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Abstract

Gait distortion is the first clinical manifestation of many pathological disorders. Traditionally, the gait laboratory has
been the only available tool for supporting both diagnosis and prognosis, but under the limitation that any clinical
interpretation depends completely on the physician expertise. This work presents a novel human gait model which
fusions two important gait information sources: an estimated Center of Gravity (CoG) trajectory and learned heel
paths, by that means allowing to reproduce kinematic normal and pathological patterns. The CoG trajectory is
approximated with a physical compass pendulum representation that has been extended by introducing energy
accumulator elements between the pendulum ends, thereby emulating the role of the leg joints and obtaining a
complete global gait description. Likewise, learned heel paths captured from actual data are learned to improve the
performance of the physical model, while the most relevant joint trajectories are estimated using a classical inverse
kinematic rule. The model is compared with standard gait patterns, obtaining a correlation coefficient of 0.96.
Additionally,themodel simulates neuromuscular diseases like Parkinson (phase 2, 3 and 4) and clinical signs like the
Crouch gait, case in which the averaged correlation coefficient is 0.92.

Background
Quantification of complex movements such as human
locomotion is a fundamental step towards an objective
characterization of particular patterns associated to a
certain degree of a disease [1-3]. The gait is the result
of complex interactions between several sub-systems:
neuromuscular, musculo-tendinous and osteo-articular,
which work together to generate the body dynamics that
underlies the bipedal displacement [4,5]. In despite of
the intensive research in biomechanics [6], robotics [7,8],
medicine [9] and computer animation [10,11], the biologi-
cal complexity has hindered a proper understanding of the
locomotor system. This problem has been partially over-
come in the clinical routine by a gait estimation inferred
from the gait laboratory [9,12,13]. Usually, a physician
or rehabilitation expert determines whether there exist
pathological gait patterns using exclusively her/his exper-
tise [4,14,15]. Overall, diagnosis is supported using sta-
tistical tests carried out on the acquired gait laboratory
data [16-20], with an inherent high degree of variability. In
consequence, development of gait models that provide a
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quantitative gait description has become important in the
process of supporting physician decisions [4,9,14,21].
The main contribution of the present work is a human

gait model that accurately describes a set of kinematic
gait patterns, normal or pathological. Themodel fuses two
important gait information sources: an estimated Center
of Gravity (CoG) trajectory and heel paths learned from
actual gaits. The global motion is governed by the CoG
trajectory of a compass physical pendulum representa-
tion, coupled to a spring that emulates the muscle func-
tion. This trajectory is regulated by learned heel paths,
while the remaining joint patterns are estimated using
a classical inverse kinematic method. The models bene-
fit is demonstrated by accurately simulating two different
sorts of neuromuscular gaits: Parkinson and Crouch pat-
terns. Finally, a human-like leg structure is animated with
the obtained trajectories, allowing the clinician to inter-
act with the model and facilitating the interpretation of an
observational analysis.
Many models have been previously proposed for sim-

ulating the human gait, with different complexity levels,
depending on the application area. A first group includes
bipedal descriptions that exclusively use structural infor-
mation so that they are able only to determine global
relationships between muscles and joint angles. These
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models exploit the conceptual simplicity of mechanical
systems such as the inverted pendulum or mass-springs
[22-26]. Basically, these approximations provide a loco-
motion description from an energy standpoint, simulating
the change from the kinematic to potential energy dur-
ing the gait cycle. These models are devised to coarsely
classify normal and pathological patterns [18,27]. How-
ever, a main drawback of these approximations is that
about a 20% of the gait cycle, corresponding to the dou-
ble stance phase, is completely eliminated. These physical
models are useful in areas like robotics since they elimi-
nate the dependence on a robust control mechanism. Nev-
ertheless, they are very limited for medical applications
because of their strong simplifications, missing relevant
gait aspects such as the non-linearities introduced by the
heel strike.
A second group of human gait models are capable of

simulating muscles and tendons during the gait. These
models have obtained better gait representations, intro-
ducing muscular information that is required from a
clinical standpoint in terms of interpretability, i.e., spe-
cific activity of certain muscle groups in musculoskele-
tal disorders like hemiplegic movements. These models
have introduced new elements to simulate the control
and energy storage of the locomotion process. Specifi-
cally, some gait approximations include the Hill model
as the base of the muscle representation [4,5,15], but
with no relation between the muscle and the locomo-
tor structure and hence without any clinical meaning
[28]. In these approaches, each model accelerates a spe-
cific body segment, obtaining a simplistic simulation
of pathological movements. Likewise, these models are
not accurate enough to describe the complex interac-
tion among different groups of muscles. In addition,
they require a certain number of parameters that need
to be tuned, with the consequent dependence on an

expert knowledge. Scott Delp [10,29] introduced a com-
putational strategy that combines the Hill muscle model
and structural information, accomplishing realistic nor-
mal and pathological simulations, but again, with a high
degree of subjectivity at tuning the model parameters.
Currently, several approaches have used some control-
based strategies, requiring relatively few data to simulate
simple human structures and predicting new motions
[30]. These approaches include a large number of degrees-
of-freedomwhile joint force profiles remain subjected to a
large number of constraints [9,11,19,27,31]. These meth-
ods approximate human control systems and simulate
some neurological pathologies [15], but these strategies
require specific information about each particular motion
to be simulated and therefore they demand a high degree
of interaction and prior knowledge [27]. Moreover, these
methods necessitate a large group of experimental data to
generate natural motions so that their clinical usefulness
still remains very limited.

Materials andmethods
The present work simulates normal and pathological kine-
matic patterns by fusioning two important sources of
information: a prior model of the CoGx,y(t) and real
data trajectories. The proposed model is summarized in
Figure 1. Firstly, the prior knowledge of the CoGx,y(t) is
introduced using a physical gait model, a compass pendu-
lum with springs coupled to both ends, representing the
role of the knee and smooth tissues (see Figure 1(b) and a
further description in section “CoGx,y(t) gait representa-
tion”). The inclusion of these non linear elements allows
more accurate estimations of the CoGx,y(t). A second
information source comes from actual heel trajectories
that are used to regularize the estimated CoGx,y(t) and
serve to simulate diverse pathological and normal motion
(see Figure 1(a) and section “The fusion information

Figure 1 Pipeline of the proposedmodel. Firstly the CoGx,y(t) from the proposed physical model is computed (panel (B)). Additionally heel
trajectories are learned for each kind of movement (panel (A)). Then, a fusion rule to compute kinematic patterns (Panel (C)) from both trajectories
allows to simulate Normal and Pathological patterns (Panels (D) and (E)).
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strategy”). Additionally, this fusion facilitates an accu-
rate estimation of the remaining joint trajectories, using
a classical inverse kinematic framework. Finally the set
of obtained trajectories animates a human-like leg struc-
ture that provides the clinician with a interpretable tool
(see Figure 1(c-d)).

Ethical approval
The study was approved by the Ethics Committees of the
Institute. Written informed consent was obtained by the
parents or, when applicable, by the patients.

CoGx,y(t) gait representation
In human movement analysis, the gait is divided in cycles,
coarsely classified as double and single stance phases
[14,32,33]. The double stance period accounts for around
20% of gait cycle and stands for the body movement with
both limbs touching the ground, while the single stance
represents around 80% of gait cycle and corresponds to
the interval in which a single limb supports the whole
body weight. In this work theCoGx,y(t) for a complete gait
cycle is approached using two complementary strategies: a
compass pendulum for the single stance and a spring mass
system for the double stance, as follows.

The single support phase
The single support phase conserves a regular periodic-
ity which is properly captured using a compass pendulum
representation. This strategy represents the upper part of
the body by a massM which moves forwards with respect
to each fixed point (with mass m), describing a harmonic
oscillating trajectory, similar to the inverted pendulum
[22,34]. Likewise, the free foot swings with respect to this
mass, establishing a simple pendulum pattern. Provided
that these processes are coupled together, the human
gait is modeled by a compass pendulum as two coupled
non-linear differential equations:

β(1 − cosφ)(3θ̈ − φ̈) − β sinφ(φ̇2 − 2θφ̇)

+ (
g sin θ

l )(β(sin(θ − φ) − 1)) = 0

θ̈ (β(1 − cosφ)) − βφ̈ + βθ̇2 sinφ + (
βg
l ) sin(θ − φ) = 0

(1)

where β = m/M , θ is the angle of the stance leg at the par-
ticular time t with respect to the slope and φ is the angle
between the stance leg, and l0 = lr = ll. This model also
allows to simulate the swing foot when it hits the ground
at the heelstrike, a time in the cycle that corresponds to
φ(t) − 2θ(t) = 0 [34], when the double stance starts.

Double stance phase
Classical gait models often ignore the double support
stance since they have been devised to simplify the gait

rather than to accurately follow gait patterns. These sim-
plifications have ended up by considering the leg struc-
tures as rigid segments, a hypothesis that easily leads to
conclude for instance that the percentage of gait recov-
ery is inefficient in energy terms, a reason why this phase
has been eliminated in most of these strategies [4,9,21,35].
Additionally, important elastic contributions which pro-
duce relevant changes in the CoGx,y(t), during the double
stance, are often neglected. These strong simplifications
reduce an appropriate gait understanding and may lead
to wrong interpretations when these models are used as
supporting tools of clinical decisions.
A more accurate CoGx,y(t) description of the double

stance phase was herein achieved by coupling a planar
spring-mass system [36] to the compass pendulum, pre-
viously introduced. This change of the leg length l during
the gait stance phase, allows to estimate the reaction force
during the whole gait cycle, as illustrated in Figure 1 (B).
Notice that each leg reaction forces points out towards
opposite sides, separated by a distance d (the distance
between the heelstrike and the other toe-off phase). The
coupling is obtained as:

Mẍ = llx − lr(d − x)
Mÿ = lly + lry − gM

(2)

where g is the gravity, ll and lr are the left and right legs,
respectively and their length changes as:

ll = k(
l0√

x2 + y2
− 1)

lr = k(
l0√

(d − x)2 + y2
− 1)

(3)

These equations simulate the periodic vertical ground
forces, with a period defined by T = 2π

√
m
k . This inde-

pendent formulation of each reaction force allows an inde-
pendent analysis of each link, whereby gait abnormalities
that asymmetrically affect each leg, such as the diplegia,
can be simulated. Finally, the CoGx,y(t) is simulated by the
integration of the two gait phases described as follows:

CoGx,y(t)=

⎧⎪⎨
⎪⎩
l0 [sin θ(t), cos θ(t)] if φ(t)−2θ(t)<0;
[
ll x

3
6 −lr(d− x3

6 )

M , ll
y3
6 +lr y

3
6 −gM

M

]
elsewhere.

(4)

The fusion information strategy
Although the CoGx,y(t) is a fundamental clinical descrip-
tor [18], a useful identification of a particular disorder also
requires a proper gait analysis of other anatomical joint
trajectories. Accordingly, a more complete gait descrip-
tion was herein achieved by the fusion of two important
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sources of information: the physical gait strategy previ-
ously described and the learned heel trajectories.
The learned heel trajectories were modeled as a set

of normal distributions with mean μi and variance σ 2
i

from three different groups of patients captured in a gait
laboratory as:

ψx,y(t) =
I∑

i=1
wiN(t|μi, σ 2

i )

where I represents the total number of learned gait move-
ments (normal, Crouch and Parkinsonian gaits). Each gait
distribution was computed from 30 gait cycles belong-
ing to 10 patients (7 men and 3 women). From this
multi-gaussian distribution model, we can select a heel
trajectory i to regularize the CoGx,y(t) associated to a
particular gait movement. Likewise, the normal motion
distribution allows a large variety of gait patterns of the
same pathology. New relationships are inferred from these
two trajectories by assuming the knee joint position as
rx,y = l0x,y

2 [37]. Afterward, a classical inverse kinematic
method is adapted to obtain two main kinematic patterns:
the flexion-extension patterns of the hip ω(t) and knee
γ (t). For doing so, at each time t of the gait cycle, a CCD
method performs an iterative rigid transformation over
each couple of joints. The two patterns are defined as:

γ (t) = acos
(
CoGx,y(t)2 − r2x,y − r2x,y

2

)
(5)

ω(t) = atan2(ψx,y) + atan2(rx,y sin γ , rx,y + rx,y cos γ )

(6)

where r is the distance between the CoGx,y(t) and ψx,y(t).
Unlike other approaches, this model estimates kinematic
patterns with medical meaning, but the model can also
obtain energy and ground force patterns for normal and
pathological cases, obtained from the CoGx,y(t).

Building up a human leg structure
Finally, a human-like leg structure is animated using
the set of kinematic patterns described above. This
structure may be used as a clinical interpretability tool.

For doing so, we define a human structure composed
by a set of 12 rigid elements, connected together, as
shown in Figure 2. The lower limbs follow a dynamics
established by the proposed model, while the upper limbs
are normal trajectories computed from real data of the gait
laboratory.

Modeling pathological movements
The proposed model is also capable of simulating
pathologic patterns such as the spastic diplegia (typi-
cally represented by a Crouch Gait) and Parkinson, an
advantage with respect to other classical models.
Firstly, the model is used to simulate a Crouch gait. This

motion is produced by a neuro-muscular disorder known
as the spastic diplegia that is characterized by the presence
of muscle rigidity and loss of muscle force, affecting pre-
dominantly legs, arms and face. The clinical signs include
gait pattern distortions of the sagittal plane, like bent-
rigid knees, flexed hips and certain anatomical changes
like lumbar lordosis. Such signs were herein modeled by
setting the spring constant to values close to the estimated
leg springiness. The resultant kinematic patterns are thus
related with an increase in the energy consumption, show-
ing a flexion rigidity of the hip and knee. The model is
also used to simulate typical Parkinson gait patterns. In
this case, the gait patterns are produced by a degenerative
disorder of the central nervous system and are character-
ized by rigidity and slowness of the human movements:
this gait is characterized by short steps. These Parkin-
sonian gait features were captured by fixing the d and
k parameters, associated to the step length and the the
knee flexion-extension, respectively. This representation
results directly related to the energy consumption since
in this case a particular displacement demands more
energy than that required during a normal gait. Like-
wise, the kinematic gait patterns are characterized by a
higher frequency than the observed for a normal gait.
This kind of patterns can be modeled and simulated
to approximate different phases of the disease, allowing
thereby to objectively characterize the pathology.
Simulation of these pathologies requires to set the l0,

k and d parameters, using actual patient data. For the
Crouch gait simulation, the spring constant was fixed

Figure 2 The Figure shows the human-like leg structure used to simulate the set of kinematic patterns. It can be used as software tool.
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Figure 3 Simulation of Crouch gait patterns. In the left panel it is illustrated a sequence of human poses obtained from the proposed model. In
the right panel it is presented the joint angle trajectory (red starred line), obtained with the proposed fusion strategy and compared with the
ground truth patterns (shadowed gray zone whose mean trajectory is represented by the green line).

within a range of k = 350 to 400, the d = 0.65
and the l0 length was reduced to 5% of the initial 1
m, according to well known biomechanical parameters
[1-3,20]. For the Parkinsonian gait simulation the d
parameter was obtained from actual data and set to
0.58 m, the k was set to 500 and l0 = 1 meter.
The heel paths fitted a normal distribution and were
learned from actual patient data, as previously explained.
The simulated trajectory precisely follows the different
components of the abnormal gait pattern, in particular
the flexed knees, the CoGx,y(t) attenuation and the step
length, as shown in Figures 3 and 4 and reported in next
section.

Evaluation and results
Evaluation was carried out by comparing the estimated
gait kinematic patterns with ground truth trajectories,
of normal and pathological patterns, as reported in
[2,14,21]. A quantitative evaluation was performed by
calculating the correlation coefficient and the Fréchet
distance between both trajectories, which are composed
of temporal x and y paths, belonging to a single gait cycle.
A first part of the evaluation consisted in determin-

ing the CoGx,y(t) relation of two models, the physical
model herein proposed and a classical compass pendu-
lum model w.r.t the ground truth [38]. Figure 5 shows the
decomposed motion for both models: the x axis repre-
senting the percentage of the gait cycle and the y axis the
vertical displacement with respect to the body height, also
in percentage. Both models follow a CoGx,y(t) periodic
sequence, but the classical compass pendulum model sys-
tematically misses the discontinuity introduced by the

heel strike, much more important in the x axis, while the
proposed model accurately predicts this part of the cycle.
Notice that the heel strike of the contralateral foot (toe
off ) actually occurs at about a 60% of the gait cycle.
A second part of the evaluation compared the hip γ (t)

and knee ω(t) joint-angle patterns of simulated normal
gaits and ground truth patterns. For this assessment, the
fusion strategy used two different CoGx,y(t) estimations:
the proposed physical model and the classical compass
pendulum previously described. The hip γ (t) and knee

Figure 4 CoGx,y(t) trajectory obtained with two different
approaches. The shadowed gray represents the normal distribution
pattern for the CoGx,y(t) trajectory, whose mean μ is represented by
the dark green line. The red starred line stands for the CoGx,y(t)
trajectory obtained with our physical model while the blue crossed
line represents a trajectory computed from a classical pendulum
model.
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Figure 5 Simulations for different gait patterns. Panels A and B show the right and left Hip Flexion respectively. Panels C and D show the right
and left knee flexion. The shadowed gray zone corresponds to the normal distribution of the possible joint angle trajectories and the dark green line
represents the mean, i.e., the ground truth. The vertical shadowed green zone is the heel strike phase. Notice that the proposed model (red starred
line) tracks better the ground truth, above all on the zones defined by the heel strike which are the most important when assessing pathological
patterns. The blue crossed line corresponds to the trajectories computed from the fusion strategy but using the CoGx,y(t) of a classical compass
pendulum.

ω(t) patterns were expressed as joint-angle variations
at the y-axis and plotted against the gait percentages
at the x-axis, previously weighted by the entire dura-
tion of a cycle. Figure 6 shows the ground truth and
the predicted gait patterns for a sagittal view (right and
left) of a complete cycle, using the two CoGx,y(t) esti-
mations. The joint-angle trajectories computed from the
fusion strategy show a very close Correlation Coeffi-
cient (CF) w.r.t the ground truth patterns ( CF = 0.8
using the compass pendulum, CF = 0.9 using the herein
proposed physical approach). During the single stance
phase, the angle trajectories computed from both CoG
paths have a high correlation, nevertheless the conven-
tional pendulum misses about a 40% of the angle varia-
tion because of the nonlinearity introduced by the heel
strike and therefore the curve correlation also falls down.
In contrast, the joint-angle trajectories obtained from
the fusion strategy with the proposed physical model

follows the actual gait paths and its correlation coeffi-
cient remains larger than 0.8. Significant differences were
then reported with the conventional compass pendulum,
specifically for the part of the cycle dominated by the heel
strike.
Table 1 shows the correlation coefficient obtained

with the temporal differences between both joint angle
estimates and the ground truth. This measure was applied
only to those gait segments associated with the heel strike
since it was previously confirmed that performance in the
other gait phases are comparable because both models are
based in the pendulum principle to represent the single
stance phase.
Differences were found to be significant during the

heel strike phase (student t-test, p < 0.05) for the joint
angle paths computed with the conventional pendulum
CoGx,y(t), while the joint angle trajectories estimated with
our physical model, obtained correlations of about 96%.
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Figure 6 Examples of the proposedmethod performance when estimating the dynamics of the CoGmovement in different stages of the
Parkinson Disease: Second Stage (A), Third Stage (B) and Fourth Stage (C).

In contrast, joint angle paths computed with the conven-
tional pendulum CoGx,y(t) obtained barely correlations of
about 46%, evidencing the weakness of this type of models
during this gait phase.
On the other hand, since the whole problem consists

in following temporal series which are highly non-linear
and whose dynamics is therefore very difficult to estab-
lish, evaluation should also include a type of measure that
determines a level of agreement between two trajectories.
We have then measured this level using the Fréchet dis-
tance between two temporal series, i.e., the ground truth
and any of the joint-angle trajectories obtained from the
fusion strategy using the two models. Briefly, the Fréchet
measure estimates how close two trajectories are during

the temporal capture, that is to say it estimates how simi-
lar these two curves are. Two trajectories are then similar
if this distance is close to zero, the smaller this distance
the closer the curves are. The Fréchet distance between
two curves is the length of the shortest path between
two points that are simultaneously moving through the
two curves. The Fréchet metric uses a particular direc-
tion of the two curves because the pairs of points whose
distance contributes to the Fréchet distance sweep con-
tinuously along their respective curves. This makes the
Fréchet distance a better measure of similarity for curves
than alternatives, such as the Hausdorff distance, for arbi-
trary point sets. It is possible for two curves to have a small
Hausdorff distance but large Fréchet distance.

Table 1 Correlation factor computed for a normal Gait using two different physical models

Pattern R.Hip R.Knee L.Hip L.Knee CoG

Garcia’s Model 0,17 ±0.02 0,38 ±0.05 -0,02 ±0.01 0,17 ±0.05 0,52 ±0,01

Our Model 0,89 ±0.02 0,99 ±0.01 0,95 ±0.003 0,99 ±0.02 0,84 ±0,01
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Table 2 Fréchet distance for a normal gait using two different physical models

Pattern R.Hip R.Knee L.Hip L.Knee CoG

Garcia’s Model 0,31295 ± 0,025 0,30765 ± 0,023 0,37695 ± 0,017 0,35305 ± 0,025 0,0192 ± 0,0024

Our Model 0,18475 ± 0,012 0,14 ± 0,018 0,26515 ± 0,009 0,21635 ± 0,014 0,0132 ± 0,0041

Table 2 shows the Fréchet measure obtained from tem-
poral differences between estimates and ground truth.
Again, the CoGx,y(t) was assessed as well as the hip γ (t)
and knee ω(t) joint-angles, showing smaller differences
with our model. Interestingly, the close curve similarity
between the joint angle trajectories estimated from our
CoGx,y(t) and the ground truth, achieved a gain of 20%
with respect to the classical compass pendulum model,
that is to say, joint angle trajectories computed from our
physical model were about 20% more accurate.
Finally, a third part of the evaluation focused on chal-

lenging the fusion strategy to simulate pathological pat-
terns. A Chrouch gait was tracked by changing the value
of the k constant. Figure 3 shows a typical cycle obtained
with the proposed model when tracking this pathological
movement. It is observed in this illustration a close rela-
tionship between the trajectory described by the proposed
model and the pathological pattern. A useful clinical eval-
uation requires a precise track of the consecutive ups
and downs described by this pattern, rather than the
magnitude changes.
The Crouch gait simulation was also compared with the

two similarity metrics previously introduced, i.e., the cor-
relation factor and the Fréchet distance, as illustrated in
Table 3. The correlation factor is larger for upper joints,
as expected since movement is much smaller, but yet
correlation is high with joints such as the knees.
The proposed approach was also used to simulate the

Parkinsonian gait in different stages of the disease. For
each Parkinson stage it was computed the most proba-
ble k and d parameters (See Table 4). Then, using these
parameters it was generated aCoGx,y(t)with the proposed
physical model (Figure 4).
The rule of fusion, with the computed CoGx,y(t) and

the learned heel paths from groups of patients, was
used to compute the hip γ (t) and knee ω(t) joint-angle
trajectories. The set of these trajectories allows to ani-
mate an articulated model as a virtual representation that
shows characteristic Parkinsonian signs such as the short
step and the slight flexion of the knee and the hip, as

illustrated in Figure 7. Each Parkinson disease stage was
also compared with the two similarity metrics, previously
introduced, i.e., the correlation factor and the Fréchet
distance, and results are summarized in Table 5. These
results demonstrate that our fusion strategy simulates
accurately different Parkinsonian gaits stages. The angu-
lar joint variations are very similar w.r.t to real patterns,
obtaining a CF higher than 0.90 while the CoG achieves
an accuracy larger than 0.80. The performance for every
Parkinson level was similar, showing a compact represen-
tation for the gait with our method. Additional files 1, 2
and 3 show examples simulating the three different gates
previously mentioned: the Normal, Crouch and Parkin-
sonian and their corresponding kinematic hip and knee
flexion-extension patterns.

Discussion
The gait can be thought of as a sequence of complex
combinations of several subsystems that help the body
to keep the balance while it gains support and propul-
sion [39]. The gait analysis aims to interpret the complex
combination of several motion patterns generated by the
interaction of different systems. In the clinical routine, the
gait examination is considered as the most important tool
for identifying motion disorders, and it is also used as a
biomarker of some neuromuscular illnesses like the cere-
bral palsy or the Parkinson disease, supporting thereby
diagnosis and follow up. Interestingly, during this analy-
sis it is possible to evaluate the effectiveness of a specific
treatment and the particular response of the multiple gait
subsystems. However, these analyses are not actually car-
ried out in the clinical practice, among others because this
requires a complete correlation of all pattern recorded,
which is very time consuming and examiner dependent.
Moreover, measures are contaminated by noise during
the capture or, by invasive devices like markers, which
inevitably alter the natural motion gestures. Overall, most
clinical examinations are devoted to capture a general
gait picture which makes that treatments are globally
addressed. The actual utility of devising gait models is that

Table 3 Correlation factor and Fréchet distance when simulating the Crouch gait with the proposed fusion strategy

Metric R.Hip R.Knee L.Hip L.Knee CoG

Correlation factor 0,96 ± 0,01 0,88 ± 0,04 0,96 ± 0,01 0,93 ± 0,03 0.92 ± 0,02

Fréchet distance 0,19 ± 0,006 0,26 ± 0,001 0,13 ± 0,004 0,21 ± 0,002 0,29 ± 0,003
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Table 4 Model parameters learned from 10 patients in
different stages of the Parkinson disease

Model
Parameter

Stage 2 Stage 3 Stage 4

k average 52.3 ± 6.22 67.42 ± 8.25 96.8 ± 2.54

d average 0.76105 ± 0.087 0.5576 ± 0.0474 0.4356 ± 0.0294

they may improve understanding of some subsystem pat-
terns from the captured data, even if they are noisy, and
hence they allow to plan more specific treatments.
This work has presented a new fusion scheme that

simulates a large set of gait patterns, including patholog-
ical conditions. The model allows to identify the role of
certain subsystems during the simulation, an important
step towards planning oriented treatments. This scheme
uses two important information sources, i.e., kinetic and
kinematic components, maintaining the possibility of an
energy consumption analysis. The fusionmethod assumes
that the gait kinematic patterns must follow basic phys-
ical principles. The underlying trajectories are generated
by an adapted version of the compass pendulum represen-
tation which has been extended with elements that store
energy, describing a larger number of abnormalities than
it has been possible so far. These trajectories are then reg-
ularized by actual learned paths, completing thereby the
rule of fusion by means of an inverse kinematic approx-
imation. A broad range of gait pathologies can thus be
emulated with the proposed approach, mainly those char-
acterized by flexion-extension restrictions or leg stiffness,
as for instance patients with diabetes mellitus (DM) and
peripheral neuropathy (PN) who commonly present very

short stride lengths, slower walking velocities and unsta-
ble upright postures [40,41]. Likewise, these simulations
may be extended to gait pathologies that compromise
knee dorsiflexors and extensors like the steppage gait.
The models reported in the literature are very limited

when describing particular variations of a pathological
motion. Gait models can be coarsely divided in two large
groups: physical based models and musculoskeletal repre-
sentations. Physical models use an inverted pendulum or
a spring mass system that allow an energy consumption
analysis and a global dynamic description. These models
nevertheless fail to mimic pathological patterns because
of the strong simplifications and restrictions, i.e., pen-
dular models represent only the single stance while the
double stance is completely omitted. Musculoskeletal rep-
resentations, typically more complex than physical-based
models, are able to simulate muscle patterns at each gait
phase by adding some non linear muscle-tendon interac-
tions, traditionally modeled by the Hill’s model or prior
information coming from data obtained from actual gait
laboratories. Currently, musculoskeletal models associate
each leg segment to a Hill’s model. However, a main
drawback of this approach is that there is no interaction
between the different segments and hence simulations
are quite far from experimental data, therefore, missing
any anatomical meaning [10,29]. Best performances are
obtained by combining a prior model with observations
coming from actual data [4,5,10,15], but these models
completely neglect important kinetic relationships and
require a high level of expertise to properly tuning the
model parameters. In contrast, physics based models are
simple and usually tuned with a small number of variables.

Figure 7 Simulation of Parkinsonian gait patterns. In the left panel it is illustrated a sequence of human poses obtained with the structural
model, corresponding with actual patient poses. In the right panel it is presented the joint angle trajectory (red starred line) obtained with the fusion
strategy and compared with a ground truth patterns (shadowed gray zone whose mean trajectory is the green line).
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Table 5 Results obtained simulating the Parkinsonian gait for in each stage of the disease considered in this work

2nd Stage Metric R.Hip R.Knee L.Hip L.Knee CoG

Correlation factor 0.92± 0.008 0.91± 0.01 0.95± 0.008 0.93± 0.009 0.83± 0.004

Fréchet distance 0.09 ± 0.001 0.11 ± 0.002 0.09 ± 0.001 0.12 ± 0.002 0.12 ± 0.001

3rd Stage Metric R.Hip R.Knee L.Hip L.Knee CoG

Correlation factor 0.95± 0.012 0.89± 0.009 0.93± 0.012 0.96± 0.01 0.88 ± 0.003

Fréchet distance 0.09 ± 0.001 0.13 ± 0.002 0.09 ± 0.001 0.08 ± 0.002 0.13 ± 0.016

4th Stage Metric R.Hip R.Knee L.Hip L.Knee CoG

Correlation factor 0.93± 0.008 0.90± 0.008 0.96± 0.008 0.91± 0.008 0.86 ± 0.005

Fréchet distance 0.09 ± 0.002 0.12 ± 0.001 0.17 ± 0.002 0.13 ± 0.001 0.04 ± 0.001

This simplicity, nonetheless, leads to most physics based
models to miss important phases of the gait cycle. The
fusion model proposed in this work represents the single
stance by an articulated double pendulum system, while
the double stance is properly simulated by a spring mass
component that stands for the important knee motion
contribution. The proposed model in addition emulates
a whole skeleton structure by animating this architec-
ture from the CoG trajectory. The whole strategy allows
a natural simulation of non-linear gait patterns, repre-
senting several kinds of movements. Evaluation demon-
strated the fusionmodel advantages, by comparing several
kinematic patterns like the CoG trajectory and the hip
and knee flexion-extension movements, considered as the
most representative gait patterns for determining whether
a motion is pathological or not [1-3].
The first evaluation compared the adapted physical

model with a classical compass pendulum. An appropri-
ate extraction of the CoG is essential since this biomarker
is an efficient indicator of the normal/abnormal gait pat-
tern, it constitutes one of the most important markers in
pathologies such as hemiplegia, paraplegia or dystonia. A
pathological gait can be analyzed in terms of energy using
the CoG, which tracks the transfer of potential to kinetic
energy (recovery), i.e. normal gait patterns loss 40% of
their energy in this transfer, a higher loss is pathological
[42]. The CoG trajectory described by our physical model
achieved a CF of = 0.84 while classical pendulum model
only achieved a CF of = 0.52, as illustrated in Figure 5.
In a second evaluation, hip and knee joint-angle paths

were compared during the linear part of the cycle. Results
showed a close correlation of the fusion strategy with
respect to gold standard patterns, a CF of = 0.9 for our
strategy and a of CF = 0.8 for trajectories computed
from the classical compass pendulum. The same test was
repeated exclusively for the nonlinear part of the cycle:
a CF of = 0.96 was estimated with the fusion model
while a CF of = 0.35 was computed with the classical
compass pendulum. Likewise, while the complete pro-
posed strategy obtained a 0.1 Fréchet distance, the joint

trajectories estimated with the classical pendulum yielded
a 0.35 Fréchet distance for the normal gait. Overall, the
largest error was obtained during the nonlinear parts of
the gait cycle like the heelstrike and the hipmoments. This
fact illustrates the relevance of obtaining a complete CoG
global description even to estimate the remain joint angle
trajectories
When simulations were performed for pathological

patterns, the fusion method maintained in average a CF
= 0.90. Two neuromuscular disorders were simulated: the
cerebral palsy and the Parkinson disease in three differ-
ent stages. For both abnormal movements, actual patient
motion data allowed to adjust parameters and to obtain
closer CoG trajectories.
During the Crouch gait simulation, the model parame-

ters were set to k = 400 and d = 0.65, according to the
data learning process. Simulations achieved a CF of = 0.9,
a very close representation of actual patterns (Figure 6).
The Fréchet distance maintained a comparable perfor-
mance when tracking the ground truth. The Parkinson
simulation, in three different disease stages, also shows a
very alike representation w.r.t actual patterns. The model
parameters were fixed according to Table 4 for each stage
disease. The fusionmodel achieved in average a CF= 0.92
and a Fréchet distance average of 0.1, demonstrating the
close likeness of the patterns obtained and actual data.
These results demonstrated the model ability to accu-
rately follow a different sort of gait patterns, either normal
or abnormal. The model may be used as training tool
for physician and also to predict the performance of a
particular gait treatment.
Finally, it is worth to strengthen out the simplicity of

the presented model and its ability to represent patholog-
ical movements by only tuning two parameters and with a
relatively simple fusion strategy. The model may be used
as a complementary tool of the classical gait analysis to
determine an illness degree of any subsystem, either by
correlating the compromise of any leg segment with the
clinical data, or by perturbing the model and therefore the
resultant trajectory.
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Conclusions and perspectives
This work has presented a fusion model to simulate nor-
mal and pathological kinematic gait patterns. Two main
contributions are introduced in this work, a fusion strat-
egy of two important information sources which allows
the accurate estimation hip and knee joint angle trajec-
tories. Additionally, a physical that describes the COG
trajectory using a pendular motion for the single stance
and a springmass system for the double stance. Themodel
is complemented by an animated structure that allows to
visualize and quantify different gait patterns, i.e., the hip
and knee flexion-extension. The proposed approach can
be easily extended to simulate other pathologies or even
to find more dynamic gait relationships that describe a
particular movement. Finally the proposed model opens
up an actual possibility towards understandingmore com-
plex gait phenomena, crucial in many applications of the
prostheses design such as the alignment or the relation-
ship between those prostheses and the different muscle
subsystems.
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