JOURNAL OF NEUROENGINEERING
AND REHABILITATION

e

The SmartHand transradial prosthesis

Cipriani et al.

( ) BioMed Central Cipriani et al. Journal of NeuroEngineering and Rehabilitation 2011, 8:29
http://www.jneuroengrehab.com/content/8/1/29 (22 May 2011)



Cipriani et al. Journal of NeuroEngineering and Rehabilitation 2011, 8:29

http://www.jneuroengrehab.com/content/8/1/29 l ‘ q JOURNAL OF NEUROENGINEERING

AND REHABILITATION

The SmartHand transradial prosthesis

Christian Cipriani, Marco Controzzi and Maria Chiara Carrozza

Abstract

Background: Prosthetic components and control interfaces for upper limb amputees have barely changed in the
past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be
inappropriate if/when a large bandwidth human-machine interface for control and perception would be available,
due to either their limited (or inexistent) sensorization or limited dexterity. SmartHand tackles this issue as is meant
to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their
effectiveness. This paper presents the design and on bench evaluation of the SmartHand.

Methods: SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its
multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order

to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was
designed with the aim of delivering significant afferent information to the user through adequate interfaces.

Results: SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4
motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a
customized embedded controller both employed for implementing automatic grasp control and for potentially
delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point
the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial
prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric
conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects.

Conclusions: Due to its unique embedded features and human-size, the SmartHand holds the promise to be
experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during
realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies.

Background

The hand is a powerful tool and its loss causes a severe
psychological and physical drawback. Despite the signifi-
cant impact of losing a hand, numbers of amputees
requiring a prosthesis are too small to push manufac-
turers to innovate their products, so that both control
interfaces and mechanisms have barely changed in the
past 40 years [1]. The most technologically advanced
prostheses are myoelectric ones: one or two degrees of
freedom (DoFs) motorized hands (or hooks) are acti-
vated by antagonist residual muscle contractions where
the electromyographic (EMG) signal is picked-up by
surface electrodes in the prosthetic socket and processed
to functionally open and close the hand (or pronate/
supinate the wrist). These prosthetic hands,
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commercially available since the early 1970’s and pro-
duced by different manufacturers (Otto Bock, Austria;
RSL Steeper, UK; Motion Control, Utah; LTI, Massachu-
setts), are robust, weigh up to 600 g and are able to
impart up to 100 N to objects due to their pincer-like
shape. Low functionality, cosmesis and controllability
have been considered as the main drawbacks for such
devices [2] and surveys on their usage reveal that 30 to
50% of upper limb amputees do not use them regularly
[3]. The lack of musculoskeletal and proprioceptive sen-
sory feedback in myoelectric prostheses is one of the
main reasons for their rejection [3]: a stump with intact
sensory feedback fitted with a body-powered prosthesis
(that transmits vibration and grasping force to the
stump through the harness) is often more functional
than a myoprosthesis with no purposely delivered sen-
sory feedback [4]. Some of these drawbacks could be
overcome by a product that recently entered the market.
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In July 2007 a Scotland based company, Touch Bionics,
has launched a novel multi-articulated prosthesis: the i-
LIMB hand. This is the first-to-market prosthesis with
five individually-powered digits and a thumb abduction/
adduction passive movement. Consequently the hand is
capable of different grasping patterns, nevertheless it
still uses a traditional two-input EMG system to simul-
taneously open and close all fingers. Over and above, no
sensory feedback is delivered to the wearer.

The development of a more functional and naturally
controlled prosthetic hand has been an active research
field for decades and is still one of the big research chal-
lenges in rehabilitation, for which a tight collaboration
between engineers, neuroscientists, medical doctors and
patients is required. The most natural/intuitive control
is one that is driven by neural signals tapped from the
human central (CNS) or peripheral nervous system
(PNS). In particular with the use of a neural interface
directly connected to the PNS or CNS that is able to
replace the sophisticated bidirectional link between the
brain and the hand actuators and sensors, an advanced
robotic limb might be able to put user intent into action
and provide the user with perception of the hand itself
by delivering sensory proprioceptive and exteroceptive
information [5]. On this basis, the sensors to be
endowed in advanced prosthetic hands should not be
chosen and used just for closing automatic control
loops (as in commercial devices), but also with the aim
of delivering afferent information to the user through an
adequate user-prosthesis interface (UPI).

One of the most challenging tasks in this field is cer-
tainly that of developing a dexterous intrinsic prosthetic
hand, i.e. a hand that contains all its functional compo-
nents (actuators, sensors, electronics, etc.), that can be
used for patients after a distal transradial amputation. In
the past decades several examples have been developed
in research: the Sven hand, the Belgrade, the Southamp-
ton, the MARCUS, the TBM, the RTR II, the SPRING,
the MANUS, the Ultralight hands in Forschungszentrum
Karlsruhe, the Soft hand, the KNU hand [6-16]. Even if
these prototypes differ in mechanisms, sensory equip-
ment, performance and objectives, they all share the
requirements of being low power, low weight, still allow-
ing a number of prehension patterns useful in activities
of daily living (ADLs). Such constraints were met by the
use of different underactuated mechanisms (fundamen-
tal for reducing the number of actuators) and clutching
systems (to save power once the grasp is stable): i.e. the
two basic mechanical components in a prosthetic hand.
All these intrinsic hands have been designed with the
aim of being controlled by EMG surface electrodes or
other intelligent control schemes [17], so that in most
of them the sensorization is limited and mainly
employed for the low-level control of the grasp. Even if
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some attempts to connect them to non-invasive feed-
back systems have been done, [18-20], most of these
prototypes (with the exception of the Southampton-
REMEDI hand, that contains sufficient active DoFs for
different prehensile patterns, and an extended sensory
system) would not be suitable if neurally interfaced with
a large bandwidth link due to either their limited (or
inexistent) sensorization or limited dexterity [21]. Other
significant research even if related to extrinsic actuated
hands to be used as research prostheses platforms
include the CyberHand [5], the Yokoi hand [22], and
Vanderbilt University prototypes [23,24]. In August
2008, researchers and companies supported by DARPA
Revolutionizing Prosthetics Program (RPP) 2009 [25]
have presented preliminary results at the Myoelectric
Controls/Powered Prosthetics Symposium (MEC) held
in Fredericton, NB, Canada. In particular: the RPP
intrinsic hand [26], and a prototype from the Rehabilita-
tion Institute of Chicago [27] were presented. Later, in
May 2010 new prototypes or products from manufac-
turers were firstly exhibited at the ISPO (Intl. Society on
Prosthetics and Orthotics) world congress held in Leip-
zig, Germany: in particular the Ottobock Michelangelo
hand, the RSL Steeper Bebionic hand, and the second
release of i-Limb, namely Pulse, from Touch Bionics.

The goal of this work was to design and develop a
new, lightweight, dexterous, sensorized prosthetic hand
with intrinsic actuation, i.e. a self-contained, transradial
prosthetic hand able to be fitted in subjects with an
amputation level, long below the elbow. This hand is
meant to be clinically experimented by amputees
employing different levels of interfaces, in order to
investigate the effectiveness of more natural and intui-
tive control and feedback strategies. Interfaces under
investigation will range from non-invasive EMG control
and sensory substitution systems (as in [28,29]), to
neural electrodes directly implanted into the PNS (as in
(30D).

To this twofold aim a prototype with advanced inte-
grated actuation and sensory features, compared to pre-
vious works and state of the art, was developed and
successfully tested. This paper presents an overview of
the design (partially covered in [21,31] and [32]) and
focuses on the experimental characterization and discus-
sion of the prototype performance, which is the unique
contribution of this work. It demonstrates that due to
its advanced embedded features and human-size, the
SmartHand could be experimentally fitted on transradial
amputees and employed as a bi-directional instrument
for investigating -during realistic experiments- different
interfaces, control and feedback strategies. Therefore the
development of this hand opens up promising possibili-
ties for the development of intuitive UPI and upper
limb prosthetics in general.
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Requirements and Design Principles

In the design of a transradial prosthesis, the hand can-
not be conceived to reproduce its human model where
the hand is a non-separable part of the arm, deeply inte-
grated with it (as in other designs like [5,22-24]), but
must be considered like an independent, modular, self-
contained end effector. Such requirement makes the
robotic design a very challenging task that needs to be
carefully addressed. Functional requirements for our
design have been set according to interview results
among the amputee community [33], and to the approx-
imate percentage of utilization of the main grips in
ADLs [34]. This hand should allow amputees to achieve:

1) Power grasps (used in approximately 35% of the
ADLs);

2) Precision grasps (30%);

3) Lateral grasp (20%);

4) Index pointing (useful for pressing buttons, etc.);
5) Basic gestures (counting).

Biologically (i.e. in terms of bio-inspired design), the
prosthesis should attempt to compare with the human
hand in terms of:

1) anthropomorphism: i.e. size and weight (about
400 g), number and distribution of articulations,
number and distribution of independently actuated
DoFs;

2) static and dynamic biomimetism [35];

3) sensorization: types of sensors and distribution
(2];

4) performance: speed (whole hand closing in less
than 2 seconds) and grasping force (able to stably
handle everyday objects).

The lack of high power density actuators yielded to
design a device strongly based on underactuated and
differential mechanisms. Figure 1A presents such archi-
tecture: there are 16 DoFs (three for each finger, plus
one for the thumb abduction/adduction axis) and only 4
motors (i.e. 4 degrees of actuation, DoAs) that actuate
five underactuated fingers based on Hirose’s soft finger
[36]. These are flexed just by a single tendon, and
extended by torsional springs housed in the joints (as in
the RTR II, and the CyberHand); their inherent differen-
tial mechanism allows all phalanxes to get in touch with
the grasped object, allowing therefore, multi-contact
stable grips. Fingers are operated using nylon coated
steel tendons, pulleys and steel Bowden cables by 4
non-back-drivable actuation units based on DC motors
located inside the palm. Thumb and index flexion/
extension are independently actuated (by M1 and M2 in
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Figure 1 SmartHand architecture. Number of elements used are
given in parentheses. A) Distribution of DoFs, tendons, joints and
actuators. Abbreviations: NBDM, non-back-drivable mechanism;
AGM, adaptive grasping mechanism; TM, trapezio-metacarpal joint;
M1.4, motor 1.4. B) Distribution of sensors. Motor sensors are 4
current plus 4 position sensors.

Figure 1A), whereas the middle, ring, and the little fin-
gers are joined together (actuated by M3) by means of
an adaptive grasping mechanism (AGM). The fourth
motor (M4) is used for the thumb abduction/adduction
movement, allowing different prehension patterns useful
in everyday life. An actuation distribution like this one
allows the hand to fulfil the functional requirements
previously stated.

The hand sensory system is designed to be used both
for the automatic control of the grasp (action) and for
delivering sensory information to the user (perception)
by means of UPIs with different degrees of invasiveness.
In fact, recent studies have preliminarily shown the pos-
sibility of delivering force and position afferent informa-
tion directly to the PNS, by means of an implanted
neural interface [30,37], or touch, pressure and tempera-
ture sensations by employing a non-invasive sensory
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feedback system to redirected parts of the body after
targeted reinnervation procedure [38]. More recently it
has been shown how amputees can be made to experi-
ence a rubber hand as part of their own body by simply
tricking their brain using the so-called rubber hand illu-
sion [39]; a simple method based on a prosthesis
equipped with tactile sensors for transferring sensations
from the stump to the prosthesis was then outlined.
Based on the reported studies, a sensor set that provides
three different types of information, namely, position,
tactile/pressure and force, was chosen. The spatial distri-
bution of sensors in the hand (shown in Figure 1B) is
similar to the natural concentration: higher on the inde-
pendently actuated thumb and index fingers [40]. There
are 32 proprioceptive and exteroceptive sensors based
on traditional technologies embedded in the hand: 15
Hall effect-based angle sensors (integrated in all the fin-
ger joints), 5 strain gauge based tendon tension sensors
(as in [5]) integrated in the fingertips (thus measuring
the grasping force of each finger), 4 current sensors
(one for each motor) and 4 optical tactile/pressure ana-
log sensors (based on [41]) in the intermediate and
proximal phalanxes of the thumb and index. Actuation
units are also equipped with position sensors (either a
resistive potentiometer or a digital encoder, measuring
the released tendon length) and pairs of digital proxi-
mity sensors acting as limit switches (avoiding mechani-
cal collisions). A detailed presentation of the SmartHand
sensory system features is presented in [21].

Robotic Hand Design

The hand is composed of a number of elements con-
taining mechanisms, sensors and necessary electronics.
Specifically it consists of: (i) 5 underactuated fingers, (ii)
2 capstan-based actuators driving the thumb and index
flexion/extension (connected to M1 and M2), (iii) 1
adaptive grasping mechanism driving the middle-ring-
little fingers (AGM connected with M3), and (iv) the
thumb abduction/adduction mechanism (on M4). Each
part is presented in detail in the following sub-sections.

Underactuated Sensorized Finger

The fingers have an architecture based on Hirose’s
design [36] and are composed of 3 aluminium phalanxes
(proximal, intermediate and distal) and 3 DoFs each
(metacarpo-phalangeal joint, MCP, proximal-interpha-
langeal, PIP and distal-interphalangeal, DIP). The struc-
ture of fingers has been dimensioned according to
anthropometric information available [42], in order to
contain proprioceptive and exteroceptive sensors, as
well as conditioning electronics and wires in a robust
way. Finger components (springs and pulleys) were
selected to allow the finger to replicate the human beha-
viour [35] while closing in free space; this feature
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enables the finger to correctly wrap around objects
[5,43]. Figure 2A shows the index finger with all sensors
embedded in it: joint angle, tactile and tendon tension
sensors. The latter is composed of two parts: the strain
gauge equipped micro-machined cantilever in series
with the tendon stop (in the fingertip), and a small
printed circuit board (PCB) containing the Wheatstone
bridge and the instrumentation amplifier conditioning
circuit (in the proximal phalanx). Miniature insulated
wires soldered to the sensor pads and to the electronic
boards, run laterally along the finger inside a hollow
avoiding stretching (Figure 2A).

Capstan-Based Actuators

In a majority of research projects on prosthetic hands,
and in general in robotic hands, non-back-drivability is
achieved by means of screw/lead screw pairs (as in all
previously mentioned intrinsic hands with the exception
of [16]). This is actually a simple to build mechanism
but its efficiency is very low. To overcome such pro-
blem, a miniaturized high efficiency non-back-drivable
mechanism (NBDM) based on wedge phenomena was

X Tension Cond.

B NEDM C Tendons
/ Capstan |
Trimmer Ls@
/7 PCB
v
Magnet—H
Spur gears
Ls@

DC motor + gear head Slider Lead screw e

Figure 2 SmartHand mechanisms. A) Underactuated & sensorized
finger; Te indicates the location of the tendon tension sensor; Tal
and TaP are the intermediate and proximal phalanx tactile sensors;
MCP, PIP and DIP are the hall effect joint sensors; Tension Cond
indicates the location of the tendon tension sensor conditioning
PCB. B) Capstan-based actuator C) Adaptive grasping mechanism
scheme: the rotation of the screw (red arrow) causes the slider to
translate (green arrow) due to the screw-lead screw coupling. The
slider pulls (or releases) the three tendons simultaneously, which
due to compressing springs allow for adaptation of the last three
finger to the object. LS stands for limit switch sensor.
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developed for the SmartHand (described in detail in
[44]).

For understanding this work, the NBDM should be
simply regarded as a small-sized mechanical component
(5900 mm3 volume, similar to a plastic bottle cap) that
allows the transmission of the rotational motion, when
it is originated by the motor shaft, stopping instead each
motion that originates from the output shaft. The latter
is connected to the driving capstan where the finger ten-
don is wound. The complete actuation unit (Figure 2B)
from the input to the output is composed of:

1) a small-sized brushed DC motor (Faulhaber Mini-
motor, model 1319) with integrated planetary gear
head (491:1);

2) a spur gear couple;

3) the developed NBDM;

4) a 6,5 mm radius capstan, which is finally con-
nected to a commercial long rotational life resistive
trimmer able to measure the released tendon length;
5) 2 Hall effect proximity sensors (Allegro MicroSys-
tems Inc, model A3213) acting as limit switches,
that together with a magnet fixed on one spur gear
limit the tendon release.

A stainless steel microcable tendon is wound around
the capstan, and runs into round steel wire spirals from
the actuator output to the finger metacarpus. The sys-
tem is completed by a round PCB topping the potenti-
ometer (Figure 2B), containing filters for removing
electrical noise from the position signal. Two identical
actuation systems as the one described are housed in
the palm and employed to independently actuate the
thumb and index fingers flexion/extension movement.

Adaptive Grasping Mechanism

This system is an improvement of the non-back-drivable
adaptive grasping mechanism proposed by Massa et al.
[11]. It drives the simultaneous flexion/extension of
middle, ring and little fingers, as well as their adaptation
to the object, allowing a stable, multiple contact grasp
as in the natural hand. In this mechanism, the screw/
lead screw could not be avoided: three tendons are con-
nected to a linear slider by means of three compression
springs (scheme in Figure 2C). The slider moves along
the screw by means of a screw/lead screw pair and pulls
(or releases) the tendons. Two limit switches are
assembled along the screw, in order to limit the length
of cable released. By means of the compression springs,
during a general grasp, adaptation to the object of the
three fingers is obtained: when the first finger comes in
contact with the object, the relative spring starts to
compress; the slider is free to continue its motion and
the other fingers can flex reaching the object. If high
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forces are required, compression springs behave as a
rigid link and the force is transmitted from the slider to
the fingers. The actuation unit is composed of a brushed
DC motor (Faulhaber Minimotor, Model 1331) with
integrated planetary gear-head (reduction 16:1) and inte-
grated encoder, a spur gear couple (reduction 1:2) and a
non-back-drivable screw-lead screw coupling (pitch 0.7
mm) where the slider runs.

Abduction/adduction Mechanism

The thumb has two DoAs: one for flexion/extension,
plus one for abduction adduction. With reference to the
natural hand, the equivalent trapezio-metacarpal joint
(TM in Figure 1A) has 2 DoFs. The hand is thus able to
perform different prehensile patterns ranging from lat-
eral to precision and power grasps. The flexion/exten-
sion metacarpophalangeal joint (Figure 3) is directly
connected onto an extension of the brushed DC motor
(Faulhaber Minimotor, model 1016) shaft; a certain

Figure 3 The transradial prosthesis design. Five fingers are
actuated by means of four DC brushed motors M1-4 all located
inside the palm structure. Motor M1 drives thumb flexion/extension,
M2 drives index flexion/extension, M3 actuates the middle, ring and
little fingers simultaneously and M4 actuates the thumb abduction/
adduction. The thumb axis angle with regard to the horizontal
plane is highlighted (50 deg). The main printed circuit board (PCB)
is placed on the motors.
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degree of non-back-drivability is achieved by means of a
high reduction (1024:1), this actually, allows slight adap-
tation of the thumb axis while it is closing against the
other fingers in a precision grasp. The design is com-
pleted with two limit switches and the integrated enco-
der that measures the joint angle of adduction.

Supporting Skeleton

All components of the hand are housed inside a support-
ing skeleton machined in Ergal alloy aluminium. The
base of the skeleton integrates a standard myoprosthesis
wrist adapter which includes a 4 wire bus for communi-
cation. The SmartHand control board (see section 3.6) is
placed on the motors (cf. Figure 3), and covered by a
plane carbon fibre plate acting as the palm of the hand.
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Flexible Controller & Communication

The hand is integrated around the flexible electronic con-
trol architecture shown in Figure 4. The architecture has
to be flexible enough to support the real time control of
four active axes, real time identification of external com-
mands, computation of control loops and delivering sen-
sory biofeedback. A modular hierarchical architecture (as
in [5,9,13]) based on a high-level hand controller
(HLHC) and two low-level motor controllers (LLMCs)
has been selected. Both LLMCs (LLMC-A and LLMC-B)
are associated to two actuators whilst the host HLHC is
in charge of the general functionality of the prosthesis.
The HLHC, in master configuration, communicates
through a fast serial peripheral interface (SPI) bus with
the slave LLMCs, whereas external communication (UPI

_|.—.) Finger VREG ENF
’ PC
Tactile . Tactile RS232 (diagnosis)
- 'd )
........................... podonsa]  HLHC
Finger PIC18F8722 SPI1 BUS
Embedded ) opon TensioN s T E— =
Sensors - i
SPI2 BUS I
!
------------ F——-q m=———
! LLMC-A i, Ltmcs | |
T P A : I L
! y o P UPI
1 Position | 1 :
.......... ,:lr PIC18F4431 1 |P|C18F4431| [
I PWM ro 1 I
........ /l L ] | 1
Sensory I H . (I I
Equipped _..1[cur. /Currentg : : i !
Actuators : sensor Vit i : : I
M4 et . Switches : I I |
i i | P —— - 1 i
.. | e ub
l l
. Actuators Sensors Vie =2 PIC Vgec e
l : :
1 ] I
MOTOR
Supply (12V) LOGIC Power Supply (6V)
Figure 4 The four axis control architecture based on microcontrollers. Straight lines are logic lines; dotted lines are analog lines; dot-dot-
dash lines are power supply lines. The high-level hand controller (HLHC) is directly connected to the external world both with a RS232 and SPI
bus. The HLHC deals with the low-level motor controllers via an additional SPI bus. The LLMCs are directly connected to H bridge drivers (H)
delivering current to the DC motors using pulse width modulation (PWM) technique.
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or a PC) with the HLHC can be handled by using a stan-
dard RS232 or (eventually) a fast SPI bus.

The main function of the internal software implemen-
ted in the LLMC is to provide all the necessary low
level motor control functions (i.e. force control, position
control modes, sleep mode). Therefore the microcon-
troller acts as a double finite-state machine (one for
each motor) where the transitions between the different
modes are triggered by HLHC commands coming from
the SPI2 bus (Figure 4). The HLHC is in charge of
sequencing LLMC functions to obtain meaningful
operation of the hand (i.e. grasps and gestures) after an
external command, to provide artificial sensory informa-
tion to the UPI, to manage power modes and handle
errors.

Current is delivered to the DC motors using inte-
grated H-bridges and measured by a commercial current
sensor (INA138, Texas Instruments). Two different
power suppliers, one for the motors (12 V) and one for
the controller (6 V) are needed. Since power budget is a
key issue in prosthetics, particular attention has been
paid to design a flexible architecture able to manage low
power modes; three different voltage regulators are
used. The first one, named as PIC Vygg in the schematic
of Figure 4, supplies the main components of the circuit,
i.e. the three microcontrollers; its regulated output, is
shut down by an external-world digital line (EN P). A
second and a third regulator, named Finger Vzrs and
Actuators Sensors Vg, are employed to supply the sen-
sors embedded in the fingers and the sensory equipped
actuators, respectively. These supplies, directly con-
trolled by the HLHC (using EN F and EN A), may be
used in switching modality when possible, in order to
reduce power consumption. Moreover, the selected
microcontrollers can operate in power-managed modes,
thus saving energy.

A communication protocol for the RS232 bus based
on a 115200 baud rate, has been developed. Basically it
is a master-slave protocol where the hand behaves as a
slave and the external world (either a PC for diagnosis
or a UPI) as a master. Commands are divided into three
main types: motor commands (for driving fingers in
position or force control), sensor readings and auto-
matic grasps. Without any particular firmware code
optimization, all readings are served by the HLHC
within a measured delay of 400 ps. This is a very short
value that could allow implementing and closing control
loops even by algorithms running on external systems.
Internal control loops (position and force based on ten-
don tension) update errors every 1 ms (i.e. 4 indepen-
dent and simultaneous loops running at a measured
frequency of 1 KHz).

Automatic grasps are modelled on natural grasping.
When an external unit (e.g. a control interface) invokes
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a grasping primitive (e.g. the lateral grasp), two different
phases are sequenced by the HLHC: the preshaping and
the grasping (closure) phase. After preshaping the
desired finger tendon force is selected according to the
grasping primitive. In the second phase, the prosthesis
closes the involved fingers (in the lateral grasp example
only the thumb closes) using tendon tension force con-
trol until the desired global tight force is reached. Both
preshaping postures and desired grasping forces are set
a priori and are based on the grasping primitive. For a
detailed description of the automatic grasp controller
refer to [45].

Performance Analysis

Pictures of the SmartHand are presented in Figure 6,
where a qualitative comparison with a traditional pros-
thesis and with the healthy hand of a transradial ampu-
tee are shown (a detailed comparison of the SmartHand
with other research and commercial hands is presented
in [21]). The weight of this hand is close to the natural
hand weight and comparable to actual commercial pros-
theses: 530 g. This does not include the standard wrist
attachment (145 g) and batteries (that are usually hosted
in the prosthetic socket proximally to the residual limb).
Performance with relation to the prosthesis require-
ments listed in the Requirements and Design Principles
section and to practical usage have been evaluated. This
comprehensive list of measured features includes: (i) fin-
ger dynamics, (ii) speed, (iii) grasping capabilities, (iii)
grasping force, (iv) degree of adaptability, (v) supporting
grasp capabilities and (vi) power consumption.

Finger Dynamics and Speed

With the aim of experimentally evaluating the effective
kinematics of the artificial finger in order to compare it
with the natural model, a characterization has been
done as follows. A simple C++ application was written
to run on a PC (PC diagnosis in Figure 4), able to com-
municate with the hand controller by means of the
communication protocol. This application was used to
drive the index finger motor closure and to continuously
monitor its MCP, PIP, DIP sensors and potentiometer
sensors output. Sampling frequency was fixed at 70 Hz.
The measured finger joint trajectories while the DC
motor is driven at full speed are plotted in Figure 5:
joint sensor dynamics (blue, red and green traces) are
adjusted between 0 and 90 degrees (i.e. their effective
angular range in degrees). The potentiometer value is
rescaled in terms of tendon shortening (in millimeters):
i.e. 0 mm when the finger is fully opened and 22 mm (i.
e. the tendon stroke) if fully closed. The tendon shorten-
ing (Ten in Figure 5) highlights the varying maximum
closing velocity (V1, V2 and V3) influenced by the
springs stiffness in the finger.



Cipriani et al. Journal of NeuroEngineering and Rehabilitation 2011, 8:29
http://www.jneuroengrehab.com/content/8/1/29

Page 8 of 13

Joint angle [deg]
Tendon shortening [mm]

-0,2 0j0 0,2 04 0,6 038 1,0 4.2 14 16 1,8

Tolose=1,47 i
Lt i Time [s]

Figure 5 Finger dynamics while closing at full speed. Left Y axis:
finger joint trajectories (metacarpo-phalangeal joint, MCP, proximal-
interphalangeal, PIP and distal-interphalangeal, DIP, ranging
between 0 and 90 degreees). Right Y axis: tendon shortening
dynamics (Ten trace, ranging between 0 to 22 mm); superimposed
on the graph are the maximum velocity (V1, V2 and V3) values,
which are influence by the springs stiffness in the finger.

The time plot in Figure 5 demonstrates some of the
successfully achieved results from a prosthetic point of
view:

1) as required, the finger kinematics is similar to the
natural one while closing in free space (i.e. MCP
joint speed is higher than the PIP one, and the DIP
is the slowest; [35]), therefore the hand is able to
perform stable grasps with multiple contact points
(43];

2) minimum closing time is acceptable and compar-
able with commercial prostheses being only 1.47 s
(44];

The speed slope (see the Ten curve) is divided in three
parts basically based on which torsion spring counter-
acts the motor. Finally it must be noted that the four
curves plotted in Figure 5 (Ten, MCP, PIP and DIP) are
obtained using the communication protocol dealing
with the hand controller in Figure 4. This demonstrates
the successful operation of all developed components:
the sensors, the acquisition electronics, the motor con-
trol, the communication protocol. For such measure-
ment the low sampling frequency (70 Hz) was imposed
by the C++ application developed on the external PC,
not by the SmartHand controller; in theory actual limit
of the sampling rate is about 2500 [Hz.Sample], or a
sampling period of 400 ps. Similar measurements have
been done for the other actuation units; minimum clos-
ing and opening times are reported in Table 1.

Grasping Capabilities
The hand is able to stably grasp many different objects
performing the three basic prehensile forms. Pictures on

Figure 6 SmartHand grasping capabilities. Left columns: the
SmartHand with silicone tubes on the fingers in the three basic
prehensile patterns: power, precision and lateral grasps. Right
column: SmartHand in comparison with a commercial prosthesis
(SensorHand by Otto Bock, Austria) and fitted on a transradial
amputee.

the left side of Figure 6 show some of these grasps auto-
matically achieved by the embedded controller using the
automatic grasp control based on preshaping and clo-
sure phases described in the Flexible Controller & Com-
munication section. From the receipt of the command
the hand is able to achieve stable precision or power
grasps in less than 2 seconds, and lateral grasps in less
than 2.5 seconds (cf. time plots in Figure 9).

Table 1 Actuation units minimum closing and opening
times

Actuator Stroke Closing time  Opening time
[s] [s]
Index 22 147 1.36
mm
Thumb flexion 10 067 0.62
mm
Thumb abduction/ 90 1.00 0.90
adduction deg
AGM 22 1.53 1.27
mm
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Grasping Force & Degree of Adaptability

With the present underactuated, adaptive hand, stability
in power grips is achieved by means of a multi-contact
grasp differently from commercial prostheses where
high forces are applied on few points [2]; in any case,
the important issue for an amputee is the ability of sta-
bly grasping objects without slippage.

The maximum load that the hand could grasp in a
power grasp prehensile form has been measured using
the following setup. For all these measurements fingers
were covered with silicone tubes (as those shown in Fig-
ure 6; hardness durometer 5 A) behaving as a cosmetic
covering and improving friction between aluminum fin-
gers and the (plastic) objects. A 36 mm diameter, 12 cm
long, plastic (delrin) cylinder (180 g), connected by
means of a steel cable to a 20 kg (full scale) mono-axial
load cell, was grasped (at maximum strength) using the
automatic grasp control. The hand was then switched-
off (simulating a real life situation) and the cylinder was
pulled out along the direction of its axis at a relatively
high speed (about 130 mm/s), with the palm facing
upwards, while the load cell signal was acquired (at 1
KHz) by a PCI data acquisition board. This procedure
has been repeated 15 times and the mean load at which
the cylinder starts to slip is about 16 N. Same measure-
ments have been done with cylinders with larger dia-
meter, representing objects handled in everyday life, 41
mm (225 g) and 71 mm (670 g) resulting in load force
values of 36 N and 28 N respectively. Similarly, for the
lateral grip (hand grasping a credit card) we measured 8
N (using this time a 2 kg load cell).

The obtained values depend also on the transmitted
torque from the actuators to the contact points. For the
middle, ring and little fingers, this torque of course
depends on the springs used in the AGM (cf. Figure
2C); more compliant springs will result in a higher
degree of adaptability of the three fingers (with less
transmitted torque), while stiffer springs will allow a
higher torque transmission (but less adaptability). There
is a trade off between maximum achievable grasp and
adaptability. This trade-off needs to be taken into
account in finding optimal values for spring stiffness. All
the measurements (and pictures) reported in this paper
have been performed using a fixed combination of
springs (equal for each tendon with K = 2 N/mm) that
allows a good degree of adaptability as shown by the
video sequence in Figure 7. A delrin cone (h = 100 mm,
dl = 50 mm, d2 = 10 mm) is properly wrapped (i.e.
three touching fingers) when grasped in both directions.
The maximum tendon tension generated by the actua-
tion units has been measured. Motor M3 connected to
the AGM generates up to 35 N for each tendon; M1
(and the same for M2) connected to the NBDM may
reach 45 N [46].
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Figure 7 Adaptive grasping mechanism. Video sequences of the
middle-ring-little fingers wrapping around a cone showing the
degree of adaptability of the Adaptive Grasping Mechanism. In the
top row the little is the first finger that touches the object, whereas
in the lower row it is the last one (middle first). Superimposed on
the pictures are the timestamps of the frames (in seconds).

Supporting Grasps

Even if not able to apply large forces, a prosthesis
should be strong enough to maintain high loads, for
example carrying a suitcase: in such case the load would
be applied on the mechanical structure of the fingers.
Preliminary tests have been carried out: a 7.5 kg suitcase
has been repeatedly lifted and released in quasi-static
conditions, using the hand closed around the case han-
dle (21 x 18 mm rounded rectangular section) as shown
in the picture in Figure 8. Meanwhile the developed
communication protocol was used to read data from the
involved sensors. A typical sensory response for a lift/
release cycle is shown in the time plot of Figure 8. Fig-
ures have been rescaled using the characteristics of the
sensors. Four cable tension sensors (Tel, Te2, Te3, Teb)
and two tactile sensors of the index finger (Tal2, TaP2)
are plotted. Other sensors were not significantly

Force [N]
w
]

Tal2, TaP2

0 2 4 6 8 10 12 14 16

Time [s]

Figure 8 Passive loading vs. sensory system. Typical sensory
output versus time when a 7.5 kg suitcase is lifted and released.
Abbreviations: TaP, tactile proximal; Tal, tactile intermediate; Te,
tendon tension sensors. Tactile sensors values are normalized in
Newtons; Te4 is similar to Te3 and omitted for clarity.
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involved in the task. Tactile sensors in the thumb did
not touch; Te3 and Te4, have similar excursion and for
a better readability only Te3 is presented. Sampling fre-
quency was fixed at 35 Hz (again, limited by the exter-
nal software). The graph is interesting as it shows how
the load is shared among fingers: basically the little fin-
ger supports most of the load together with the index.
The thumb, pressing on the dorsal side of the index (see
picture) also contributes in supporting the handle from
the left side, while the little supports it on the other
side. In this particular case the middle and ring fingers
are practically not loaded. This is possible when the
AGM slider is completely closed and only the little fin-
ger spring is compressed (therefore no further adapta-
tion is possible), and the other fingers do not touch.

The tension figures (all below 70 N) also give a quali-
tative indication on how far such a condition (7.5 kg
load) is from tendon damage, that behaving as a
mechanical fuse, represents a safety guard for the hand.
Tendons are insured to up to 152 N; this means that
the holding load is actually much higher than 7.5 kg. A
10 kg load was actually lifted with the same setup,
resulting in no damage for the hand; more accurate
stress measurements will be carried out in the future
with a more specific setup, being this a non-trivial test
to do.

By looking at the graph, some drift is seen in the sen-
sor signals once the load is dropped; this is possibly due
to a re-adaptation of the fingers around the handle
while it was lifted, resulting in a different (lower energy)
final static configuration of the joints. It is interesting to
note that the tactile sensor values of the index finger
after an initial phase are basically overlapped. This per-
fectly describes the inherent differential behaviour of the
underactuated scheme adopted for the fingers, that
tends to distribute torque among links.

Power Consumption

Power consumption is one of the main requirements in
prostheses design: the hand should work for a whole
day without battery recharge. Plots in Figure 9 show the
current demand of the SmartHand in three different
extreme conditions implementing the automatic grasps
commands: (i) maximum force lateral grasp, (ii) maxi-
mum force power grasp, (iii) opening from complete
closure, and during (iv) a typical precision grip (the
underactuated finger cannot generate high force preci-
sion grasps, as described in [28]). Current traces have
been measured directly from the power supply using a
current probe and captured by a digital oscilloscope
sampling at 1 KHz, and then filtered (moving average,
N = 10). Considering an amount of 3800 daily grasps,
basically divided as in [34] (20% lateral, 50% power, and
30% precision grasps), and 3800 openings, a 1.22 Ah 12
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Figure 9 Current consumption during grasps. Typical power
consumption during automatic grasps and opening. The traces
have been shifted in order that movements start all at the same
instant (t = 0s). For a better readability, traces have been
discontinued once the movement ended and the current values
were stable (indicated by the vertical lines).

V battery (for the motors) and a 1.22 Ah 6 V battery
(for the control) would be sufficient for a full day auton-
omy, powering down the embedded controller when
stable grasps are achieved. In fact when all sensors and
peripherals are powered, electronics alone absorbs 240
mA (cf. Figure 9), i.e. 1.44 W. This is a significant value
that should drop to mW levels (<100 mW) with the
hand in sleep mode. The required charge is actually
stored in quite small batteries that may be easily housed
in the prosthetic socket. Current peaks and maximum
values are sufficiently low and will not represent a pro-
blem for traditional (Nickel-Cadmium or Lithium-ion)
rechargeable batteries.

Discussion

The effective usability in domestic environments of
innovative brain machine interfaces for prostheses con-
trol may be better evaluated (both functionally and cog-
nitively) with tools that allow the user to interact with
the environment itself rather than using virtual reality
scenarios. To this aim, duplicating the complexity of the
entire range of movements of the hand is hard enough
provided infinite weight and size, but it needs to be
accomplished within a slender morphology, replicating
the look and the weight of the human hand. The Anato-
mically Correct Testbed (ACT) [47] and the commer-
cially available Shadow robot hand [48], with their bulky
actuation/control units, represent clear examples of such
problem. In the constrained volume imposed by the bio-
logical model, trade-offs for approximating the natural
hand are therefore mandatory. Several self-contained
robotic prosthetic hands suitable for a transradial level
of amputation have been developed up to now, nonethe-
less all of them would be rather inappropriate if/when a
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large bandwidth bi-directional link for control and per-
ception would be available. Therefore, a successful inte-
gration of commercial components and state of the art
techniques into a working anthropomorphic robotic
hand still nowadays represents an open-problem in
upper limb prosthetic research. The novelty of this pros-
thesis compared to previous prototypes and previous
authors’ work, is that it embeds in 530 g human-sized
palm and fingers: (i) a set of non-back-drivable actuators
allowing 85% ADLs grips, (ii) a sensory system compris-
ing sensorial information perceivable by the patients
using state of the art invasive or non-invasive interfaces
[30,37-39], (iii) a low-power flexible controller able to
drive actions and communicate in real time with exter-
nal brain-machine interfaces. These combined features
make the SmartHand prototype a unique robot/instru-
ment for motor control and sensory feedback neuros-
cientific experiments with upper limb amputees.

Some aspects of the hand may be further discussed.
Globally, the achieved mechanical, speed, and grip-
power performance are considered satisfactory for the
purposes under investigation. The maximum speed for
example (closing time 1.5 s), is sufficiently high that
patients would need significant training -aided by visual
input- for matching the reaching movements of their
limbs to the robotic hand speed. The 10 kg suitcase
lifted by the hand, represents an interesting figure that
robot hand designers should aim to. Regarding the
grasping force, the hand was able to stably grasp objects
without slippage; however while a 3.6 kg seems to be a
sufficiently heavy object to maintain in a power grip
prehensile form, an 800 g lateral grip could be inade-
quate for daily living activities (e.g. in the task of turning
a key in a lock). Without replacing the actuation unit,
such value may be improved by changing the mechani-
cal architecture of the thumb from Hirose’s configura-
tion to a fixed kinematics scheme (as e.g. the
Southampton hand finger). Regarding this point, it is
important to underline that grasp stability strongly
depends also on friction and compliance between mate-
rials, therefore, the use of a cosmetic glove would prob-
ably improve it. Regarding the weight (530 g) although
similar to other multi-fingered commercial and research
prostheses, it might become too heavy for the operator,
especially once writs, batteries and cosmetic glove are
added. The hand would be worn by the operator on the
end of a closely fitting external socket (as shown in Fig-
ure 6), hence the weight would bear directly onto the
skin of the stump. Since the lever-arm created is large
the weight can obstruct blood flow in the underlying
skin resulting in symptoms ranging from discomfort, to
skin breakdown. Additionally heavy prostheses may
cause damages to the wearer like elbow and shoulder
overuse, rotary cuff problems, neck and back pain. For
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such reasons, if a more robust version of the SmartHand
will be reengineered in the future, significant efforts
should be spent to reduce its weight.

In the authors’ opinion, robotic researchers should
move towards the development of highly dexterous
devices not only able to perform actions, but also ready
to provide perception by means of a comprehensive arti-
ficial sensory system, in order to match the interface
requirements and limits. Among the sensory sensations
that may be transferred to the amputee by means of an
adequate interface, joint position, touch and force sen-
sors are included whereas only the temperature is not.
Slippage and palm sensors are not included either but
could be embedded in future versions of the hand. Even
if currently there is no viable means to transfer all this
afferent information to the amputee, guidelines for
doing so have been traced [49], and novel -potentially
revolutionizing- interfaces are nowadays currently being
investigated [30,37,38]. To avoid the situation where the
limiting component of the system is the artificial hand,
whenever a novel large bandwidth interface will be
ready for chronic clinical implantation, robotic research
should be already prepared. It is also clear that for a
robot, reliability depends on the number of moving
parts and wires of the system, therefore a suitable com-
promise should be found based on the effective amount
of information that can travel through the interface.

Conclusions
The authors have presented the design and the perfor-
mance evaluation of a 16 DoFs self-contained robotic
hand to be used as a research tool for neuro-controlled
upper limb prosthetics. Motion is generated by 4
brushed DC motors and transmitted to five underactu-
ated fingers by means of non-back-drivable and differen-
tial mechanisms. Its actuation distribution allows the
hand both to stably perform fundamental grips useful in
activities of daily living, to independently point the
index and counting. The fingers contain a total of 32
force, position and tactile sensors, and the hand hosts
an internal control architecture able to plan grasps and
to exchange with the external world proprioceptive and
exteroceptive sensory signals. The weight is close to the
natural hand weight and comparable to actual commer-
cial prostheses (hand 530 g plus 145 g for the standard
wrist attachment). Speed is comparable to commercial
prostheses and slippage tests have shown that the hand
is able to stably grasp with a cylindrical prehensile pat-
tern and certain friction and geometric conditions up to
3.6 kg objects, nevertheless it is able to lift a 10 kg
suitcase.

Future work will address the development of a cos-
metic, protective glove in order to improve the aesthetic
and grip of the hand. Functionalities will be tested in
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experimental sessions by amputees using UPIs with dif-
ferent levels of invasiveness, while the long term objec-
tive is to connect the hand directly to the human
nervous system by means of neural electrodes in order
to investigate the effectiveness of establishing an intui-
tive, bidirectional flow of information between the ner-
vous system of the amputee and the robotic hand.
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