducing an increase of 0.18  µV (F = 4.4, p = 0.042, 
 pETA2 = 0.112).
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Lasting modulatory effects of single block tDCS 
(experiment A)
One singular block of tDCS for a duration of 20  min 
led to a polarity-specific modulation of inducibility 
of LTP-like plasticity by PAS 6  h later (for stimulation 
protocol see Fig.  2A). Specifically, a significant inter-
action between timepoint of MEP measurement and 
condition of stimulation protocol could be detected 
(F = 2.9, p = 0.013,  pETA2 = 0.211; timepoint: F = 1.5, 
p = 0.233,  pETA2 = 0.120; condition: F = 0.9, p = 0.436, 
 pETA2 = 0.073).

Post-hoc testing revealed that tDCS with the anode 
on the primary motor cortex was the major factor of 
the significant interaction, with  TPAS 3 displaying a sig-
nificantly higher MEP amplitude compared to  TPAS 0 
(A1, F = 5.7, p = 0.036,  pETA2 = 0.341). In addition, tDCS 
with the anode on the primary motor cortex led to sig-
nificantly higher MEP amplitudes at  TPAS 3 compared 
to sham (F = 6.1, p = 0.032,  pETA2 = 0.355). Interestingly, 
while the influence of prior tDCS with the anode on the 
primary motor cortex led to a later rise in MEP ampli-
tudes following PAS than expected and detected after 

sham stimulation, participants displayed no increase in 
MEP amplitude following tDCS when the cathode was 
placed on the primary motor cortex (A2), which sug-
gests an induced suppression of the expected PAS effects 
(see Fig.  4). For individual data please refer to Fig. S1 
(supplements).

No lasting modulatory effects of sequential tDCS 
(experiment B)
Sequential blocks of tDCS did not lead to a significant 
protocol-specific modulation of inducibility of LTP-like 
plasticity by PAS 6 h later (for stimulation protocol see 
Fig. 2B; timepoint: F = 2.8, p = 0.054,  pETA2 = 0.204; con-
dition: F = 2.8 p = 0.085,  pETA2 = 0.201; interaction time-
point x condition, F = 1.7, p = 0.197,  pETA2 = 0.133).

Exploratory post-hoc testing indicated that the most 
prominent differences were between  TPAS 2 and  TPAS 
3 where all conditions displayed an increase in MEP 
amplitudes (F = 5.3, p = 0.042,  pETA2 = 0.324). In addi-
tion, biphasic sequential tDCS displayed significantly 
lower MEP amplitudes at  TPAS 2 compared to  TPAS 0 
(B2, F = 5.7, p = 0.037,  pETA2 = 0.340) and compared 
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to monophasic sequential tDCS at  TPAS 2 (B1, F = 6.9, 
p = 0.023,  pETA2 = 0.387; see Fig.  5). For individual data 
please refer to Fig. S1 (supplements).

No lasting modulatory effects of sequential tDCS at higher 
frequencies (experiment C)
Sequential blocks of tDCS with higher frequency but 
reduced duration of singular stimulation blocks (see 
Fig.  2C) failed to induce a significant modulation of 
inducibility of LTP-like plasticity by PAS 6 h later (time-
point: F = 0.8, p = 0.488,  pETA2 = 0.070; condition: F = 0.3, 
p = 0.745,  pETA2 = 0.026; interaction timepoint  ×  con-
dition: F = 0.4, p = 0.879,  pETA2 = 0.035; see Fig.  6). For 
individual data please refer to Fig. S1 (supplements).

Discussion
General duration and characterization of tDCS effects 
in humans
A first major conclusion is that tDCS was able to produce 
lasting modulatory effects on the inducibility of LTP-
like plasticity in the human motor cortex. Direct effects 

of tDCS on excitability were probably prevented by the 
atypical electrode positioning. Even in the absence of 
immediate effects on the MEP amplitudes, the chosen 
tDCS protocols did show polarity- and frequency-spe-
cific effects on the inducibility of neuroplastic changes 
by PAS 6 h later. These results indicate that maintained 
tDCS effects other than direct excitability changes modu-
late associative long-term plasticity induction, even after 
6  h. This could be due to complex metaplastic changes 
(i.e. changes of excitation-inhibition balance), which 
might be of decisive importance for the underlying long-
term plasticity processes frequently reported effective in 
motor rehabilitation [32, 33].

These findings add to the data on long-term tDCS 
effects and demonstrate, for the first time, clear changes 
in the response to plasticity-modulating interventions as 
late as 6 h after tDCS.

Specifically, 20 min of sustained tDCS with the anode 
on the primary motor cortex (experiment A1) led to a 
significant long-term boost of inducibility of LTP-like 
plasticity by PAS. While PAS regularly led to an increase 
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Fig. 4 Lasting modulatory effects of single block transcranial direct current stimulation (tDCS). Main effects of tDCS on inducibility of LTP‑like 
plasticity. Effects of paired associative stimulation (PAS) on motor evoked potential (MEP) amplitudes were measured at three timepoints 
following PAS induction  (TPAS 1–3) and compared to a baseline measurement immediately prior to PAS  (TPAS 0). A significant interaction 
between timepoint of MEP measurement and stimulation protocol could be detected. Post‑hoc testing revealed  TPAS 3 to display a significantly 
higher MEP amplitude compared to  TPAS 0 following tDCS with the anode on the primary motor cortex (experiment A1, indicated by *). In addition, 
at  TPAS 3, anodal tDCS led to significantly higher MEP amplitudes compared to sham (not marked). Means ± SEM
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in MEP amplitudes with a maximum after around 30 min 
following sham tDCS, sustained 20  min tDCS with 
the anode on the primary motor cortex led to a slower 
increase in MEP amplitudes reaching a maximum at 
around 60 min past PAS. At this timepoint, MEP ampli-
tudes were significantly higher compared to sham stim-
ulation and significantly higher than baseline values. 
As no further MEPs were measured, it remains unclear 
how long the induced MEP increase would have been 
sustained.

Repetitive tDCS blocks are not superior to sufficiently 
powered single stimulations
Despite our initial hypothesis and modelling data hinting 
at positive effects [15], repetitive tDCS protocols did not 
increase tDCS efficacy in this study (experiments B1/C1). 
It appears that the duration of singular stimulation blocks 
is highly important for the longevity of effects and mul-
tiple shorter stimulation blocks do not add up to reach 
the same effect size. Instead, shorter stimulation blocks 

as typically applied in sequential settings appear under-
powered to induce lasting effects. Comparing normalized 
amplitudes at  TPAS 3 (60  min after stimulation) across 
settings, only 20  min and 2 × 10  min monophasic tDCS 
with the anode on the primary motor cortex showed 
increased amplitudes, with only 20  min tDCS with the 
anode on the primary motor cortex displaying changes 
superior to averaged sham response across all conditions 
(see Fig. 7). A different interpretation could be, that tDCS 
protocols with more than one stimulation block inhibit 
later inducibility of LTP-like plasticity (e.g. by inducing 
stronger short-term effects with inhibited afterphases). 
However, we did not detect stronger short-term effects 
for those protocol in our (limited) MEP data.

The findings are in line with animal model data hint-
ing at higher stimulation intensities needed to affect neu-
ral circuits than historically expected [34]. The authors 
recommend 4–6  mA instead of the state-of-the-art 
usage of 1–2  mA (as applied in this study) [34]. How-
ever, experimental data in humans did not demonstrate 
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Fig. 5 No lasting modulatory effects of sequential transcranial direct current stimulation (tDCS). Main effects of tDCS on inducibility of LTP‑like 
plasticity. Effects of paired associative stimulation (PAS) on motor evoked potential (MEP) amplitudes were measured at three timepoints 
following PAS induction  (TPAS 1–3) and compared to a baseline measurement immediately prior to PAS  (TPAS 0). No main effects were found. 
Exploratory post‑hoc testing indicated biphasic sequential tDCS with direction changes of the electrical field (experiment B2) to induce significantly 
lower MEP amplitudes at  TPAS 2 compared to  TPAS 0 (indicated by *). In addition, at  TPAS 2, biphasic sequential tDCS led to significantly lower MEP 
amplitudes compared to monophasic tDCS (not marked). Means ± SEM
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Fig. 6 No lasting modulatory effects of sequential transcranial direct current stimulation (tDCS) at higher frequencies. Main effects of tDCS 
on inducibility of LTP‑like plasticity. Effects of paired associative stimulation (PAS) on motor evoked potential (MEP) amplitudes were measured 
at three timepoints following PAS induction  (TPAS 1–3) and compared to a baseline measurement immediately prior to PAS  (TPAS 0). No significant 
modulation of inducibility of LTP‑like plasticity could be detected. Means ± SEM

Fig. 7 Overview of normalized motor evoked potentials (MEP) amplitudes at  TPAS 3. Effects of paired associative stimulation (PAS) on motor 
evoked potential (MEP) amplitudes 60 min. after induction  (TPAS 3) indicated a clear increase only following transcranial direct current 
stimulation with the anode on the primary motor cortex (tDCS; experiment A1), with all other tDCS protocols showing no difference to sham 
(averaged across all experiments for this visualization). One sample t‑test comparing the sample mean against a hypothetical mean of 1 (due 
to normalization): A1: p = 0.0362*, A2: p = 0.2432, B1: p = 0.7951, B2: p = 0.4900, C1: p = 0.6004, C2: p = 0.6099, Sham: p = 0.2698. Means ± SEM
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a clear correlation between increasing current intensity 
and effect sizes [2, 35]. For cathodal tDCS, the relation-
ship between stimulation intensity, repetition frequency, 
and effect size and direction appears more complex with 
some intensities leading to diminished effects, others to 
anodal-tDCS-like enhancement of neuroplasticity [2, 15]. 
To date, general recommendations for optimal stimula-
tion range between 1 and 3 mA [35, 36].

Differential effects of tDCS with direction changes 
of the electrical field (anodal/cathodal)
In experiment A2, PAS was not able to induce LTP-like 
effects after 20 min of tDCS with the cathode on the pri-
mary motor cortex earlier in the day. Instead, in experi-
ment B2, the biphasic setting of two-times 10  min of 
tDCS with the anode on the primary motor cortex with 
20 min of reversed polarity tDCS during the ISI showed 
a significant reduction of MEP amplitudes at  TPAS 2 com-
pared to  TPAS 0, and compared to two-times monophasic 
10 min tDCS without stimulation during the ISI. TDCS 
with the cathode on the primary motor cortex appears 
to have a diminishing effect on inducibility of LTP-like 
plasticity that might be enhanced by carefully combin-
ing phases of changing polarity. In contrast to our initial 
hypothesis, the polarity of the longest single tDCS block 
might determine the direction of the effect more than 
the order of stimulations. We initially designed the pro-
tocol to increase the effect size of two tDCS blocks with 
the anode on the primary motor cortex by adding tDCS 
in reverse polarity to the ISI. However, the resulting 
paradigm can be better interpreted as a tDCS of 20 min 
duration with the cathode on the primary motor cortex, 
with 10 min of reversed polarity tDCS beforehand acting 
as a preconditioning effect (priming; [37]). It is to note, 
though, that all interpretations of tDCS effects with the 
cathode on the primary motor cortex in this dataset rely 
on exploratory data and lack robust statistical support.

Limitations
The study was conceptualized to further understand 
ongoing tDCS effects that might influence the brains 
capability to interact with stimuli long after conclusion of 
stimulation (e.g. [14]). The electrode placement, mainly 
the placement of the ‘return’ electrode on the parietal 
cortex was chosen based on recent findings indicating 
the importance of the parietal cortex specifically for hand 
movements [17, 18]. In addition, this electrode place-
ment reduced the direct effects of tDCS on excitability 
and MEP amplitudes, thereby improving the measurabil-
ity of long-term plasticity induced by PAS. However, the 
resulting electric field is different compared to the clas-
sical electrode placement (over M1 and the contralateral 

supraorbital area) and may not necessarily be comparable 
to studies using the standard montage.

In addition, the chosen electrode placement might 
have reduced the expected efficacy of the stimulation by 
resulting in a distance between electrodes slightly smaller 
compared to the standard electrode montage [38]. In 
general, choosing high definition tDCS approaches might 
be useful to further clarify the results [39].

As can be seen in Figs. 4 and 5, MEP changes follow-
ing sham stimulation depicted a slightly different trajec-
tory across experiments and only clearly displayed the 
expected changes when combined across experiments 
(N = 36, Fig.  3). To our understanding, these differences 
are most likely due to random variations in stimula-
tion response and pronounced by a limited sample size 
[40]. This might add to overall variance and diminish the 
explanatory power of the results. However, exploratory 
analysis of subgroups with a clear PAS response follow-
ing sham supported the main analysis (lower significance 
levels due to smaller sample size of N = 7–8, supplements 
Fig. S2).

The current study aimed at understanding long-term 
effects of tDCS on neuroplasticity given the heterogene-
ity of results in previous clinical studies.

As the study was conducted in healthy participants, 
results might not translate to populations with poten-
tially disturbed levels of neuroplasticity as in major 
depressive disorder (MDD). In addition, the study exam-
ined neuroplastic effects in the motor cortex, while from 
a clinical perspective other areas, e.g. prefrontal brain 
regions, might be of higher importance. However, there 
is growing support on the transferability of neurostimu-
lation effects between brain regions [41].

Conclusions
The current study shows tDCS to be capable of inducing 
long term plasticity-inducing effects several hours after 
stimulation. This effect duration might be frequently 
overlooked in regular study designs because detection 
relies on specific interventions to discriminate under-
lying effects on inducibility of neural plasticity [5]. PAS 
has the potential to provide a tool for detecting these 
long-term, possibly structural, tDCS effects. In addition, 
the study adds to the understanding of the interaction 
between repetition patterns and stimulation intensity in 
designing optimal tDCS protocols [15].

Besides promising results in initial clinical trials [42, 
43], tDCS recently failed to demonstrate efficacy in 
augmenting standard treatment for MDD patients [44, 
45]. However, plasticity processes are not immediate, 
and antidepressant treatment response requires long-
lasting restorative effects [46]. The underlying expecta-
tion of therapeutic effects of time-limited interventions 
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by tDCS implies the existence of longer lasting effects 
than commonly conceptualized. In addition, the lacking 
clinical effect appears to be inconsistent with a growing 
body of data on plasticity-modulating tDCS effects (e.g. 
[5]).

As a conclusion, there is a pressing need for refined 
tDCS protocols [47]. In analogy to optimized rTMS 
protocols using pulsed protocols [48] and predic-
tions from modelling studies [15], it has been expected 
that spaced, sequential tDCS would be more effective. 
Regarding short-term effects on MEP amplitudes and 
long-term effects on synaptic plasticity, we could not 
confirm this assumption. Therefore, further research on 
optimized tDCS protocols is necessary [47, 49].
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