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Abstract

Background: Obesity is known to affect balance and gait pattern increasing the risk of fall and injury as compared
to the lean population. Such risk is particularly high during postural transitions. Gait initiation (GI) is a transient
procedure between static upright posture and steady-state locomotion, which includes anticipatory antero-posterior
and lateral movements. GI requires propulsion and balance control. The aim of this study was to characterise
quantitatively the strategy of obese subjects during GI using parameters obtained by the Center of Pressure (CoP)
track.

Methods: 20 obese individuals and 15 age-matched healthy subjects were tested using a force platform during
the initiation trials. CoP plots were divided in different phases, which identified the anticipatory postural
adjustments (APA1, APA2) and a movement phase (LOC). Duration, length and velocity of the CoP trace in these
phases were calculated and compared.

Results and discussion: The results show that the main characteristic of GI in obese participants is represented
by a higher excursion in medio-lateral direction. This condition lead to longer APA length and duration, which are
statistical significant during APA2 when compared to control subjects. We also found longer duration of APA1 and
LOC phases. In terms of velocity, most of the phases were characterised by a reduced CoP velocity in antero-posterior
direction and faster movement in medio-lateral direction as compared to the control group.

Conclusions: Our findings provide novel evidence in GI in obese subjects that may serve for developing exercise
programs aimed at specifically improving balance in both the antero-posterior and lateral directions. Such
programs together with weight management may be beneficial for improving stability during postural transitions
and reducing risk of fall in this population.
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Background
The common act of taking a step involves complex
interactions between neural and biomechanical factors
that serve to move the body from a quasi-static (quiet
standing) to a dynamic state (walking). The biomechan-
ical requirements for successful gait initiation are the
generation of a momentum (in the forward direction
and in the direction of the stance limb) and the main-
tenance of balance.
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Most studies concerning human gait have focused on
steady state walking. However, for safe independent
locomotion other aspects of gait are important as well.
The transition from standing to walking is a task, which
is often required in daily life balance control. Compared
to steady state walking, the demands placed on the
neuromuscular system are increased in gait initiation,
since a complex integration on neural mechanisms, muscle
activity and biomechanical forces is necessary [1,2].
Postural adjustment and muscle activity at ankle and
hip level are needed to initiate gait.
Gait initiation (GI) is a transient procedure between static

upright posture and steady-state locomotion, which in-
cludes anticipatory antero-posterior and lateral movements.
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In addition, it represents the passage from bi- to mono-
pedal stance, one of the first phases of the locomotion
sequence. The transition from two- to one-foot support
also constitutes the first stage in other motor tasks
involving lower limbs’ activity.
GI is typically associated with anticipatory postural ad-

justments (APAs) and occurred prior to gross segmental
movement and stability-boundary changes of the first step.
APAs mean that the onset of postural changes occurs
prior to the onset of the postural disturbance due to the
movement. They also mean that a feed-forward postural
control is associated with the movement control that pre-
vents the occurrence of movement-related posture and
equilibrium disturbances. Specifically, the control of equi-
librium during leg movements is interesting to analyse
because the moving limb is involved in body support.
Movements of the leg change the support conditions
and entail a shift of the centre of gravity position prior
to movement onset [3].
According to Remelius [4], a postural model considering

the shift of COP (Centre of Pressure) and movement of
CoM (Centre of Mass) as the result of coordination of
the following two mechanisms can be used: an inverted
pendulum operating as an “ankle strategy” in the anterior-
posterior (A/P) direction, dominated by ankle muscles,
and bilateral limb loading creating a “hip strategy” in
the medio-lateral (M/L) direction, dominated by hip
abductor/adductor muscles [5].
Coordinated actions of these two postural mechanisms

move the CoP during APA in the following manner:
firstly, a transition of the CoP in lateral and posterior
directions together toward the swing foot heel (APA1),
which is thought to be pre-programmed and requires
the bilateral inhibition of soleus and activation of tibialis
anterior; secondly, a lateral CoP shift toward the stance
foot (APA2) [1,4]. The swing leg’s heel-off occurs at the
start of the second phase of CoP displacement (a lateral
shift toward stance leg) and toe-off (TO) occur just before
the forward CoP displacement [6,7]. These APAs reduce
the load on the swing leg and are necessary for forward
progression [8,9]. Although APAs are referred to as “an-
ticipatory” [10], they also continue throughout the move-
ment itself [5].
GI requires two skills: propulsion and balance control.

In particular, the duration of APA is considered an indi-
cator of balance control ability during GI [11]. The skill
to maintain stability, weight transfer, foot clearance,
etc., become more critical during GI than during the
steady state conditions. It was demonstrated that the
relative timing of the two previous phases of GI remained
consistent at different speed of initiation and stance of
tibialis anterior duration during the first phase is inversely
related to stance of soleus duration during the second
phase [12]. In addition, GI could be positively influenced
by the use of orthoses, which have shown to reduce the
duration of GI phase in healthy individuals [13].
Patients with neurological disorders, lower limb ortho-

paedic complications, older adults with poor stability
and gait or obese individuals may cope with more diffi-
culty with GI demands [13]. Previous papers have ad-
dressed the effect of obesity on balance [14-17] and gait
patterns [18] unveiling the motor abnormalities related
to an excessive body mass under static and dynamic
conditions: such postural and gait impairments increase
the risk of fall and injury in obese subjects as compared
to the lean population [14].
Propulsion capacity seems also to be reduced in the

presence of excessive body mass [19]. In general, obese
subjects show a reduced muscle strength in the lower
limbs when normalized to body weight, which could ac-
count for reduced performance in motor task involving
muscle power such as initiating gait, raising from a chair,
climbing stairs [20].
Therefore, investigating whether GI, representing the

transition from standing with a wide base of support on
the two feet to the actual gait with a narrow base and
single support, could be affected by the presence of ex-
cessive body mass would provide further insight into
the functional limitations related to obesity and possibly
generate rehabilitation spin-offs. Such transition move-
ments are indeed intrinsically characterised by an in-
crease in postural instability, which can amplify the risk
of fall and injuries [21]. In the literature, GI has been so
far evaluated in young healthy, elderly, individual with
Parkinson, individual with multiple sclerosis and indi-
viduals with lower limb amputation [1,2,4,6,21-29]. To
the best of our knowledge, no evidence is available for
obese subjects. The aim of this study was therefore to
quantitatively characterise the strategy of obese sub-
jects during GI using parameters obtained by Center of
Pressure (CoP) track.
Materials and methods
Subjects
In this study, we analysed 20 obese individuals (BMI
≥30 kg/m2; range: 37–52 kg/m2): 13 females (age: 49 ±
13 years, height 1.62 ± 0.08 m; weight: 114.08 ± 17.33 kg;
BMI: 43.16 ± 4.18 kg/m2) and 7 males (age: 37 ± 12.0 years;
height: 1.74 ± 0.11 m; weight: 130 ± 29.8 kg; BMI: 42.79 ±
5.42 kg/m2). They were selected among obese individ-
uals admitted to the San Giuseppe Hospital, Istituto
Auxologico Italiano, in Piancavallo (Italy) for multidis-
ciplinary rehabilitation and weight reduction programs.
Exclusion criteria were the presence of neurological
disorders, oculo-vestibular disorders, major musculo-
skeletal condition (complicated back, hip and knee pain,
flat foot), hip and knee replacements, and arrhythmia.
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The control group (CG) consisted of 15 age-matched
healthy subjects recruited among the hospital staff: 8
females (age: 27 ± 3 years; height: 1.66 ± 0.06 m; weight:
56.7 ± 7 kg; BMI: 20.7 ± 1.2 kg/m2) and 7 males (age: 30 ±
5 years; height: 1.80 ± 0.07 m; weight: 71 ± 6 kg; BMI:
21.9 ± 1.2 kg/m2).
The characteristics of both groups of participants are

reported in Table 1.
The study was approved by the Ethics Committee of

the Istituto Auxologico Italiano; participants were properly
informed about aims of the research, testing procedures
and personal data treatment. Written informed consent
was obtained from each subject before taking part to
the experiment.
Experimental setup
The study was performed in the motion analysis labora-
tory. Data from the force platform were acquired by means
two force platforms (Kistler, Winterthur, Switzerland) in
order to measure the trajectory of CoP. Subjects were
asked to stand barefoot on first force platform in a relaxed
posture, on both legs, in a fixed and parallel position (the
distance between their heels was fixed to the pelvis width).
Acquisition of force platform data was triggered just prior
to the participants receiving a verbal cue to begin walking-
approximately 3 seconds before starting task. All the re-
quests were standardized: 3 trials starting with the left leg
and 3 trials starting with the right leg. In response to the
cue, the participants initiated walking and continued walk-
ing for several steps passing through the second platform.
For each subject three data collection trials for each limb
were performed at a self-selected pace. Thus, a total of 6
gait initiation trials (three starting with the left foot and
three with the right foot) were acquired for each partici-
pant – both obese and control group.
Data analysis
The raw COP data sampled at a frequency of 1 kHz
and low-pass-filtered at 20 Hz was analysed using a
dedicate protocol developed using SmartAnalyzer soft-
ware (version: 1.10.451.0; BTS, Italy).
Table 1 Baseline characteristics of both groups of
participants

Control Group Obese

N(Male/Female) 15(8/9) 20(7/13)

Age [years] 28(4) 45(14)

Weight [Kg] 63.4(9.6) 120.2(22.9)*

High [m] 1.72(0.1) 1.67(0.1)

BMI [kg/m2] 21.2(1.3) 43.0(4.9)*

Note: Values (except N) are shown as mean (SD). *= p < 0.05, obese vs. control
group.
N = Number of subjects, BMI = Body Mass Index.
For each acquisition, five points were manually identi-
fied as shown in Figure 1:

1. Origin (initial COP position),
2. First minimum (1 min): minimum posterior position

of the COP on the leg in swing side,
3. First maximum (1max): Maximum anterior position

during the COP transition from the leg in swing to
the leg in stance,

4. Second minimum (2 min) minimum posterior
position of the COP on the leg in stance side.

5. End (Final COP position)

For the timing analysis, we divided the task in two
phases [1,4]:

1) postural phase, which is computed between a quite
standing position and the start of the task. This first
phase of GI - typically referred to as an APA. It can
be divided into two sub-phases:

- APA1 begins at the onset of the movement and ends
at the release of swing foot vertical loading – this APA is
between the origin and the first minimum. It represents
the translation of the CoP in lateral and posterior direc-
tions together toward the swing foot heel.
- APA2 that begins at swing foot release, ends at the

swing toe off, and represents a lateral CoP shift toward
the stance foot [1]. APA2 was further divided into two
additional sub-phases: APA2a and APA2b defined re-
spectively the anticipatory movement between the first
minimum and the first maximum and the anticipatory
movement between the first maximum and the second
minimum.

2) locomotor phase - following referred to as LOC –
which is between the second minimum and the end
of the COP trajectory.

APA phases and the LOC phase are schematically
represented in Figure 2.
According to this phases subdivision, the following

parameters have been calculated:

� Track length (m) of the segments: lAPA1, lAPA2a,
lAPA2b, lLOC

� Track velocity (m/s) in the segments and in the
anterior-posterior direction (x) and in medio lateral
direction (z): VAPA1(x,z), VAPA2a(x,z), VAPA2b(x,z),
VLOC(x,z)

� Track duration (s) during the segments: dAPA1,
dAPA2a, dAPA2b, dLOC and dTot (defined as the
whole duration of the track: dAPA1 + dAPA2a +
dAPA2b + dLOC).



Figure 1 Overhead view of Centre of Pressure (COP) displacement in antero-posterior and medio-lateral direction during gait initiation
(GI). The initial foot is the left foot. The origin and the end of the GI are marked with squares, minimum and maximum are marked with circle.
Other parameter are also indicated; in particular, the differences between minimum and maximum points in antero-posterior and medio-lateral
component are shown.

Figure 2 Centre of Pressure (COP) trajectory division for the analysis (APA1, APA2a, APA2b, LOC). The initial foot is the right foot.
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The relative distance between minimum and maximum
have been calculated as shown in Figure 1 and the follow-
ing parameters were defined:

� DiffMinx defined as the relative distance between
first minimum and the second minimum along the
anterior-posterior direction-1°Min and 2°Min A/P

� DiffMinz defined as the relative distance between
the first minimum and the second minimum along
the medio-lateral direction.

� D1M1m1x defined as the relative distance between
the first maximum and the first minimum along the
anterior-posterior direction-1°Min and 2°Min A/P

� D1M1m1z defined as the relative distance between
the first maximum and the first minimum along the
medio-lateral direction.

� D1M1m2x defined as the relative distance between
the first maximum and the second minimum along
the anterior-posterior direction-1°Min and 2°Min A/P

� D1M1m2z defined as the relative distance between
the first maximum and the second minimum along
the medio-lateral direction.

Statistical analysis
All parameters were computed bilaterally for each partici-
pant and the median and quartile range values of all in-
dexes were calculated for each group (obese and control
group). Kolmogorov–Smirnov tests were used to verify if
Figure 3 Postural trajectory comparison between obese and control g
obese and with squares for the control group.
the parameters were normally distributed; the parameters
were not normally distributed, so we used the Mann–
Whitney U tests for comparing data of obese group and
CG. The correlation Statistical significance was set at
p < 0.05.

Results
All the participants were able to complete the instru-
mented evaluations.
Focusing our attention on the trajectory of COP during

the acquisition, we have qualitatively observed that no dif-
ferences were present in term of COP pattern between
obese and control group. The same anticipatory postural
adjustment strategies were adopted, but the average CoP
trajectory of obese subjects seems to be wider as com-
pared to normal-weight subjects (Figure 3).
In Table 2, we have summarised the values of the pa-

rameters analysed for the obese and the control group.
As for the APAs length parameters, the lAPA and

lAPA2a parameters were statistically different between
the two groups and the obese group was characterized
by higher values than the control group (Table 2).
In terms of APAs durations, in obese participants the

total duration was statistically different and, in particular,
APA1, APA2a and LOC resulted the longest phases
(dAPA1, dAPA2a and dLOC indices).
As for the parameters related to differences between

maximum and minimum, significant differences were
roup. Minimum and maximum points are marked with circles for



Table 2 Main parameters

Parameters Obese Control Group

APAs length lAPA1 [m] 0.38(0.06)* 0.37(0.05)

lAPA2a [m] 0.08(0.03)* 0. 06(0.02)

lAPA2b [m] 0.05(0.03) 0.05(0.02)

lLOC [m] 0.16(0.04) 0.15(0.02)

APAs duration dAPA1[s] 0.32(0.09)* 0.28(0.07)

dAPA2a [s] 0.18(0.07)* 0.15(0.05)

dAPA2b [s] 0.11(0.06) 0.10(0.03)

dLOC [s] 0.59(0.08)* 0.53(0.05)

dTot [s] 1.20(0.14)* 1.06(0.10)

Maximum and minimum differences D1M1m2x [m] 0.01(0.01)* 0.02(0.02)

D1M1m2z [m] 0.05(0.02) 0.04(0.02)

DiffMinx [m] 0.02(0.01) 0.01(0.01)

DiffMinz [m] 0.13(0.03)* 0.10(0.02)

D1M1m1x [m] 0.02(0.01) 0.02(0.01)

D1M1m1z [m] 0.08(0.03)* 0.06(0.02)

APAs velocity V APA1 x [m/s] −0.14(0.06)* −0.19(0.08)

V APA1 z [m/s] 0.13(0.07)* 0.11(0.07)

V APA2a x [m/s] 0.13(0.08)* 0.16(0.08)

V APA2a z [m/s] 0.49(0.23)* 0.40(0.17)

V APA2b x [m/s] −0.15(0.10)* −0.20(0.11)

V APA2b z [m/s] 0.47(0.19) 0.46(0.23)

V LOC x [m/s] 0.28(0.08)* 0.29(0.06)

V LOC z [m/s] 0.04(0.03)* 0.02(0.02)

Values of median and quartile range for calculated parameters for obese and control group. *= p < 0.05, obese vs. control group.
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found for the relative distance between the first maximum
and the second minimum along the anterior-posterior dir-
ection (D1M1m2x index), the relative distance between
the first minimum and the second minimum along the
medio-lateral direction (DiffMinz index) and the relative
distance between the first maximum and the first mini-
mum along the medio-lateral direction (D1M1m1z index).
In particular, while the value on the antero-posterior dir-
ection (D1M1m2x index) in obese group was reduced, on
the contrary, the values on the medio-lateral direction
(DiffMinz and D1M1m1z indices) were higher in obese as
compared to controls.
The parameters related to velocity were significantly

different in obese and normal-weight participants. While
the velocity on antero-posterior direction (x direction)
were lower in the obese group, in the medio-lateral direc-
tion (z direction) velocities were higher in obese individ-
uals when compared with normal-weight participants.

Discussion
The purpose of this study was to investigate the effect of
obesity on gait initiation (GI) by quantitatively characteris-
ing the spatial-temporal patterns across the GI sequence.
Based on our results, the main characteristic of GI in
obese participants is represented by a higher excursion in
medio-lateral direction, mainly in APA2a and APA2b, as
shown by the parameters related to maximum and mini-
mum differences calculated in these two phases. This is in
line with previous postural studies on obese subjects [14].
These conditions led to longer APA length and duration,
which are statistical significant during APA2a, as com-
pared to control subjects. In addition, we found longer
duration of APA1 and LOC phases. These results are in
agreement with the visual analysis of the CoP displace-
ments, showing wider CoP trajectories in obese when
compared to the controls (Figure 3).
It is noteworthy that crucial abnormalities are present

in APA1 and, particularly, in APA2a. These phases of GI
represent the APAs starting phases directly connected
with the translation of the CoP in lateral and posterior
directions together toward the swing foot heel (APA1)
and the anticipatory movement from bi- to mono-pedal
support with the lateral CoP shift toward the stance foot
(APA2a) [4].
As for the LOC phase, we found longer duration in

obese than in normal-weight individuals. This could be
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explained by a possible functional adaptation aimed at
improving stability, which is known to be reduced in
these individuals [14]. In addition, significant results
were obtained with regard to APAs velocity. All of the
phases were characterised by a reduced CoP velocity in
antero-posterior direction and faster movement in medio-
lateral direction as compared to the control group, with
the exception of the APA2b phase, where velocity in
medio-lateral direction is close to normal. The following
factors, together with the maximum and minimum differ-
ence parameters, might possibly account for these results:
1) the higher body mass of these individuals, which has
already shown to be related to higher displacements in the
medio-lateral direction [14]; 2) the continuous balancing
effort counteracting the relative instability of those sub-
jects that would ultimately reduce the velocity in antero-
posterior direction.
In other pathological conditions, such as Parkinson’s

disease and Multiple sclerosis, GI alterations are likely to
be directly related to lesions in cerebral areas that are in-
volved in motor programming. Our data cannot be dir-
ectly compared with similar studies on obese populations
in the literature. However, it has been shown that higher
body mass induces per se a certain degree of instability
[14], which is also dependent on fat distribution, with the
android fat distribution affecting balance more than the
gynoid one [14]. Also, obese subjects have been shown to
yield relatively lower muscle strength that their lean coun-
terparts [20]. A reduced capacity of the lower limb distal
and proximal muscles in stabilizing the ankle, knee and
hip joints of an over-weight body frame while standing or
walking may well translate into increased postural sways
and decreased dynamic balance [20].
To our knowledge, this is the first study focusing on

GI performance in obese subjects and direct comparison
with previous researches on this topic cannot be per-
formed. Our results show that the GI pattern is signifi-
cantly affected by obesity. In particular, the alterations
are evident in the early phases of the movement and in
medio-lateral direction.
Regarding velocity, it is known that the backward shift

of the COP during the postural phase serves to propel the
Center of Mass (COM) forward and to reach the intended
gait velocity at the end of the first step, which is the LOC
phase [8,29-34]. By modulating the velocity of the COM
at the end of the first step, these APAs prior to stepping
create the optimal postural and dynamic conditions for
reaching an adequate progression velocity. Thus, the
reduction of the peak of COP backward shift could be a
strategy aiming at decreasing the forward propulsion of
the COM (i.e., the forward disequilibrium) in order to
assure a safe GI movement. This reduction of the pro-
gression velocity during GI could possibly explain the
reduction in the COP velocity during the LOC phase.
Our findings could be interesting from a rehabilitative
point of view as they provide evidence for developing ex-
ercise programs aimed at specifically improving balance
in both the antero-posterior and in particular in lateral
directions. Comprehensive rehabilitation programs includ-
ing weight management and tailored strengthening and
balance exercises may be beneficial in fact for improving
stability during postural transitions and reducing risk of
fall in this population.
The present study have some limitations. First, only

data related to CoP trajectory were investigated while no
evaluations of lower limb joints kinematics and kinetics
were conducted. However, as it represents the first at-
tempt to quantify GI strategy of obese individuals, we de-
cided to perform the GI assessment using only one force
platform, with a less time-consuming evaluation than in-
cluding markers placement or other conventional assess-
ments. Future research could address the quantification of
GI strategy including a stratification of participants based
on BMI, in order to investigate whether BMI influences
GI performance.

Conclusions
Our study outlines the limitations of obese individuals
during GI performance. Such limitations are especially
evident in the early phases of the movement and in
medio-lateral direction. The GI assessment could inte-
grate the functional assessment performed on obese sub-
jects. The GI evaluation test has the advantage to be
simple and less time-consuming than other conventional
tests, such standard gait analysis and it requires only one
force platform, which can be fitted in an out-patients
department.
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