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Abstract

Background: Pattern recognition (PR) based strategies for the control of myoelectric upper limb prostheses are
generally evaluated through offline classification accuracy, which is an admittedly useful metric, but insufficient to
discuss functional performance in real time. Existing functional tests are extensive to set up and most fail to provide
a challenging, objective framework to assess the strategy performance in real time.

Methods: Nine able-bodied and two amputee subjects gave informed consent and participated in the local Institutional
Review Board approved study. We designed a two-dimensional target acquisition task, based on the principles of Fitts’
law for human motor control. Subjects were prompted to steer a cursor from the screen center of into a series of
subsequently appearing targets of different difficulties. Three cursor control systems were tested, corresponding
to three electromyography-based prosthetic control strategies: 1) amplitude-based direct control (the clinical
standard of care), 2) sequential PR control, and 3) simultaneous PR control, allowing for a concurrent activation
of two degrees of freedom (DOF). We computed throughput (bits/second), path efficiency (%), reaction time
(second), and overshoot (%)) and used general linear models to assess significant differences between the strategies
for each metric.

Results: We validated the proposed methodology by achieving very high coefficients of determination for Fitts’ law.
Both PR strategies significantly outperformed direct control in two-DOF targets and were more intuitive to operate. In
one-DOF targets, the simultaneous approach was the least precise. The direct control was efficient in one-DOF targets
but cumbersome to operate in two-DOF targets through a switch-depended sequential cursor control.

Conclusions: We designed a test, capable of comprehensively describing prosthetic control strategies in real time.
When implemented on control subjects, the test was able to capture statistically significant differences (p < 0.05) in
control strategies when considering throughputs, path efficiencies and reaction times. Of particular note, we found
statistically significant (p < 0.01) improvements in throughputs and path efficiencies with simultaneous PR when
compared to direct control or sequential PR. Amputees could readily achieve the task; however a limited number of
subjects was tested and a statistical analysis was not performed with that population.
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Background
The field of myoelectric upper limb prosthetics has been
characterized by great advances in both the development
of multi-articulate advanced arm systems [1] and robust
and efficient control strategies [2,3] for the operation of
those devices.
The current clinical standard of care in myoelectric

control strategies is an amplitude-based dual site con-
trol. In this approach, commonly referred to as direct
control (DC), the mean absolute value (MAV) of the
electromyography (EMG) signal amplitude is recorded
over an agonist–antagonist pair of residual muscles to
control two directions of one prosthetic degree of free-
dom (DOF) [4,5]. DC is configured to provide a 1:1
mapping of the EMG signal amplitude to the speed of
prosthesis movement. Because the number of independ-
ent muscle sites in amputee subjects is limited, mode-
switching (e.g., through co-contraction of the muscle
pair) must be implemented to operate additional DOFs
[6]. Thus in DC, operation of more than one DOF re-
quires mode switching and use of control sites that are
physiologically unrelated to the intended movement, which
makes control cumbersome and unintuitive. Further, as
DC relies on isolated muscle contractions, EMG cross-talk
and muscle co-activation may decrease the sensitivity and
efficiency of this strategy.
An alternative control strategy relies on algorithms

that recognize features in the complex EMG signal pat-
terns derived from several electrode locations. Such pat-
tern recognition (PR) control systems decipher user
intent by classifying feature sets and assigning them to a
given motion class, based on the assumption that each
pattern describes a state of muscle activation that is con-
sistent and distinct from other states of muscle activa-
tions [7]. As such, PR systems separate complex patterns
into a discrete number of classes. PR–based control pro-
vides a substantial advantage over DC because inde-
pendent muscle pairs are not required, which potentially
enables control of more DOFs. Many different PR imple-
mentations have been investigated with different classi-
fiers, feature sets, signal conditioning, or post-processing
techniques; a comprehensive overview can be found in
[2,8,9]. PR–based systems have been proposed for the
control of the next generation of multifunctional upper
limb prostheses [10,11].
Many activities of daily living involve simultaneous

movement of several DOFs. Both DC and current PR
control systems provide only sequential control outputs,
preventing users from performing coordinated tasks in a
natural way. Currently, simultaneous activation of sev-
eral DOFs can be clinically achieved with DC, but only
in individuals who have undergone a surgical technique
called Targeted Muscle Reinnervation (TMR) [12]. Dur-
ing TMR, the residual nerves of the amputated limb are
transferred to available muscles in the residual limb,
thereby artificially creating additional independent con-
trol sites. After TMR, mode switching is no longer re-
quired, EMG cross talk is decreased, and simultaneous
control of two DOFs is possible. However, even though
TMR is growing in popularity, only a small subset of
prosthetic users has had TMR surgery. Moreover, TMR
has not yet been performed on transradial subjects, who
may benefit from being able to combine wrist and hand
motions.
Several research groups have studied the possibility to

provide simultaneous control to patients without TMR
surgery. Kamavuaka et al. estimated the simultaneous
and proportional force in two DOFs from intramuscular
EMG using artificial neural networks and achieved cor-
relation coefficients of 88% for the force prediction [13].
Muceli et al. estimated the kinematics of hand and wrist
with artificial neural networks from high density surface
EMG signals of the contralateral limb during mirrored
bilateral motion training on able-bodied subjects and
achieved estimation accuracies between 79% and 88%
for combined movements [14]. Others focus on using PR
algorithms to extract simultaneous, proportional control
from surface EMG signals. Cipriani et al. showed a 79%
classification accuracy for the simultaneous detection of 7
finger motion classes in 5 amputee subjects [15]. In 2013,
Young et al. evaluated the ability of three different linear
discriminant analysis (LDA) PR control strategies to pro-
vide simultaneous proportional control of a myoelectric
prosthesis. They found classification error rates of less
than 15% for discrete (i.e., 1 DOF) and combined (i.e., 2
DOF) motions using a hierarchical classifier approach
[16]. Baker et al. successfully evaluated a LDA PR algo-
rithm for the decoding of combined finger and thumb
motions from implanted myoelectric sensor signals in a
monkey’s finger muscles in the forearm [17]. The above-
mentioned works show the potential of simultaneous con-
trol through high performance in offline evaluations.
Further work has indicated the feasibility of using sim-
ultaneous controls online and encourages investigation
of promising techniques in real-time settings. In 2013,
Jiang et al. presented a simultaneous control strategy
for two DOFs based on the online extraction of the
prosthesis wrist kinematics from a muscle synergy
matrix that modelled the factorized surface EMG sig-
nals into neural input to individual muscles [18]. In an
online positioning task with 2 DOFs, subjects achieved
very high completion rates and were able to compete
with healthy subjects in terms of efficiency and com-
pletion time. The same group also compared the above
mentioned control strategy [18] to two other myoelec-
tric control algorithms in real-time [19]. Interestingly,
although there were differences in offline performance,
the real-time performance was similar, underlining the
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importance of evaluating control strategy performances
in real-time, functional tasks. In 2014, Young et al. dem-
onstrated the feasibility of providing real-time simultan-
eous control of 2 DOFs with surface EMG PR control, by
configuring simultaneous motions as additional classes on
TMR subjects [20]. The authors showed that the simul-
taneous strategy outperformed conventional control strat-
egies in a real-time virtual hand positioning task and that
subjects preferred to use a simultaneous class 78% of the
time during positioning tasks requiring 2 DOFs instead of
positioning the hand in two sequential operations.
Myoelectric control strategies are generally evaluated

in controlled laboratory environments. Under such con-
ditions, PR–based systems have achieved classification
accuracies higher than 96% with no significant difference
between the different classifiers investigated [2,21]. Des-
pite their high potential for the control of multi-DOF
upper limb prostheses and an increasing interest in the
scientific community, translation of PR systems from
fundamental research to clinical application has not yet
occurred, although initial clinical trials are ongoing. This
delay is due in part to the standard practice of evaluating
PR control strategies by determining classification accur-
acies or errors in an offline evaluation during a discon-
nected state on previously collected data (and not on
data collected in real time during an experiment). While
useful, these metrics are not sufficient to comprehen-
sively determine the real time clinical usability of PR sys-
tems. Furthermore, classification accuracies do not allow
for adequate comparison between different approaches
to PR control. Identifying the most promising PR strat-
egy for clinical implementation requires a shift from
offline error evaluation to functional performance mea-
sures. However, current control algorithms are intended
for multifunctional and multi-articulate advanced hand
and arm systems, which are not always available to re-
searchers. Existing functional tests are not adequate for
objective, pre-clinical performance evaluation of such con-
trol systems.
To bypass the need for an actual prosthesis, virtual

environments have been developed to evaluate the real
time functional performance of myoelectric control
strategies. Kuiken et al. developed the Motion Test [3],
a relatively simple test that prompts subjects to move a
virtual prosthesis through its full range of motion for a
given DOF, with the virtual limb moving at a constant
speed. Simon et al. developed the more challenging
Target Achievement Control (TAC) test [22], which re-
quires positioning of a multifunctional virtual limb
from an initial target position back into a neutral pos-
ition. In the TAC test, the speed of virtual limb move-
ment is proportional to the intensity of the muscle
contraction. Test difficulty is modified by changing end-
point tolerance, and test complexity level is modified by
changing the number of DOFs required to position the
limb. While the test can only evaluate one difficulty level
at a time, it provides a set of informative performance
metrics that allow characterization of control strategies
beyond classification accuracies. A limitation of the TAC
test is the visual aspect of the task; task completion may
be delayed due to difficulty in using visual cues to identify
which DOF to operate to achieve the required position.
Furthermore the TAC test contains proprietary informa-
tion and is not generally available.
Lack of pre-clinical functional assessment methods for

control strategies hinders the comparison of different
approaches across laboratories. A challenging, objective,
real time assessment is needed to identify the most
promising control strategies for efficient translation of
PR into clinical application. The TAC test is a close ana-
logy to a so-called Fitts’ law style test. In 1954, Fitts
first quantified human motor performance in a series
of discrete pointing movements using a center-out tar-
get acquisition test [23]. For rapid, targeted move-
ments, Fitts’ law models the trade-off between speed
and accuracy by relating the time taken for a pointing
movement to the difficulty of the target (eq. (1)).

MT ¼ aþ b � ID ð1Þ

Where MT is the time (seconds) required to move the
cursor from the center into one target, ID is the diffi-
culty of the target (eq. (2)) and a and b are the coeffi-
cients of the linear regression. Fitts’ law has been
extensively used to characterize human-computer inter-
actions, such as those with computer mice or joysticks,
and was integrated into the international standard for
the evaluation of pointing devices (ISO 9241–9) in 2003
[24]. Williams and Kirsch followed this standard to
evaluate a neck EMG–based cursor control system for
individuals with high tetraplegia [25]. They evaluated the
strategy with a comprehensive set of performance met-
rics using a two-dimensional target acquisition test.
While this study assessed EMG-based control of a cursor
on a computer screen, the analogy to myoelectric control
strategies for upper limb prostheses is clear, and the study
proposed a complete and thorough assessment protocol.
Scheme et al. evaluated a PR–based myoelectric control
strategy in a pseudo three dimensional Fitts’ law test [26].
They investigated a PR strategy capable of differentiating
between three DOFs; however, only one motion class was
assessed at a time, thus the proposed assessment did not
evaluate the capacity of the PR strategy to classify simul-
taneous movements. The use of a Fitts’ law style test for
the evaluation of myoelectric control strategies has been
growing; many different implementations have been pro-
posed, and most of them have evaluated sequential control
strategies.
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The aim of the present work was to design and imple-
ment an objective and challenging test, based on the
paradigm of Fitts’ law, to assess functional performance
of EMG-based control strategies in real time. A two-
dimensional Fitts’ law style target acquisition task test
(FTAT test) with a comprehensive set of performance
metrics was used to evaluate three control strategies: the
clinical standard of care (DC); a conventional, sequential
PR (seqPR) strategy; and a simultaneous PR (simPR)
strategy. The FTAT test was used with both able-bodied
and amputee subjects to identify which strategy had
the highest potential for controlling next generation of
multifunctional prostheses.

Methodology
Subjects
Nine able-bodied subjects and two amputee subjects
gave informed consent and participated in this study,
which was approved by the Northwestern University In-
stitutional Review Board. Each subject participated in
three experimental sessions on three different days to
perform the proposed FTAT test with each control strategy.
Subjects’ demographic information is shown in Table 1.

Control strategies, setup, and configuration
The source signal for each control strategy was surface
EMG. The signals were amplified using a Texas Instru-
ments TI-ADS1299 analog front end system and sam-
pled at a frequency of 1 kHz. The signal was filtered
with a 3rd order Butterworth filter with a 20 Hz cut-off
to reduce motion artifact. Direct control (DC): For able-
bodied and the TR subject (S10), pre-gelled adhesive bi-
polar Ag-AgCl electrodes (BioMedical Instruments, Inc.)
were placed on the wrist flexors and wrist extensors.
Muscles were identified by palpation of the proximal
forearm. The TH amputee subject (S11) had previously
undergone TMR surgery and had four independent con-
trol sites on the upper arm (Table 1). For this subject we
used four bipolar electrodes, and no switching method
was required. The MAV of the EMG signal was ex-
tracted over a 200 ms sliding window and was directly
mapped to the operation of one DOF. We prompted
subjects to perform contractions of flexors and extensors
at a medium level and adjusted gains to enable them to
achieve the full range of motion. Thresholds for signal
detection were manually set to reduce muscle crosstalk.
Sequential operation of two DOFs was implemented by
Table 1 Subject demographics

Subject Age (years) Amputation

S1 – S9 22 – 30 Able-bodied

S10 65 Transradial (TR)

S11 35 Transhumeral (TH-TMR)
configuring additional thresholds on both channels such
that a short co-contraction of flexors and extensors
allowed the user to switch between DOFs. The speed of
the control output was proportional to the intensity of
the muscle contraction [22]. A single reference elec-
trode, serving as a ground for the acquired EMG signal
was placed on the styloid process for able-bodied sub-
jects and on the acromioclavicular joint for amputee
subjects.

Conventional sequential pattern recognition control (seqPR)
For able-bodied subjects, six bipolar electrodes were
placed in a ring, equidistantly spaced around the prox-
imal forearm at approximately one third of the arm
length from the elbow. For amputee subjects, the elec-
trodes were placed around the residual muscle bulge on
the distal residual limb. Precise electrode placement for
all subjects was not required as the PR technique ex-
tracts feature patterns from all EMG signals rather than
isolated amplitudes from independent muscle contrac-
tions [27]. A LDA classifier was trained using EMG data
acquired during a supervised data collection session:
EMG signals were collected during four sets of two rep-
etitions of each motion class, during which subjects were
shown pictures of the required movements. For able-
bodied and the TR subject, the motion classes were hand
open, hand close, wrist flexion, wrist extension, and no
motion. The TH subject performed elbow flexion and
extension instead of wrist flexion and extension, as this
DOF was more intuitive to control and is more import-
ant at this level of amputation (Table 2). Subjects were
instructed to perform contractions corresponding to the
indicated motion class for three seconds, starting from
no or a very low level of contraction and gradually in-
creasing contraction intensity to a comfortable, self-
selected level, corresponding to the intensity of a firm
hand shake. The LDA classifier was trained to recognize
the EMG signal patterns in four commonly used time
domain features (Mean Absolute Value, Number of Zero
Crossings, Slope Sign Changes, and Waveform Length
[28]) and six autoregressive coefficients (the first 6 pa-
rameters ai from the autoregressive model of the EMG
activity [29]) that were extracted in analysis windows of
250 ms with an overlap of 200 ms. Using analysis win-
dows of up to 250 ms has been shown to produce an
acceptable trade-off between controller delay and classifi-
cation accuracy [30]. Proportional control was derived in
Recording site TMR surgery?

Right proximal forearm n/a

Residual forearm N

Residual reinnervated upper arm Y



Table 2 Mapping of limb motion to cursor control

Subject Cursor left Cursor right Cursor up Cursor down

Able-bodied & TR (S10) Wrist flexion Wrist extension Hand open Hand closed

TH-TMR (S11) Hand closed Hand open Elbow flexion Elbow extension
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each window to provide an output speed to the corre-
sponding class [31]. Post-processing of the signal included
a decision-based velocity ramp that was shown to reduce
the effect of misclassification on the controllability of
the system [32]. The LDA classifier was trained using
all the data collected during the supervised image-
guided sessions.
Simultaneous pattern recognition control (simPR)
Simultaneous pattern recognition control was implemented
using a similar approach to a parallel classification strategy
proposed by Young et al. [16]. In this approach, one LDA
classifier is built for each DOF, allowing for independent
classification for each DOF and therefore parallel operation
of both DOFs. Six bipolar electrodes were placed as de-
scribed for seqPR, and signal processing (i.e., filtering, fea-
ture extraction, classifier training) was identical to that
described for seqPR. In the image-guided data collection
sessions, subjects performed discrete and combined mo-
tions in four sets of two repetitions each. Proportional con-
trol and post-processing was configured in the same way as
for seqPR. Each classifier was built with all data from com-
bined motions, discrete motions, and the no-motion class.
Motion classes were as for seqPR: hand open/close, with
wrist flexion/extension (for able-bodied and the TR sub-
ject), or elbow flexion/extension (for the TH subject)
(Table 2).
Hand 

open 

Wrist 

flexion 

Wrist 

extension 

Hand 

closed 

A

Figure 1 Fitts’ target acquisition task (FTAT) test. (A) MATLAB (The Ma
acquisition task (FTAT) test. Subjects were prompted to move the blue curs
three EMG-based control strategies (See Table 2). (B) Widths and locations
Fitts’ target acquisition task (FTAT)
A two-dimensional center-out target acquisition task test
was created following the principles of Fitts’ law testing
for rapid aimed movements. The goal of the test was to
control a cursor in two-dimensional Cartesian space and
to steer it from the center of the screen to a circular tar-
get that appeared with a given radius at a given location.
Figure 1A shows the graphical user interface (GUI), pro-
grammed in MATLAB (The MathWorks Inc., Natick,
MA), in which subjects controlled the cursor. Figure 1B
shows all possible target locations with the two types of
targets: on-axis, requiring the operation of one single
DOF, and off-axis, requiring the operation of two DOFs.
The cursor was controlled using one of the three strat-
egies described above. The mapping of limb motion to
cursor movement is shown in Table 2.
A trial began with of the appearance of a target circle

on the test space. Subjects were instructed to move the
cursor as fast as possible from its initial position in the
circle in the center of the space into the target circle and
to dwell inside the target for a full second to complete
target acquisition. A trial failure was determined by (i) a
time-out, (i.e., when target acquisition took longer than
15 seconds); (ii) by excessive overshooting (i.e., when the
cursor moved into and immediately out of the target
more than 4 times; such targets were considered too dif-
ficult), or (iii) when cursor movement was uncontrolled
and the cursor bumped into the borders of the test
B  

thWorks, Inc.)-based graphical user interface (GUI) for the Fitts’ target
or from the center (blue circle) into the target (red circle) using one of
of all possible targets.
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space. Upon trial completion (or failure), the cursor
returned to the initial position and the next trial was ini-
tiated by the appearance of a new target.
The Fitts’ law test was characterized by a series of tar-

get acquisition tasks, each of which was assigned a level
of difficulty expressed as the target’s index of difficulty
(ID) in bits (eq. (2)).

ID ¼ log2 1þ D=W
� � ð2Þ

where D is the target’s distance from the center and W
is the target’s width as defined by diameter; both D and
W are expressed in GUI distance units. The main output
metric of the Fitts’ law test is a metric called throughput
(TP) in bits/s that describes the information transfer rate
of the system (i.e., the control strategy) (eq. (3)):

TP ¼ IDe=MT ð3Þ

where IDe is the ID adjusted for accuracy according to
the recommendations of Soukoreff et al. [24], which ac-
counts for the endpoint scatter within each target’s toler-
ance, as defined by the target width W, of the targeted
movements for each condition and subject (eq. (4)).

IDe ¼ log2 1þ D=We

� � ð4Þ

where We = 4.133 σ, and σ is the standard deviation of
the endpoint positions for a given difficulty condition.
As such, the metric throughput incorporates the results
from all trials over a wide range of difficulties into one
single performance index. It is important to evaluate a
strategy over a wide enough range of IDs for an object-
ive evaluation [24]. In [25], Williams and Kirsch used an
ID range of 1.58 - 5 bits, while Scheme et al. chose a
range of 1.59 - 3.46 bits, showing that higher IDs re-
sulted in higher failure rates [26]. In pilot work, we
found that evaluation of control strategies at higher IDs
was important for assessing precision control in tasks
that required the activation of one or two DOFs [33].
The IDs used with the corresponding target distances
(D) and widths (W) are presented in Table 3 and range
from 1.273 to 5.047 bits.
Table 3 Range of IDs (bits) through combination of
distances D and widths W (GUI distance units)

ID (bits) Distance from center (D)

21.25 42.5 85 120.21

Target width (W) 3.75 2.737 3.624 4.565 5.047

7.5 1.939 2.737 3.624 4.09

15 1.273 1.939 2.737 3.172

30 - 1.273 1.939 2.324
Experimental protocol
After configuration of the control strategy, subjects were
first allowed to familiarize themselves with the control
strategy by controlling a virtual prosthesis. Subjects were
prompted to go through every DOF at low or high speed
to verify good control. Further, practice sessions were
carried out during each testing session to ensure that
subjects had enough time to (1) achieve control of the
cursor by mapping muscle contraction to cursor motion
on the screen, and (2) reach a plateau in performance.
The number of practice trials per session as well as the
number of practice sessions was proportional to the
complexity of the control strategy and task complexity
(i.e. 1 DOF vs. 2 DOFs) (Table 4).
The experimental protocol consisted of six sessions

per control strategy. Sessions were separated by rest pe-
riods of two or three minutes, depending on muscle fa-
tigue. In every session, 45 targets that required use of
either 1 or 2 DOFs were presented to evaluate subjects’
ability to perform both task types with the given control
strategy.

Performance metrics
To comprehensively evaluate each control strategy, we
generated a set of five quantitative performance metrics
(Table 5).

Questionnaires
Qualitative evaluation of the control strategies was ob-
tained through a three-part questionnaire (Table 6). Sub-
jects completed a questionnaire after using each control
strategy and after evaluating all three strategies. Part I of
the questionnaire comprised questions concerning the
experimental setup and the test and was administered
after the first experimental session. Part II comprised
questions about control strategy and was administered
after testing each control strategy. Subjects were
prompted to answer a last question (part III) after com-
pletion of all experiments.

Statistical analysis
We assessed the significance of the results for each per-
formance metric with general linear models (GLMs). We
built one GLM for each of the five dependent variables
(throughput; path efficiency; overshoot; completion rate;
and reaction time) and tested for possible interactions
between all variables. Session number (one to six); task
type (1 or 2 DOFs); and control strategy (DC, seqPR, or
simPR) were used as fixed factors and subject was used
as a random factor. To further analyze differences be-
tween significant effects and interactions, we conducted
post-hoc comparisons with a Bonferroni correction fac-
tor whenever required. Amputee subject data were ana-
lyzed as case studies.



Table 4 Practice session protocol

Practice trials Direct control Conventional PR Simultaneous PR

Discrete targets (1 DOF, on axes) sessions 1 1 1

targets/session 11 22 22

Combined targets (2 DOFs, off-axes) sessions 6 6 12

targets/session 15 30 30

Wurth and Hargrove Journal of NeuroEngineering and Rehabilitation 2014, 11:91 Page 7 of 13
http://www.jneuroengrehab.com/content/11/1/91
Results
Compliance with Fitts’ law
We obtained a strong linear relationship between move-
ment time MT (s) and index of difficulty ID (bits) across
subjects, indicating high conformity of the data to Fitts’
law. The high coefficients of determination R2 for both
able-bodied and amputee subjects with each control
strategy and in each task type (Figure 2) support the val-
idity of the proposed test for EMG-based control strat-
egies. Able-bodied subjects achieved a R2 of 0.994 ± 0.004
across control strategies for 1 DOF tasks (Figure 2A; thin
lines) and a R2 of 0.981 ± 0.003 across control strategies
for 2 DOF tasks (Figure 2A; thick lines). Amputee subjects
achieved R2 = 0.988 ± 0.02 (Figure 2B; thin lines) for 1
DOF targets and R2 = 0.9658 ± 0.01 for 2 DOF targets
(Figure 2B; thick lines).

Control strategy performance
Cursor trajectories
The goal of the test was to reach the targets as fast as
possible using the assigned control strategy. Subjects ex-
hibited a stereotypical cursor profile with each strategy
that was consistent across subjects with the exception of
the TH subject using DC, where the setup for DC was
different due to the additional control sites from prior
TMR surgery. Figure 3 shows those profiles for one rep-
resentative able-bodied subject (3A) and for both ampu-
tee subjects (3B and 3C).

Completion rate
Both able-bodied and amputee subjects had very high
completion rates (above 96%) with each control strategy.
The GLM for able-bodied subjects yielded target type as
a significant factor (p = 0.02); subjects completed signifi-
cantly less 2 DOF targets (combined motions) than 1
Table 5 Description of performance metrics

Metric Units

Throughput Bits/second Index of per

Path efficiency % Ratio of Eucli

Completion rate % Ratio

Overshoot % Ratio of overshoo
and ex

Reaction time Seconds Tim
DOF targets (discrete motions). For amputee subjects,
there was no difference in completion rates between
control strategies or target types.

Performance metrics
Able-bodied subjects
The performance metrics characterizing the control
strategies for able-bodied subjects in the proposed test
are summarized in Figure 4. The GLM for each per-
formance metric yielded ‘session number’ as a non-
significant main effect. ‘Task type’ was a significant main
event for throughput and path efficiency (p < 0.001) and
overshoot (p = 0.003). Furthermore ‘control strategy’ was
a significant main effect in every metric (p < 0.001 for
throughput; p = 0.005 for path efficiency; p = 0.023 for
overshoot; and p = 0.013 for reaction time).
In 1 DOF targets, able-bodied subjects achieved a

similar throughput with DC and seqPR; however, the
throughput achieved with simPR was significantly lower
(Figure 4A). In 2 DOF targets, throughput was signifi-
cantly higher using simPR than using seqPR or DC.
Path efficiency for 1 DOF targets, in which target acqui-

sition required only a one-directional cursor motion,
showed no substantial difference between the three control
strategies (Figure 4B). In combined motions, subjects
achieved significantly higher path efficiency with simPR, in
which paths exhibited a diagonal motion profile (Figure 3A)
whereas there was no significant difference between DC
and seqPR, both of which were characterized by sequential,
boxy motion profiles (Figure 3A).
There was no difference in reaction time between task

types (Figure 4C). For both task types, seqPR exhibited
the lowest reaction time. Subjects exhibited no statistical
difference in reaction time between DC and simPR in
both task types.
Description

formance, information transfer rate given through Fitts’ law (eq. (3)).

dian distance between the origin and the target center to the actual
distance the cursor travelled.

of successfully completed targets to total number of targets.

ts to number of targets. An overshoot was defined by a cursor entry into
it of the target circle before the dwell time was accomplished.

e between target appearance and first move of the cursor.



Table 6 Three-part questionnaire: Subjects were
prompted to answer by rating from 1 (totally disagree)
to 7 (totally agree) except where otherwise indicated

Part I

1. I had enough practice to familiarize with the experiment.

2. I could perceive a difference in difficulty with target
distance from center.

3. I could perceive a difference in difficulty with target width.

Part II

4. I had enough practice to familiarize with today’s control
strategy through VR and GUI practice trials.

5. The strategy was intuitive to operate.

6. I managed to stop the cursor movement whenever I
wanted.

7. The mental effort (cognitive burden) was: (rate from 0
(nonexistent) to 6 (highest possible))

8. The muscle fatigue perceived at the session end was:
(rate from 0 (nonexistent) to 6 (highest possible))

Part III

9. As a strategy to control a myoelectric upper limb
prosthesis I would choose: (DC, seqPR or simPR).

Why?
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For overshoot, the trend across control strategies within
each task type was conserved even though subjects com-
pleted 2 DOF targets with substantially more overshoots
that 1 DOF trials (Figure 4D). Subjects achieved the high-
est overshoot with seqPR, whereas they overshot signifi-
cantly less in both task types with DC and simPR.

Amputee subjects
Data for both amputee subjects is presented separately
due to the inherently different characteristics of their re-
spective amputation.
Figure 2 Fitts’ linear relationship (eq. (1)) between movement time and
subjects. Data is presented for each task type (thin lines represent 1 DOF targ
(DC, seqPR or simPR). (A) n = 9 able-bodied subjects. (B) n = 2 amputee subje
For 1 DOF targets, both amputee subjects had the high-
est throughput using seqPR (Table 7A), which was sub-
stantially higher than the throughput obtained with simPR.
While for S11, the throughput obtained with seqPR was
also substantially higher than with DC, there was no not-
able difference between DC and seqPR for S10. For 2 DOF
targets, S10 performed with a considerably lower through-
put using DC than with either seqPR or simPR; there was
no difference between the two PR strategies. S11 exhibited
the highest throughput with simPR in 2 DOF targets.
Path efficiency (Table 7B) was generally high for both

amputee subjects in discrete targets. S10 had notably lower
path efficiency with simPR than with both other control
strategies and S11 had considerably lower path efficiency
with DC than with both others. For 2 DOF targets, both
amputee subjects achieved the highest path efficiency with
simPR while for both, the two sequential control strategies
(DC and seqPR) had similar path efficiencies.
Both amputee subjects had fastest reaction times with

seqPR (Figure 5A for S10, Figure 5B for S11). For both
subjects there was no substantial difference in reaction
time between DC and simPR.
Both amputee subjects had high variability in terms of

overshoots (Figure 5). For S10, there was no substantial
difference between control strategies within each task
type. S10 overshot more in 2 DOF targets than in
discrete targets (Figure 5C). There was no difference be-
tween task types for S11; however, this subject overshot
considerably less with simPR than with both other con-
trol strategies (Figure 5D).
Questionnaire
Subjects rated the design of the experiment in part I of
the questionnaire and strongly agreed that the FTAT test
index of difficulty for (A) able-bodied subjects and (B) amputee
ets and thick lines represent 2 DOF targets), and each control strategy
cts (S10 and S11).
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Figure 3 Cursor trajectories with the three control strategies (DC in green, seqPR in yellow and simPR in red) for (A) one representative
able-bodied subject (B) the TR subject (S10), and (C) the TH-TMR subject (S11). For (A), (B), and (C), the left column represents all cursor
trajectories for 1 DOF targets (discrete motions) and the right column represents all cursor trajectories for 2 DOF targets (combined motions).

Wurth and Hargrove Journal of NeuroEngineering and Rehabilitation 2014, 11:91 Page 9 of 13
http://www.jneuroengrehab.com/content/11/1/91
was easy to familiarize with (Q1) and that they could per-
ceive a difference in difficulty with target width (Q3). Sub-
jects did less agree with perceiving a difference in difficulty
with target distance from center (Q3) (Figure 6A). Part II
concerned the comparison of the three control strategies
throughout the FTAT test (Figure 6B). Subjects familiar-
ized equally well with each strategy (Q4) and found that
simPR was slightly more intuitive to operate than seqPR or
DC (Q5). Subjects reported more difficulties in stopping
the cursor on command with seqPR (Q6). Finally, subjects
reported highest mental (Q7) and physical (Q8) efforts
with DC. Part III of the questionnaire concerned each
subject’s preferred strategy for daily use with prosthet-
ics (Figure 6C). Only one subject chose DC, while the
others (including both amputee subjects S10 and S11)
chose either seqPR or simPR for reasons such as intui-
tiveness of the control, higher functionality and less
physical efforts.
Figure 4 Performance metrics (Mean ± Std dev.) across able-bodied s
efficiency (%), (C) reaction time (sec) and (D) overshoot (%) in each of the
n = 9 able-bodied subjects.
Discussion
The last two decades have seen extensive efforts in the
development of PR control solutions for myoelectric
upper limb prostheses. Many strategies have emerged
that achieve classification accuracies of more than 96%
for sequential control of several DOFs. Despite this suc-
cess, most of these strategies have not yet achieved clin-
ical application. The delay in implementation is in part
due to uncertainty in how to relate offline classification
accuracy to real time functionality. Offline performance
evaluation is not sufficient to indicate usability, and the
lack of appropriate functional tests impedes comparison
of different approaches to PR control. Furthermore, few
have attempted to compare proposed new strategies to
direct control, which is the current clinical standard of
care for myoelectric prosthesis control.
We designed and implemented a two-dimensional tar-

get acquisition task, based on the principles of Fitts’ law
ubjects. Data is presented for (A) throughput (bits/sec), (B) path
three control strategies: DC (green), seqPR (yellow) and simPR (red).



Table 7 (A) Throughput (bits/s) (Mean ± Std err.) and (B) Path efficiency (%) (Mean ± Std err.) for amputee subjects S10
(TR) and S11 (TH-TMR)

(A) Throughput (bits/s) DC seqPR simPR

Discrete targets (1 DOF) S10 (TR) 2.75 ± 0.17 3.12 ± 0.21 1.36 ± 0.13

S11 (TH – TMR) 2.64 ± 0.24 3.67 ± 0.23 2.11 ± 0.18

Combined targets (2 DOFs) S10 (TR) 0.62 ± 0.01 1.07 ± 0.33 1.08 ± 0.04

S11 (TH-TMR) 1.24 ± 0.04 1.32 ± 0.03 1.63 ± 0.05

(B) Path efficiency (%) DC seqPR simPR

Discrete targets (1 DOF) S10 (TR) 93.7 ± 2.12 94.9 ± 1.72 83.7 ± 2.31

S11 (TH - TMR) 90.1 ± 0.23 97.0 ± 0.96 96.3 ± 1.12

Combined targets (2 DOFs) S10 (TR) 63.9 ± 0.81 65.4 ± 0.33 73.7 ± 1.35

S11 (TH-TMR) 71.3 ± 0.8 71.6 ± 0.76 87.7 ± 0.7
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for human motor control, and evaluated it in a clinical
study on 9 able-bodied and 2 amputee subjects. To
evaluate the capacity of the proposed task to identify
promising strategies for the control of the next gener-
ation multi-functional prostheses, subjects performed
the task using three different EMG-based control strat-
egies. We characterized the interactions between sub-
jects and control strategies through a broad set of
performance metrics during two types of task: (i) discrete
targets requiring use of one DOF and (ii) combined tar-
gets requiring two DOFs. The ability to perform both
types of task is extremely important for a natural, robust
control of a prosthesis.
We assessed the validity of our methodology by evalu-

ating the conformity of our data to Fitts’ law. Figure 2
shows the extremely high correlation of movement time
to index of difficulty across task types and control strat-
egies for both able-bodied (Figure 2A) and amputee sub-
jects (Figure 2B). Our work thus supports the growing
use of tests based on the paradigms of Fitts’ law to
evaluate EMG-based control strategies in real time
[25,26,31]. The different slopes and offsets of the regres-
sion lines indicate the differences between the control
Figure 5 Reaction time (Mean ± Std err.) and overshoot (Mean ± Std e
reaction time in (A) for the TR subject (S10) and in (B) for the TH-TMR subj
the TH-TMR subject (S11) in each of the three control strategies: DC (green
strategies in terms of both speed and accuracy, which
are reflected in the throughput metric (Figure 4A). As a
control strategy performance descriptor, the throughput
of a system describes information transfer capacity and
thus is the average rate of successful message delivery
over a communication channel.
DC, the current clinical standard of care for myoelec-

tric control, was characterized by high performance in
discrete (1 DOF) tasks across able-bodied subjects and
both amputee subjects. For these tasks, user intent was
efficiently translated into action: cursor movements were
both fast and efficient. In combined tasks, subjects had
to activate 2 DOFs to acquire the target. For able-bodied
subjects and the TR subject, this required a sequential
activation of the DOFs that was interrupted by a com-
pulsory co-contraction to switch between modes. This
was perceived as both a high mental burden and a cause
for increased muscle fatigue, which was efficiently reflected
in weaker throughput and lower path efficiencies. S11
(TH-TMR subject) was able to activate each DOF at
the same time using DC (because TMR enabled 4 inde-
pendent control sites); as such S11 was able to move
the cursor in diagonal mode, allowing for a higher
rr.) for amputee subjects S10 and S11. Data is presented for
ect (S11); for overshoot in (C) for the TR subject (S10) and in (D) for
), seqPR (yellow) and simPR (red).
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Figure 6 Results of the three-part questionnaire with (A) part I, (B) part II, and part III. (A) Part I: evaluation (Mean ± Std dev.) of the study
design and comprehension in 3 questions with rating (1–7) to (totally disagree - totally agree). (B) Part II: evaluation of each control strategy in 5
questions with rating (1–7) to (totally disagree - totally agree) unless otherwise indicated. (C) Part III: After completion of the total experiment,
subjective evaluation of which strategy subjects preferred. (n = 11: 9 able-bodied subjects, S10, and S11).
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throughput (i.e., 2 DOF targets were reached faster).
Path efficiency for 2 DOF targets was not substantially
higher as uncontrolled muscle co-activation hindered pre-
cise steering of the cursor into the target (Figure 3C). Des-
pite this difficulty, S11 was able to precisely maneuver the
cursor for 1 DOF targets.
For both able-bodied and amputee subjects, seqPR

outperformed (or was equal to) DC in nearly every per-
formance metric in both task types. The intuitive nature
of seqPR control is reflected in shorter reaction times as
well as higher throughput and path efficiency through
the possibility to perform seamless sequential control,
which is not possible in DC because of the need to
switch between modes. Using seqPR, both amputee sub-
jects achieved extremely high throughput in 1 DOF tasks
when compared to able-bodied subjects, which is an en-
couraging result for the clinical implementation of pat-
tern recognition techniques.
Able-bodied and amputee subjects showed very promis-

ing results with simPR through the capacity of simultan-
eously and proportionally activating two DOFs. While this
was highly beneficial in 2 DOF tasks, it might have hin-
dered precise activation of one DOF at a time as shown by
very low throughputs in 1 DOF tasks. However, although
subjects were slower in executing a one-directional mo-
tion, they were equally efficient at doing so. A possible so-
lution to the reduced velocity in 1 DOF tasks might be to
add gains whenever only one of the parallel classifiers is
activated in order to achieve a higher velocity in discrete 1
DOF tasks with low contractions. We noted that subjects
needed a lot of practice to learn how to make repeatable
and precise contractions. Even though all subjects had
reached a plateau in their learning curve before testing,
this plateau may be temporary. To obtain the full benefits
of simPR, it is possible that a higher mastery level is re-
quired, which could be achieved with more practice. The
results for simPR suggest great potential for improving
control of combined motions, although this strategy re-
quires focused attention during classifier training and an
extensive amount of practice. Although performance of
discrete motions was not reliable, subjects reported that
this strategy was highly intuitive.
The FTAT test was able to identify substantial differences

between control strategies and to reveal advantages and
shortcomings in performing different task types. Research
efforts need to focus on implementing promising strategies
and show good control over new generation multiarticulate
prostheses. Such devices will enable more than two DOFs
to be operable at the same time. While the potential of
seqPR and especially simPR (or a different approach to
simultaneous pattern recognition control) is clear, the limi-
tations of DC also become apparent: switching through
more than two DOFs would be too cumbersome, too un-
natural, and impose too high of a cognitive burden.
The FTAT test used is highly modular in terms of diffi-

culty level (e.g. target widths or locations are modifiable),
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is adaptable to different inputs (e.g., intramuscular EMG,
electroencephalography (EEG)), and has as the potential to
serve various goals, including comparing different control
strategies. Our implementation provides a simple method
for direct comparison of PR-based strategies currently be-
ing developed with the current clinical standard of care
(DC). The setup is very simple and does not contain pro-
prietary information, thus it could easily be implemented
to allow direct comparison between different PR control
strategies across research laboratories. This work thus con-
tributes to future research efforts on translating pattern
recognition into clinical application.

Conclusion
We were able to use an objective and challenging func-
tional evaluation test to allow comparison of myoelectric
control strategies in able-bodied and amputee subjects
in a pre-clinical setting. We directly compared in real
time, between DC, the current clinical standard of care,
and pattern recognition–based control strategies cur-
rently being developed to control multi-articulate myoelec-
tric upper limb prostheses. The functional performance
evaluation task generates a broad set of performance met-
rics. The appropriateness of this methodology was vali-
dated by finding high conformity of the data with Fitts’ law
through high coefficients of determination. The FTAT test
allowed us to comprehensively compare functional per-
formance metrics of three control strategies (including
throughput (bits/second), path efficiency (%), overshoot
(%), and reaction time (seconds)) and revealed significant
differences between control strategies. We found that both
pattern recognition control strategies outperformed the
amplitude-based DC control in coordinated (2 DOF) tasks
but that the advantage of a concurrent activation of two
DOFs provided by simultaneous PR was offset by a re-
duced reliability in discrete (1 DOF) motions. Sequential
pattern recognition strategy was precise and robust for tar-
gets requiring 1 DOF, but depended on a seamless sequen-
tial operation to achieve a coordinated task. Both PR
strategies were perceived as highly intuitive by subjects
whereas DC control was perceived as unnatural and cum-
bersome to operate, even though efficient for discrete
tasks. Our findings will contribute to a convergence of fu-
ture research efforts to enable translation of PR-based con-
trol strategies into the clinic.
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