Kumar et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:50

http://www.jneuroengrehab.com/content/10/1/50

\ |l JOURNAL OF NEUROENGINEERING
AND REHABILITATION

RESEARCH Open Access

Towards identification of finger flexions using
single channel surface electromyography - able
bodied and amputee subjects

Dinesh Kant Kumar'", Sridhar Poosapadi Arjunan' " and Vijay Pal Sing

hZJr

Abstract

strength of the muscle activity.

inter-experimental variation.

Background: This research has established a method for using single channel surface electromyogram (sEMG)
recorded from the forearm to identify individual finger flexion. The technique uses the volume conduction
properties of the tissues and uses the magnitude and density of the singularities in the signal as a measure of

Methods: SEMG was recorded from the flexor digitorum superficialis muscle during four different finger flexions.
Based on the volume conduction properties of the tissues, SEMG was decomposed into wavelet maxima and
grouped into four groups based on their magnitude. The mean magnitude and the density of each group were the
inputs to the twin support vector machines (TSVM). The algorithm was tested on 11 able-bodied and one
trans-radial amputated volunteer to determine the accuracy, sensitivity and specificity. The system was also

tested to determine inter-experimental variations and variations due to difference in the electrode location.

Results: Accuracy and sensitivity of identification of finger actions from single channel sEMG signal was 93% and
94% for able-bodied and 81% and 84% for trans-radial amputated respectively, and there was only a small

Conclusions: Volume conduction properties based sEMG analysis provides a suitable basis for identifying finger
flexions from single channel sEMG. The reported system requires supervised training and automatic classification.

Background

Surface electromyogram (sEMG) is the non-invasive re-
cording of the electrical activity of the muscle. It is
closely related to muscle contraction and an indicator of
the associated actions. For an amputee, SEMG of the re-
sidual muscles becomes an obvious choice for natural
control of the prosthetic hand. This requires the classifi-
cation of sSEMG signals to identify the desired finger
movements and obtain the command for controlling the
prosthetic hand. Some of the earlier attempts to identify
finger actions from sEMG were based on an estimate of
the amplitude [1] and the rate of change of the sSEMG
[2]. More recent studies [3-19], have reported significant
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developments in the identification of movements for
myoelectric control systems.

Researchers have reported success in the use of multiple
channels sSEMG recording for controlling the prosthetic
hand [3-10]. Tenore et al. [7,10] have investigated the ef-
fectiveness of different configurations of electrode arrays
(19 and 32) on the performance of the prosthetic control,
both on able — bodied and trans-radial amputees. How-
ever, such systems are complex and the variation in elec-
trode placement during SEMG recording can alter the
signal and the outcomes significantly [17,20] making the
technology unsuitable for self-administration by the user
or their carer. There is also significant variation of SEMG
magnitude and spectrum between different experiments
due to a number of factors that cannot be controlled
[12,21,22]. A single channel system that can reliably iden-
tify the finger actions and in which the location of elec-
trodes is not critical, is highly desirable. Smith et al. [8]
and Chen et al. [9] attempted to minimise the number of
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electrodes (using six to eight electrodes) to decode four
different finger flexions. Another method reported by
Englehart et al. [4] is based on dimensionality reduction
using principal components analysis after wavelet decom-
position. However, overlapping muscles and presence of
noise and artefacts makes this a challenging task.

Many researchers have worked to decompose the
sEMG signal into constituent MUAPs [23,24]. Pelvin
and Zazula [25] reported the use of higher order statis-
tics for decomposing the EMG signal into the funda-
mental components, the individual motor unit action
potentials (MUAP). However, these techniques are based
on the priori of shape and density of MUAP, making
them unsuitable when there are multiple muscles be-
cause the shape of MUAP from different muscles can
vary due to the difference in the transmission pathways.
SEMG recordings integrate the electrical activity from
all adjoining muscles and thus lack muscle selectivity.
Further, low-level muscle activity, such as during finger
flexion, makes the signal susceptible to noise and arte-
facts. Different choices of global features of the signal
using advanced signal processing and pattern recogni-
tion techniques do not address these fundamental issues
and such research can at best result in marginal im-
provement. While the systems reported in literature ap-
pear to be suitable for recognising gross movements,
they are ineffective for complex movements such as
wrist and finger movements [2] where a number of mus-
cles are involved.

This paper reports an alternate method to estimate the
relative strength of contraction of different muscles. It is
based on the transmission properties of action potentials
in body tissues [26-28] and on the assumption that the
MUAP are sparse and cause singularities in the record-
ings. The MUAP arriving from one muscle were consid-
ered to have similar magnitudes, and those from other
muscles have different magnitudes. Wavelet maxima
were used to identify the singularities and cluster ana-
lysis was performed to determine the relative strength
corresponding to different actions. The densities of the
clusters of wavelet maxima were classified using a twin
support vector machine (TSVM) to determine the asso-
ciated finger flexion and the technique has been called
Wavelet Maxima Density (WMD) technique.

Methods

Subjects

Eleven healthy subjects (7 male and 4 female; Mean age =
27.4 (£2.55) years; Mean weight=68.7 (+3.56) kg; and
Mean height = 169.3 (£6.2) cm) volunteered to participate
in this study. The healthy participants exclusion criterion
was; (i) no history of myo or neuropathology, and (ii) no
evident abnormal motion restriction. The technique was
tested on one amputee participant (Female; Age =42
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Years) who volunteered to take part in this study. Ampu-
tee volunteer had trans-radial one-third proximal amputa-
tion of the right forearm (with 9 cm long stump).

SEMG recording procedures
Bipolar electrodes (DELSYS, Boston, MA, USA) were
placed on the forearm (FDS) muscle for the healthy par-
ticipants (Figure la) in accordance with standard proce-
dures [29] to record surface electromyogram (SEMG).
These are active electrodes, with the preamplifier and
two electrodes built into a single unit. The electrodes
are self-adhesive, and have two silver bars; each of 1 mm
thickness, 10 mm length and the fixed inter-electrode
distance of 10 mm. Electrolyte Gel (Sigma) were used on
the electrodes prior to affixing them on the skin.
Experiments were repeated twice for the able-bodied
volunteers, with electrodes placed on the proximal end in
the first experiment- EXP1, and on the distal end for the
second experiment — EXP2 (Figure 1a). This was done to
determine the effect of variation in the electrode location
on the outcome of the experiments. The ground electrode

Figure 1 Electrode Placement a) at the distal (EXP1) and
proximal end (EXP2) b) on the Trans- radial amputee.
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was placed on the volar aspect of the wrist. For the ampu-
tee participant, the electrodes were placed on the
remaining stump of the participant as shown in Figure 1b.

DELSYS (Boston, MA, USA) sEMG acquisition system
was used to record the signal. The system gain was 1000,
CMRR was 92 dB, and bandwidth was 20-450 Hz, with
12 dB/ octave roll-off. The input impedance of the system
was 115 Pico-farad in parallel with 1 K-ohm. The sampling
rate of the system was 1024 samples/ second for each
channel and the resolution were 16 bits/ sample. Prior to
the placement of electrodes, the skin of the participant
was prepared by shaving (if required) and exfoliation to re-
move dead skin. Skin was cleaned with 70% v/v alcohol
swab to remove any oil or dust from the skin surface.

Experimental protocol

Experiments were conducted where the sEMG was
recorded while the participants performed four sets of
generic finger flexion actions (Figure 2) labelled and de-
scribed below.

Background activity: All fingers resting.
Class 1: Flexion of little (pinkie) finger
Class 2: Flexion of ring finger

Class 3: Flexion of middle finger

Class 4: Flexion of index finger

These generic actions were selected for the following
reasons:

o these actions will allow the user to control
individual fingers in the recently available advanced

Page 3 of 7

robotic/ prosthetic hand [7,10,19] and utilise these
devices to the maximum advantage.

e these actions can be used for communication and
control commands that can be used for several
different devices and applications.

The participants performed the flexion without any re-
sistance and as was convenient and easily reproducible
by them. SEMG was recorded through the experiment.
The examiner gave on-screen and oral commands to the
participant to perform the action without any fixed
order of the fingers. Each flexion was maintained for
about 7-8 seconds and was repeated twelve times. The
experiments were repeated twice with changed electrode
location.

The experimental protocol was approved by the RMIT
University Human Ethics Committee and Alfred Health
Ethics Committee and performed in accordance with the
Declaration of Helsinki 1975, as revised in 2004. Prior to
the recording, the participants were encouraged to
familiarize themselves with the experimental protocol
and with the equipment. For the experiment with the
amputee, bilateral action training modality was per-
formed [30]. The amputee subject performed the finger
flexions with the healthy hand while attempting to re-
peat the same flexion with the phantom limb [30].

Data analysis

Removal of noise and background activity

As a first step, the signal corresponding to class 1 for each
subject on each day was normalised to the root mean
square (RMS) of the recording of the same subject. The

flexed in these experiments.

Figure 2 Four finger flexions; (a) Little Finger; (b) Ring Finger; (c) Middle Finger; (d) Index Finger. Proximal inter — phalangeal joint was

~
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next step was the removal of the background activity from
the signal (Figure 3). This becomes more challenging be-
cause when signal strength is low, the noise magnitude be-
comes comparable with the signal itself.

The pilot analysis of the recordings showed large
inter-experimental variations in the spectrum of the
background activity, making stationary spectral filtering
unsuitable because of the variations in the noise charac-
teristics [31]. For this reason, adaptive spectral subtrac-
tion filters were used to remove the background activity
from the recorded signal. The template of the spectrum
of the noise was obtained for each subject using a band-
pass filter (4th order Butterworth, frequency 10 to
450 Hz) and averaging over 20 windows (>20).

Decomposing sEMG to obtain relative strength of
contraction
The first step of the proposed method required the iden-
tification of the temporal location of the MUAPs. For
this purpose, SEMG signal was decomposed using wave-
let transform (bi-orthogonal wavelet ‘bior3.3’) and the
maxima were identified based on the change of sign
[32].

Local maxima, Wfis,x,) can be described mathematic-
ally as follows [32]:

Wf(s7xn—1) < Wf(s’xn) > Wf(saxVH—I) (1)

Where Wfis,x) is the wavelet transform of the function
flx) at a scale s and n =2 to N-1, N is the total number
of coefficients at any given scale s.

The wavelet maxima that were present in each of the
scales and travelled from finest scale to coarsest scale
were considered [33,34]. Other wavelet maxima were
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rejected as being random transients. The data of each
flexion was segmented into 300 ms windows, and the
magnitudes at the lowest (finest) scale of the accepted
maxima were obtained. Based on the magnitude, the
magnitude and number of maxima points of every win-
dowed recording (density of peaks) corresponding to
each flexion were the two dimensional representation of
the recording. These were separated into four (number
of different actions) groups using cluster analysis. The
centroid and corresponding density of each cluster was
determined for each time segment, and averaged for the
duration of each flexion. This resulted in one value of
the magnitude and the corresponding density of peaks
for each action. This two dimensional feature set was
used to train and test the system.

Classification

Twin support vector machines (TSVM) linear kernel
classifier [35] was used to classify the features. The ad-
vantages of using TSVM is that it solves two related
SVMs, one for each class, and generates two separate
hyper planes without the assumption that patterns in
each class arise from similar distributions. It allows the
use of a different kernel for each class which can be
separately optimized based on the data. This data de-
pendent kernel optimization for each class is particu-
larly useful in this study. For more details, please refer
to [15,35].

The vectors corresponding to the four densities and
four magnitudes were the input to the classifier. During
the training phase the associated finger flexion was the
target. After the system was trained, the system accuracy
was validated using ten-fold cross — validation and
tested using Type I error (Specificity) and Type II error
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(Sensitivity) [15]. The training dataset had 100 data
points, and testing was done using 30 data points. The
training data set and test data set was chosen randomly
using random sub-sampling method. Ten-cross valid-
ation method was used to determine the accuracy, sensi-
tivity and specificity of the system. Classification was
performed on the data from the individual subject. The
system was tested individually for the two experiments
to determine the inter-experimental variations.

Results

The average classification accuracy for able-bodied sub-
jects is reported in Table 1 and for amputee subject in
Table 2. The sensitivity and specificity results for the
able bodied subjects are reported in Table 3 and for the
amputee subject in Table 4.

Accuracy of identifying sEMG of able bodied participants
From Table 1, the overall accuracy of the detection of
flexion of four classes of fingers (digits 2 to 5) using
WMD was found to be 93.41(+ 1.45)% when sEMG was
recorded from the distal end (experiment 1) of the FDS
muscle. When sEMG was recorded from the proximal
end (experiment 2) of the FDS muscle, there was only a
small variation (1% decrease) in the overall accuracy
(92.4 £ 3.23)%.

Accuracy of identifying sSEMG of amputee

The accuracy of identification of movements from the
amputee is tabulated in Table 2. The results show that
the average accuracy of the detection of flexion of four
classes of fingers (digits 2 to 5) performed based on the
bilateral learning was found to be 81.87 (+ 13.54)% from
SEMG electrode location 2 (Figure 1b). The average ac-
curacy was found to be 74.59 (£ 12.52)% from the SEMG
electrode location 4. The classifier did not converge for
recordings from the electrode locations 1 and 3 and
hence has not been reported. This demonstrated that
the electrode location had a significant effect on the sys-
tem accuracy for the amputee subject. For further ana-
lysis, electrode location 2 was considered.

Table 1 Mean classification accuracy (%) of different
classes recorded from distal end (EXP1) and proximal end
(EXP2) from able-bodied all subjects using WMD method

Distal end (EXP1) Proximal end (EXP 2)

Class
Mean (+SD)% Mean (+SD)%
Class 1 92.834 (£4.47) 94.23 (£5.08)
Class 2 9547 (+4.07) 95.96 (+3.08)
Class 3 92.10 (£5.98) 90.37 (£5.58)
Class 4 93.21 (£5.96) 89.06 (£8.17)
Overall mean (+SD) 93.41 (+1.54) 92.4 (+3.23)
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Table 2 Mean classification accuracy (%) of different
classes recorded from Ch 2 and Ch 4 from amputee
subject using WMD method

Class Channel 2 Channel 4
mean (£SD)% mean (xSD)%
Class 1 96.67 (£9.44) 71.67 (£8.08)
Class 2 75 (£9.92) 6242 (+8.74)
Class 3 66.67 (+10.67) 7215 (£11.24)
Class 4 89.15 (+8.26) 9214 (£7.52)
Overall mean (+SD) 81.87 (+13.54) 74.59 (+12.52)

Sensitivity and specificity analysis

From Table 3, the sensitivity of the results for able bod-
ied subjects was 94% while the average specificity of all
classes was ~ 97% for experiment 1 and ~ 93% for experi-
ment 2. The results indicate low Type I and Type II
error. From Table 4, the average specificity was 85% for
channel 2 and 84.5% for channel 4, while the average
sensitivity was 85% for channel 2 and 83% for channel 4.

Discussion

The results indicate that WMD sEMG signal analysis,
which is based on the volume conduction properties of
the tissues, can accurately identify individual finger ac-
tions. Based on the volume conduction model reported
by [26,27], the muscle tissue forms the major portion of
the volume conductor. This is an anisotropic conducting
medium, having different conductivities along different
axes, relatively higher conductivity in the longitudinal
direction and slower in the transverse direction. There-
fore electric potential travelling in transverse direction
of a muscle is attenuated more rapidly as compared to
longitudinal direction [26,27]. Thus the action potential
originating from co-located muscle fibres would have
similar magnitude and the assumption is that the mus-
cles of the forearm have relatively small cross-sectional
area. The magnitude of the singularities of the signal is
inversely proportional to the distance between the elec-
trodes and the muscle, while the density of the singular-
ities corresponds to the relative number of motor unit
action potentials (MUAP), thus corresponding to the
strength of muscle contraction.

In this method, SEMG was represented by the wavelet
maxima and these were then grouped based on their
magnitude into four groups corresponding to the four
finger actions. The average magnitude and density of
each of the four groups for a time-window of 300 milli-
seconds [4,13,16] were the input to a support vector ma-
chine that was trained to associate these with the finger
action. This time window is the permissible delay for
real time operation of the system. The method was also
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Table 3 Sensitivity (%) and specificity (%) for each class recorded from distal end (EXP1) and proximal end (EXP2) from

able-bodied all subjects using WMD method

Distal end (EXP 1)

Proximal end (EXP 2)

Class Sensitivity mean (+SD)% Specificity mean (+SD)% Sensitivity mean (+SD)% Specificity mean (+SD)%
Class 1 92 (+0.05) 98 (£0.02) 94 (£0.07) 98 (+0.02)
Class 2 95 (+£0.06) 97 (£0.03) 95 (£0.04) 98 (£0.01)
Class 3 92 (+0.06) 98 (+0.03) 91 (£0.05) (+0.02)
Class 4 93 (+0.06) 98 (£0.02) 90 (+0.06) 7 (£0.03)
Overall mean (+SD) 93 (+0.01) 98 (+0.01) 93 (+0.02) 7 (+0.01)

tested for the 200 ms (< 300 ms) and no significant
change in the classification accuracy was observed.

Two sets of experiments with the electrode placement
distinctly different between the two experiments were
conducted to determine the reproducibility of the tech-
nique. The classification accuracy for able-bodied sub-
jects was in the range between 89% and 96%, while for
the trans-radial amputee was between 62% and 96%.
The lower accuracy for the trans-radial amputee may be
due to number of reasons such as disuse the muscles or
damage to the muscle [22], or movement of the inser-
tion point, which makes it difficult to identify suitable
location for electrode placement.

The recognition accuracy shows that this technique
is significantly better compared with the technique
reported by Momen et al. (56 + 13%) [13], even though
the proposed technique has used single channel while
Momen et al. [13] have used two channels. The other
significance is that this method has identified generic
finger actions, which makes this suitable for control-
ling each finger of a prosthetic hand, while Momen
et al. [13] and other researchers [10,11,14,20] have
considered user defined actions. The other strength of
this technique is that it is repeatable and not sensitive
to differences in electrode placement.

The system requires supervised training, while the
classification phase is suitable for being automated with-
out manual supervision. The technique could be applied
for prosthetic hand control or for human computer
interface.

Conclusion

In this study, we have investigated and reported a novel
method to estimate the relative strength of contraction of
different muscles to identify individual finger flexions. This
method is based on the volume transmission properties of
action potentials in body tissues [16], leading to the MUAP
of different muscles having different amplitudes. During
the low level of muscle contraction such as isometric finger
flexion, MUARP are sparse and thus the measure of density
of MUAP in terms of the amplitude leads to a measure of
strength of contraction of different muscles.

Wavelet maxima detection is a suitable technique to
identify the local peaks in the sEMG. Identifying the
range of the amplitude of peaks using clustering tech-
niques using the wavelet maxima density (WMD) is an
indicator of the muscle activity of different muscles. This
technique uses WMD as the set of features that can be
classified using twin support vector machine (TSVM) to
determine the associated finger flexion. The advantage
of the TSVM over other classifier techniques is that it is
suitable for unbalanced data sets.

The results show that using WMD, single channel
EMG is suitable for accurately identifying individual fin-
ger flexion. This technique was tested for able bodied
and trans-radial amputee subject and also for variations
in the placement of the electrodes. This work has dem-
onstrated that it is possible to accurately identify the in-
tent of individual finger flexion using single channel
EMG recorded from the surface of the stump of a
transradial amputee patient.

Table 4 Sensitivity (%) and specificity (%) for each class recorded from Ch 2 and Ch 4 from amputee subject using

WMD method
Class Channel 2 Channel 4
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Class 1 90 95 81 80

Class 2 82 81 80 79

Class 3 79 80 84 81

Class 4 89 85 93 92
Overall mean (+SD) 85 (+0.05) 85 (+0.06) 85 (+0.05) 83 (+0.06)
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