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Abstract

Background: The next generation of prosthetic limbs will restore sensory feedback to the nervous system by
mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to
compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin
mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for
vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin,
utilizes few free model parameters for parsimony, and separates parameter fitting and model validation.
Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday
task of contacting and holding an object.

Methods: This systems integration effort computationally replicates the neural firing behavior for a slowly adapting
type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining
a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky
integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the
spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI
interspike intervals (ISI) before validating the model to assess its performance.

Results: Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation
magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms.
Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to
15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate
increased, as is observed in afferent recordings. Finally, the SAI afferent’s characteristic response of producing
irregular ISIs is shown to be controllable via manipulating the output filtering from the sensor or adding stochastic
noise.

Conclusions: This integrated engineering approach extends prior works focused upon neural dynamics and
vibration. Future efforts will perfect measures of performance, such as first spike latency and irregular ISIs, and link
the generation of characteristic features within trains of action potentials with current pulse waveforms that
stimulate single action potentials at the peripheral afferent.
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Introduction
Our sense of touch helps us perform activities of daily
living, such as grasping a glass, discerning the structure
of a coin, and buttoning a shirt. Completing these tasks
proves difficult for the 541,000 U.S. citizens living with
upper limb loss [1]. In the near future, however,
advanced prosthetics may help reconstitute their motor
and sensory function [2-4]. It is likely that sensory con-
nectivity to the nervous system, via either peripheral af-
ferent or cortex, will originate from mechanical sensors
within an elastic skin. One major hurdle lies in modulat-
ing the delivery of the appropriate signals to the afferent
[5], specifically both the shape of current pulses to elicit
action potentials and the features within trains of action
potentials. Work herein is focused upon the latter, in
particular, those essential features captured by the slowly
adapting type I (SAI) afferent in its response to the
everyday task of contacting and holding an object. The
intent is to complement and extend prior work with vi-
bratory stimuli [6].
Among mechanoreceptive afferent types, SAI afferents

respond to sustained compression as well as movement.
SAI afferents exhibit firing rates about 10 times greater
during stimulus movement than sustained hold, whereas
their firing rates during held stimuli increases linearly
with indentation depth from 0.1 to 2.0 mm [7]. SAI
afferents exhibit comparatively high variability in the
time interval between spikes.
Although both skin mechanoreceptors and artificial

pressure sensors respond to compression, their outputs
are quite different. Mechanoreceptive afferents in the
skin produce trains of discrete action potentials, or
“spikes,” whose rates represent salient stimulus features
such as magnitude or velocity. In contrast, artificial force
sensors output a continuous analog signal, typically with
changes in resistance or capacitance that represent in-
tensity [8,9]. The rate of intensity change is decoded
from signal slope, rather than spike frequency. Other
sensor technologies, including optical fibers [10] and
tracking [11], output similar analog signals. Another dif-
ference between biological and artificial sensors is that
mechanoreceptors respond to stress and/or strain at the
location of natural tactile end organs, which lie embed-
ded within the skin. Mechanics models clearly indicate
that the skin influences the propagation of forces from
its surface to the end organs, shaping the resultant
neural response [12-16].
Work herein seeks to address these gaps and contrib-

ute to the knowledge base by computationally replicating
how the slowly adapting type I (SAI) mechanoreceptor
in its skin environment converts ramp-and-hold, sus-
tained stimuli into spike trains that capture the features
of contacting and holding an object. These features in-
clude the SAI’s increased neural firing to changes in
stimulus magnitude and rate of change, the SAI affer-
ent’s continuous firing response to sustained stimuli and
greater response to moving stimuli. To address these
gaps, this systems integration effort builds upon research
that includes models of membrane transduction and
neural dynamics by integrating a physical force sensor-
elastic substrate with a mathematical model of neuronal
spiking to transform sensor output to spike trains that
capture the SAI response’s characteristic features. Model
predictions are compared to electrophysiological record-
ings from mouse SAI afferents for similar ramp-and-
hold stimuli. The rigorous engineering technique of re-
sponse surface methodology was used to optimize the
model’s six free parameters by following a gradient
method of steepest descent to match predicted spike re-
sponse with those observed in the SAI afferent, before
separately validating the model. In addition, the work
begins to consider the SAI afferent’s variable interspike
interval and first spike latency.
Methods
Spiking-sensor model: force sensor-elastic substrate
The first component of the spiking-sensor model was
the physical force sensor-elastic substrate. A single
piezo-resistive sensor (Flexiforce A201; Tekscan Inc.,
South Boston, MA) was embedded within a silicone-
elastomer substrate (Figure 1). This sensor is commer-
cially available, robust to damage when embedded within
a silicone substrate, and integrated relatively easily with
peripheral hardware and software. It responds to normal
force within a range of 0 to 4.44 N over its thin
(height = 0.20 mm) and circular (diameter = 9.53 mm)
pressure sensitive area.
When applied load is increased over its sensitive area,

the sensor's resistance decreases, allowing its conductance
to increase linearly with respect to applied force. When
integrated with custom-built circuitry, the voltage passed
through the sensor is amplified and filtered (INA114;
Burr-Brown Corporation, Tucson, AZ) before being fed to
an analog-to-digital converter (DAQCard-6036E; National
Instruments Corporation, Austin, TX), which collects data
at a 100 Hz sampling rate. Supporting software (LabVIEW
8.5 Professional; National Instruments Corporation) was
developed to record, calibrate, and translate analog volt-
age, v(t) in V, into force detected at the sensor's location,
f(t) in N.
The voltage was linearly translated to force, per Tekscan's

specifications and our own sensor calibration experiments.
Noise from the sensor force output was filtered using a
low-pass Gaussian filter to remove frequencies >15 Hz.
For more information on the onset response of the Flexi-
force sensor, see section Discussion: Responsiveness of Sen-
sor and Load Cell.
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Figure 1 Overview of system connectivity. Sensor-substrate is connected to a filter, amplifier, and A/D converter to allow translation of sensor-
detected forces to predicted spike times via the transduction and neural dynamics sub-models.
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The sensor was embedded within an elastic substrate to
emulate the skin environment that typically surrounds
mechanoreceptors. During the pouring and curing process
of a cylindrical (diameter = 30 mm; height = 10 mm)
silicone-elastomer substrate (TC5005 A/B-C; BJB Enter-
prises Inc., Tustin, CA), the sensor was embedded at a lo-
cation in the center of the x–y plane and at a depth
1.0 mm below the surface. The specific depth of 1.0 mm,
roughly emulating the depth of 0.5 to 1.0 mm of the SAI
afferent’s Merkel cells in human skin [17], ensured that
the embedded sensor responded over a maximal surface
area (sensor diameter = 9.53 mm; surface receptive field
diameter = 20 mm), while also minimizing its depth from
the surface. Furthermore, the stiffness of the silicone-
elastomer, controlled by varying the percentage of cross-
linker (0.98%), was manipulated to match the modulus
value (Young’s modulus= 136 kPa) reported for epidermal
fingertip skin of human cadavers [15]. Although cadaver
skin is stiffer than in vivo or ex vivo tissue, minimal empir-
ical data on such stiffness exists. This modulus value is
supported by finite element analysis [15,16,18,19].
Spiking-sensor model: transduction sub-model
The second component of the spiking-sensor model was
the mathematical transduction sub-model. Force detected
at the sensor in the substrate (Figure 2a) was transformed
into current (Figure 2d), similar to how stress and/or
strain applied at an SAI afferent’s end organ is trans-
formed into current across its membrane.
Unlike previous work by Lesniak and Gerling [20], which

transformed strain energy density into transmembrane
current using a sigmoidal function, the functions (1) and
(2) developed here linearly convert sensor-detected force
and change in detected force, f ’(t) in N/ms, into current,
I(t) in mA. Its three coefficient terms are the intercept con-
stant ß in mA, the static gain ks in mA/N, and the dynamic
gain kd in mA�s/N. The ß term is intended to account for
the varying baseline between sensors. The change in
detected force is calculated with a step-size resolution h of
10 ms, given 100 Hz sampling rate.

I tð Þ ¼ βþ ksf tð Þ þ kdf
′ tð Þ ð1Þ

f ′ tð Þ ¼
0; for t ¼ onset
f tð Þ � f t � hð Þ

h

����
����; otherwise

8<
: ð2Þ

Although a sigmoid may more realistically reflect the
behavior of sensory cells [21], the linear function mini-
mizes the complexity of both the model and computa-
tional engine. Furthermore, the derivative represents
the dynamic ramp-up phase of spike firing using only
half the number of parameters required with a sigmoid.
The dynamic term, kd f ’(t) as shown in Figure 1c,

responds to a first-order change in sensor-detected
force, and therefore dominates I(t) (Figure 2d) during
both the ramp-up (<500 ms) and retraction portions
of indentation, while the static term, ks f(t) as shown
in Figure 1b, responds to the magnitude of force and
contributes mainly during the sustained hold. Thus,
the transduction sub-model accounts for stimulus
adaptation. While the full-wave model suggests the re-
traction of the stimulus contributes to the vigorous
elicitation of action potentials in this phase, a
phenomenon exhibited in neural recordings [22,23],
we did not perform an in-depth analysis here. The
sub-model was implemented in C# and the values for
parameters ß, ks, and kd were determined through par-
ameter fitting as described in section Methods: Data
analysis: parameter fitting.

Spiking-sensor model: neural dynamics sub-model
The third component of the spiking-sensor model was the
mathematical neural dynamics sub-model. The transmem-
brane current was transformed into spike times (Figure 2e)
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static magnitude and (c) dynamic change in force are summed) to create (d) current. The translated current predicts (e) spike times where
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by abstracting leaky integrate-and-fire behavior as a
resistive-capacitive (RC) circuit [24,25]. First, current I(t)
passes through a membrane with resistance R in Ohm and
capacitance C in mF, to set the membrane potential u(t) in
mV.
Once the membrane potential exceeds a threshold

�v in mV, an action potential is elicited. Upon firing,
the time of the spike is recorded, the membrane po-
tential is reset to rest, and the absolute refractory
period is entered, during which no spike may be eli-
cited. This entire process iterates until stimulus off-
set. While the biologically equivalent values of these
parameters are known (i.e., typical resting membrane
potential −65 mV), this sub-model simplifies resting
membrane potential to 0 mV [26], so that relative to
this baseline, the threshold is a positive value. The
absolute refractory period was set to 1 ms [27,28].
This leaky integrate-and-fire behavior was mathem-

atically defined by (3) and (4), where the membrane’s
time constant τ , in units of ms, is the product of the
membrane’s resistance and capacitance.

I tð Þ ¼ u tð Þ
R

þ C
@u
@t

tð Þ ð3Þ

τ ¼ RC ð4Þ
These two equations were combined and rewritten as
a single differential equation

g t; uð Þ ¼ @u
@t

tð Þ ¼ �u tð Þ
τ

þ I tð Þ
C

; ð5Þ

where, g(t,u), the change in membrane potential is a func-
tion of time-dependent membrane potential, u(t), and
current, I(t).
With the aid of a numerical, fourth-order Runge Kutta

method for solving ordinary differential equations, the
membrane potential in the next timestep uti+1 – a linear
combination of the differential equation evaluated at vari-
ous points in time and membrane potential – is calculated
iteratively until the future membrane potential utN reaches
or surpasses the threshold. The resolution of simulated
time increments was set to a constant step size of 0.01 ms.
The initial membrane potential, ut0 which represents the
baseline resting membrane potential, was set to zero.
The neural dynamics sub-model implemented in C#

does not account for intrinsic neuronal adaptation
mechanisms. Parameters τ , C, and �v were determined
through parameter fitting as described in section Methods:
Data analysis: parameter fitting.

Experimental set-up of spiking-sensor model
A custom-built mechanical indenter and contactor tip
were used to deliver precise ramp-and-hold stimuli in the
z–direction to the force sensor-elastic substrate (Figure 3).
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A motion controller (ESP300; Newport Corporation,
Irvine, CA) commanded a high-precision, mechanical
linear z-stage (ILS100CC; maximum velocity = 100 mm/s;
Newport Corporation) and reported the stage's position
(resolution = 0.0001 mm), as shown in the top panel of
Figure 4.
Applied force was also monitored using a low-profile

load cell (Sensotec 11 subminiature; maximum
load=44 N; Honeywell Inc., Columbus, OH). Although
the load cell typically outputs voltage, it was calibrated by
applying small indentations to a mass scale to derive nor-
mal force (resolution= 10-3 N), as shown in the middle
panel of Figure 4. The bottom panel of Figure 4 illustrates
an example of the force sensor's response to the applied in-
dentation as a filtered continuously-detected trace with a
sampling rate of 100 Hz.
The cylindrical Delrin contactor tip, threaded to the

bottom of the load cell, was oriented so that its flat end
provided a rigid contact against the surface of the elastic
substrate (Figure 2). The cylindrical tip’s dimensions
were 14 mm height by 20 mm diameter. The use of this
particular tip size and shape ensured that an equal state
of normal stress was applied over the entire sensing area
surface of the embedded sensor and minimized the out-
Figure 4 Data collected during a ~5 s ramp-and-hold indentation. Ind
of the sensor-substrate. Indenter tip starts from an initial position of 0.6 mm
static hold are highlighted in gray.
of-plane shear stress [29]. These conditions thereby
matched those for the mouse SAI afferent.
Directly below the indenter tip, a manually-controlled

and low-profile x–y stage (443 dual-mounted; Newport
Corporation) supported a square aluminum tray, on
which the force sensor-elastic substrate was placed and
positioned in the local horizontal plane during the
experiments (Figure 3).
Experimental set-up of mouse SAI afferent
A mechanical indenter and contactor tip was used to de-
liver vertical ramp-and-hold stimuli to the receptive field
of an SAI afferent in an ex vivo skin-nerve preparation
from a single adult female mouse (Figure 5). Thirty-eight
stimulations were delivered over several hours. The first
three preconditioning stimuli were omitted from analysis.
Details of the experimental procedure are described in the
Methods: Common Experimental Procedure section. All
animal use was conducted according to the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals and was approved by the Institutional Animal
entation was provided via a flat indenter tip, 1.4 mm into the surface
above the elastic-substrate’s surface. Phases of dynamic ramp-up and
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Care and Use Committee of Baylor College of Medicine
and the Department of Defense.
Single SAI afferents were isolated and identified as

described in Wellnitz, Lesniak, Gerling, and Lumpkin [22],
summarized here. Both a portion of nerve and the surround-
ing hairy skin of the mouse's hind paw were dissected and
pinned to a 5 mm thick silicone-elastomer substrate within a
custom recording and perfusion chamber. Synthetic intersti-
tial fluid was perfused beneath the skin while individual
nerve fibers were separated and draped over an electrode for
differential recording. A calibrated force fiber was then used
to locate the receptive fields of single afferents and estimate
their mechanical thresholds. Responses were classified as
SAI afferents based on conduction velocity (>9 m/s), mech-
anical threshold (<1 mN), punctate receptive field (diameter
<0.5 mm), slow adaptation, irregular firing pattern, low
spontaneous firing rate, and directional insensitivity to
stretch. SAI receptor identity was confirmed by fluorescent
detection of Merkel cells in the receptive field [21].
Over the entire receptive field of the identified afferent, a

linear actuator (D-A.25AB-HT17-2-BR/4; Ultra Motion,
Cutchogue, NY) commanded a flat-cylindrical MACOR con-
tactor tip (diameter=3.42 mm; edge round radius=0.32 mm)
to provide calibrated axial displacements. A load cell (Sensotec
31 subminiature; Honeywell Inc.) was mounted to the contac-
tor tip to monitor reaction force in Newtons. Due to noise
present in the load cell’s force readings during movements
with high acceleration, a low-band pass Gaussian filter, a com-
bination of a fast Fourier transform algorithm and its inverse,
eliminated all frequencies greater than 15 Hz to reconstruct
cleaned force readings.
During displacements, extracellular action potentials were

recorded through a differential amplifier (1800; A-M Systems
Inc., Sequim, WA) and an A/D card (DT304; DataTranslation
Inc., Marlboro, MA) with supporting software (SciWorks
Experimenter 6.0; DataWave Technologies, Loveland, CO).
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Spikes were collected from single afferents isolated using Sci-
works [22].

Common experimental procedure
Given both set-ups, a procedure with a randomized
complete block design was performed on the respective ex-
perimental platforms, where treatments of ramp-and-hold
indentations (coded as five unique indentation types) were
blocked by replication. Each indentation type was defined
by a unique combination of the rate of change of indenta-
tion during the ramp-up phase (3 levels: types I, II, & III)
and the magnitude of indentation during the hold phase (3
levels: types III, IV, & V).
Indentation types I, II, and III thereby shared the same

commanded magnitude of force in the sustained hold por-
tion via a constant 1.2 mm displacement, but delivered in-
creasing levels of ramp-up rate of change – as shown
qualitatively in Figure 6 through increases in achieved
ramp-up slope and quantitatively through increases in
achieved maximum rate of force change, dForce. Although
the stimuli were displacement-controlled, similar force
levels were maintained between 1000 and 5000 ms of in-
dentation (Figure 7).
Indentation types IV and V shared the same ramp-up rate

of change as III, but delivered increasing magnitudes of
force in the sustained hold portion via 1.3 and 1.4 mm dis-
placements – shown qualitatively in Figure 6 through
increases in achieved plateau height, but with similar ramp-
up slope. Thirty ramp-and-hold indentations were pre-
sented to the force sensor-elastic substrate (five indentation
types× six replication blocks), while 35 were presented to
the mouse SAI afferent (five types× seven blocks).
Following this experimental design, the indenter tip was

centered and positioned above each respective experimen-
tal platform's receptive field before conducting the replica-
tion blocks. Within each replication block, all five types
Spiking-sensor

(ms)

n SAI Afferent

00 4500 60003500 50004000 5500

aces across five types of indentation (I, II, III, IV, & V) overlaid for the
nset to offset. Both ramp-up rate and hold magnitude were
pes.



Figure 7 Dependent metrics as inputs into parameter fitting and model validation procedures. Top panel: amongst 30 stimulations across
all five types, 20 were selected as training set (black) to fit the model, while the remaining 10 were reserved for the test set (gray) to validate the
model. Bottom panel: amongst 35 stimulations spanning all five types, 5 (star pairs) were pseudorandomly selected to represent each of the types.
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were performed in random order. All indentations shared
the same starting position of 0.6 mm above the experi-
mental platform’s surface, as described in Wellnitz, et al.
[22]. Additionally, all indentations consisted of a ramp-up
phase followed by a sustained ~5 s hold phase and were
presented at 60 s intervals. Periods of no stimulation
reduced stimulus adaptation and allowed sufficient time
for the experimenter to control the indenter.
Prior to running each experiment, platforms were pre-

conditioned. During a preconditioning session, the in-
denter tip – at a velocity of 6 to 8 mm/s – applied three
indentations to a depth of 1.2 mm into the experimental
platform from a starting gap of 0.6 mm above the plat-
form’s surface. Preconditioning indentations were not
included in the analysis. In the preconditioning process, it
was evident that after three indentations, the force
recorded at the probe tip was consistent between subse-
quent indentations of equal depth, as had been considered
elsewhere [30]. Over the first three indentations, the force
recorded while the probe was held at its commanded
depth decreased significantly between trials, due to initial
relaxation of the elastic substrate and skin specimens.
Data analysis: independent and dependent metrics
We experimentally controlled for rate of ramp-up and
magnitude of hold to elicit continuously detected force over
time from the force sensor and spikes over time from the
SAI afferent. The independent metrics are coded treat-
ments of indentation types I, II, III, IV, and V and the
dependent metric is average interspike interval, or �ISI , dur-
ing separate phases of stimulus ramp-up ( �dynISI

�������
) and hold

( �statISI ), in Eq. 6 – 8.
Since

ISIi ¼ tiþ1 � ti ð6Þ
or simply the time difference between two consecutive
spikes, �ISI is calculated by dividing the sum of all ISIs
within a given time window by the total number of ISIs
contained within the same window. Thus, the dynamic
�ISI (7) or

�dynISI
������� ¼

Pm�1
i¼0 ISIið Þ
m

ð7Þ

is calculated by dividing the sum of all ISIs from the
time of stimulus onset to the time of peak indentation
by the total number of ISIs, m, within the same window.
Stimulus onset, for the spiking-sensor model, was
defined as when the magnitude of applied force from
the load cell exceeded 1 N. Stimulus onset, for the
mouse SAI, was defined as when dForce from the load
cell exceeded 0.5 mN/ms. Time of peak indentation for
both set-ups was defined as when magnitude of applied
force reached maximum. The static �ISI (8) or

�statISI
������� ¼

Pp�1
i¼n ISIið Þ
p� n

ð8Þ



Kim et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:45 Page 8 of 14
http://www.jneuroengrehab.com/content/9/1/45
is calculated by dividing the sum of all ISIs from 2 to 5
seconds by the number of those ISIs, p - n. This selected
window incorporates the later portion of typical double
exponential adaptation of an SAI afferent [31]. Thus, tn
is the time of spike upon entering static hold phase,
while tp is the spike time before ending static hold phase.
Data were analyzed using ISI of the time domain, since
this requires less transformation of the data through our
model than a measure such as firing rate in the fre-
quency domain. In addition, we preliminarily examined
first spike latency in ms.
Figure 7 illustrates the dependent metrics used as input

into parameter fitting and model validation procedures.
From the experiment with the spiking-sensor model, the 30
traces of sensor-detected force were randomly split
amongst a training set (two-thirds of the total data set: 20
traces) and test set (remaining one-third: 10 traces). The
training set was used for parameter fitting while the test set
was reserved for model validation. In the experiment with
the mouse SAI afferent, the 35 calculations each of �dynISI
and �statISI were made (five indentation types with seven
replications), from which we selected five �obsdynISI

������������
and

five �obsstatISI to represent a typical SAI afferent’s response
respectively to the dynamic ramp-up and static hold, given
each unique application of an indentation type (Figure 7,
bottom panel).

Data analysis: parameter fitting
The spiking-sensor model’s neural firing predictions for dy-
namic ramp-up and static hold phases were fit to those
observed in the mouse SAI afferent. The parameters of the
mathematical neuronal spiking model were fit using a train-
ing set, before validating via test set the fitted model's spike
time predictions against those observed in the SAI afferent.
Two parameter fitting sessions were performed with a dif-
ferent set of parameter values.
The parameters were fit using response surface method-

ology (RSM). The general RSM process is typically driven
by the goal of optimizing a response, which is influenced
by one or many factors. This work strives to maximize the
fractional sum of squares (FSS), previously used by Phillips
and Johnson (1981) [12], between predicted and observed
spike times, which is influenced by the six model para-
meters: ß, ks, kd, τ , C, and �v. Specifically, FSS is a comple-
ment of normalized sum of squared deviations and is
contributed equally by dynamic (ωdyn=0.5) and static
(ωstat= 0.5) comparisons of spiking response (9).

FSS ¼ ωdyn 1�
P5

i¼1

P4
j¼1

�obsdynISIi
������������ � �preddynISIij

������������� �2
4
P5

i¼1
�obsdynISIi

� �2
" #

þωstat 1�
P5

i¼1

P4
j¼1

�obsstatISIi
������������ � �predstatISIij

������������� �2
4
P5

i¼1
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pairs predicted by the spiking-sensor during
replication j (amongst the 20 traces in the training set) in
response to indentation type i (indentation type conditions
I–V) using a specified set of model parameter values.

Data analysis: model validation
The final FSS achieved in parameter fitting was com-
pared to an FSS calculated using the two stimulations
reserved for the test set, using the fitting session’s final
set of parameters. Although a high FSS was desired, the
test set FSS was hypothesized to be lower than that cal-
culated using the training set, since the alternative would
indicate overfitting the model.
Next, the effect of the rate during dynamic ramp-up

and the magnitude during static hold on predicted �ISI
were analyzed. Since both experiments presented to the
spiking-sensor model and SAI afferent were of rando-
mized complete block design, the general treatment ef-
fect of indentation type on both �dynISI and �statISI was
analyzed before further pair-wise comparisons were
made. An analysis of variance (ANOVA) was conducted
to test the null hypothesis of no treatment effect on

�dynISI and �statISI . ANOVA was conducted on both the
observed and predicted spike firing responses. Although
the five indentation types were blocked by the order of
experimental blocks, only the treatment effect was
tested. The blocking effect on spiking response addresses
the adaptation of the spiking-sensor model and SAI af-
ferent to repeated stimuli. Although an intriguing topic,
it is not within the scope of this work. As a follow-up
post hoc analysis, a Tukey’s test was conducted for mul-
tiple pair-wise comparisons to test the individual null
hypotheses of equal treatment means. All statistical ana-
lyses were conducted at a 0.05 significance level.

Results
Parameter fitting results
Table 1 focuses on the second session and provides the
values of the six model parameters (ß, ks, kd, τ , C, and �v)
and their respective calculated FSS for each of the iter-
ation steps. We demonstrated that RSM is sensitive to
starting conditions by the different paths taken by the two
fitting sessions. The first session ended with a parameter
set that produced a worse fit (FSS=0.829 with parameter
values 4.33E-08 mA, 5.74E-07 mA/N, 1.01E-03 mA� s/N,
71.592 ms, 1.01E-06 mF, 50.723 mV) than that produced
by the second session’s set of parameters (FSS=0.936 with
parameter values 2.72E-08 mA, 6.20E-07 mA/N, 2.71E-
04 mA� s/N, 71.409 ms, 9.70E-07 mF, 47.300 mV).
All following analyses focus on using the parameter

values obtained during the second parameter fitting ses-
sion. Using the final model parameter values obtained in



Table 1 Parameter fitting session

Iteration Model parameters

ß (mA) ks (mA/N) kd (mA� s/N) τ (ms) C (mF) �ν (mV) FSS

0 (Start) 0 6.00E-07 2.60E-04 68.000 1.00E-06 50.000 0.748

1 1.82E-08 6.23E-07 2.74E-04 70.409 9.78E-07 47.000 0.935

2 (End) 2.72E-08 6.20E-07 2.71E-04 71.409 9.70E-07 47.300 0.936
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the last iteration step of the second parameter fitting ses-
sion, Figure 8 portrays single translations of sensor-
detected force into trains of spike times across indentation
types. These qualitative results demonstrate increased
spike density in the static phase as the indentation’s mag-
nitude increases. In addition, increased spike density and
earlier first spike latency can be seen in the dynamic phase
as the indentation’s ramp-up rate of change increases.
Model validation results
FSS calculated from both the training and test set were
compared. Comparing the predicted spiking response to
those observed upon reaching the end of parameter fit-
ting resulted in a FSS of 0.936, which consisted of dy-
namic ramp-up and static hold components, 0.904 and
0.968 respectively. In comparison, the differences be-
tween predicted and observed spiking response when
using the test set resulted in a lower FSS of 0.888, where
the dynamic ramp-up and static hold components were
0.895 and 0.881 respectively. This decrease in perform-
ance does not suggest a poor fit since the test FSS was
still greater than 0.8. Instead, it suggests the model was
not overfit.
Next, the general treatment effects of indentation type

on �dynISI and �statISI were tested on both predicted and
observed spiking response. At a significance level of 0.05,
the null hypothesis, that indentation type has no effect on
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Figure 8 Data transformations using final parameter values. Using mo
parameter fitting session, sensor-detected force is transformed to predicted
predicted and observed �dynISI , is rejected (FNullPredicted =
16.45> F0.05,4,20 = 2.87; FNullObserved = 3.86> F0.05,4,24 =
2.78); thus, the �dynISI means differ when both predicted
by the spiking-sensor model (p-value< 0.01) and observed
in the SAI afferent (p-value< 0.025). At a significance
level of 0.05, the null hypothesis (HNull = indentation type
has no effect on predicted and observed �statISI ) is
rejected (FNullPredicted = 16.52> 2.87; FNullObserved = 11.49
> 2.78); thus, the �statISI means differ when both pre-
dicted by the spiking-sensor (p-value< 0.01) and observed
in the SAI (p-value< 0.01).
Across increasing stimulus ramp-up rates, Figure 9a com-

pares the mean �dynISI and �statISI (±SD) between predicted
and observed responses. The Tukey method’s multiple pair-
wise comparisons of �dynISI and �statISI means across the
indentation types I, II, and III (increasing ramp-up rate from
low, medium, to high, respectively) suggest that at a signifi-
cance level of 0.05, only the I vs. III type pairs of �dynISI
means significantly differed (difference> 5.01 ms, given q0.05,
5, 20 =4.24) for the spiking-sensor. None of the pairs of

�dynISI means observed in the SAI afferent were significantly
different (all differences< 11.53 ms, given q0.05, 5, 24=4.17).
For both the spiking-sensor and SAI afferent, all type pairs I
vs. II, I vs. III, and II vs. III of �statISI means were not signifi-
cantly different (all differences< 27.19 and< 38.50 ms,
respectively).
Across increasing stimulus hold magnitudes, Figure 9b

compares the �dynISI and �statISI (± SD) between predicted
and observed responses. The Tukey method’s multiple pair-
wise comparisons of �dynISI and �statISI means across the
indentation types III, IV, and V (increasing hold magnitude
from 1.2, 1.3, to 1.4 mm, respectively) suggest that at a sig-
nificance level of 0.05, none of the pairs of �dynISImeans sig-
nificantly differed for those predicted by the spiking-sensor
(all differences< 5.01 ms, given q0.05, 5, 20 =4.24) and those
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pike Times

50003500 4000 4500
(ms)

5500 65006000

del parameter values obtained from final fitting iteration of second
spike times.



“Low” “Medium” “High”

A
ve

ra
ge

IS
I(

m
s)

Indentation dForce

Indentation Type
I II III

Spiking-sensor Dynamic Ramp-up
Spiking-sensor Static Hold
SAI Afferent Dynamic Ramp-up
SAI Afferent Static Hold

10
0

10
1

10
2

1.2 1.3 1.4

A
ve

ra
ge

IS
I(

m
s )

Indentation Depth (mm)

Indentation Type
III IV V

10
0

10
1

10
2

Spiking-sensor Dynamic Ramp-up
Spiking-sensor Static Hold
SAI Afferent Dynamic Ramp-up
SAI Afferent Static Hold

a) b)

Figure 9 Average ISI compared between spiking-sensor model and SAI afferent spike times. Across a) increasing indentation ramp-up
dForce and b) increasing indentation depth, average ISI (error bars = SD) is compared between spiking-sensor model and SAI afferent spike times
for dynamic ramp-up and static hold phases. Note log scale used on y-axes.

Kim et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:45 Page 10 of 14
http://www.jneuroengrehab.com/content/9/1/45
observed in the SAI afferent (all differences< 11.53 ms,
given q0.05, 5, 24 = 4.17). For both spiking-sensor and SAI affer-
ent, the pairs of �statISI means from III vs. IV and III vs. V
were significantly different (differences> 27.19 and> 38.50 ms,
respectively).
First spike latency results
As rate of stimulus ramp-up increased, mean first spike la-
tencies (± SD) decreased for those predicted by the spiking-
sensor (244.90±8.81, 192.28±6.19, 154.96±3.17 ms). As
magnitude of stimulus hold increased, for indentation
types III, IV, and V (1.2, 1.3, 1.4 mm respectively), mean
first spike latencies (± SD) were not different for those
predicted by the spiking-sensor (154.96± 3.17,
155.525± 4.55, 159.055± 5.86 ms) although they exhibited
an increasing trend. These predictions are an order of
magnitude greater than first spike latencies recorded from
the mouse SAI afferent, which exhibited a range from 0.81
to 96.92 ms across all indentation types, a point consid-
ered in the Discussion section.
Interspike interval irregularity results
In addition, we qualitatively compared the effect of low-
pass filtering out frequencies greater than 15 Hz on the
production of irregular ISIs. For instance, when spike fir-
ing was predicted from raw force sensor data, a coeffi-
cient of variation (CV) for static ISI of 0.16 was
reported. When the same raw force sensor data trace
was low-pass filtered (frequencies> 15 Hz), the pre-
dicted CV for static ISI decreased to 0.07. Under similar
stimulation, the mouse SAI afferent reports mean CV
value of 0.78 ± 0.09 for static ISI. This suggests that un-
filtered data from the force sensor aids in the generation
of irregular ISIs, though the resultant CV value is still
not as great as that observed in the SAI afferent case.
Discussion
This effort takes an integrated engineering approach to ar-
tificially replicate the neural firing behavior of an SAI af-
ferent in its response to both magnitude and rate of
indentation force by integrating a physical force sensor,
embedded in an elastic substrate, with mathematical mod-
els of membrane transduction and neural dynamics. We
sought to mimic particular SAI neural firing features
which include increased response to changes in stimulus
magnitude and rate of change, as well as the SAI afferent’s
steady response to sustained stimuli and differentially
greater response to moving stimuli. These responses to
ramp-and-hold, sustained stimuli tie to tasks of contacting
and holding an object. Importantly, the input which drives
the models was the force recorded within the elastic sub-
strate, of distinct form and delay between force or dis-
placement at the tip of the probe and the surface of the
sensor.
The effort is unique because it begins to account for skin

elasticity by measuring force from within simulated skin,
utilizes only six free parameters, and separates parameter
fitting and model validation using response surface meth-
odology. It also focuses upon the paradigm of the ramp-
and-hold stimulus rather than vibration. By addressing
these gaps, the effort extends prior works. First, prior
efforts to predict the characteristic features within trains
of action potentials have not taken into account the
mechanics of the skin in the propagation of forces through
elastic skin substrates toward the locations of the natural
end organs, but rather use as input the position of the
stimulus (as well as velocity, acceleration and jerk) relative
to the surface contact or reaction force at the stimulus tip
[6]. However, it is clear from many past skin mechanics
studies that the skin’s structure significantly influences
and reshapes this propagation of forces. The forces at the
tip of the indenting object are quite different from the
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forces at the site of end organ mechanotransduction.
Moreover, particular quantities of stress and/or strain near
the locations of end organs (e.g., max compressive strain
and strain energy density) have been correlated to spike
firing rate during the stimulus hold phase. Though the
exact quantity remains an elusive question, no practical
sensor can sense complex stress and strain properties, nor
be robust enough to be embedded within an elastic skin-
like substrate. Therefore, while work here is a start, further
efforts are needed to understand and account for the many
complexities of the skin (e.g., exact stress/strain quantity,
rheological and tribiological characteristics, undulating
ridge structure [16,32], etc.). Second, prior efforts focused
upon vibratory stimuli, whereas this work sought to mimic
the elicitation of trains of action potentials, in particular,
those essential features captured by the slowly adapting
type I (SAI) afferent in response to everyday tasks of con-
tacting and holding an object. Cues used here in the differ-
entiation of various stimulus pressures, are of great
importance for prosthetics users who want to hold a child’s
hand or grasp a glass (i.e., “on-off” or “how much”) and
match with the SAI afferent’s characteristic response to
held indentation with sustained firing, and to increased
hold magnitude and rate of indentation with linear
increases in firing rate. The ramp-and-hold paradigm is
also central to important and long-standing questions
regarding SAI adaptation, first spike timing, and discrimin-
ation of displacement depth and force. Finally, this work
utilizes and fits six free parameters in comparison to the
100–150 used in other works [6].
The model predictions fit well with observations of the

characteristic features within trains of SAI action potentials
elicited in the mouse. In specific, the computational model
replicated basic findings regarding the mouse SAI afferent’s
discrimination of levels of stimulus magnitude in the static
hold phase. As the magnitude of indentation increased from
1.2 mm (indentation type III), 1.3 mm (IV), to 1.4 mm (V)
the spiking-sensor model predicted a trend of increased
spike firing, evident from decreasing average ISIs (98.81,
54.51, 41.11 ms respectively) within the static hold phase
(Figure 8b). These predictions fit favorably (mean stat_FSS=
0.925) to those observed average static ISIs (93.31, 36.28,
29.89 ms respectively) and agree with works by Mountcastle
et al. [33] and Ge and Khalsa [29]. Mountcastle et al. [33]
demonstrated a roughly positive and linear relationship be-
tween stimulus displacement magnitude and firing rate
reported by SAI afferents in the macaque monkey. An
increase in magnitude from 0.2 to 0.9 mm related to an in-
crease from an average of 0 to 70 impulses/s, or a decrease
in average ISIs from 1000 to 4.29 ms. Ge and Khalsa’s work
[29] demonstrated that an increase in indentation magnitude
from 0.05 to 0.2 mm related to a linear increase (R2 = 0.72)
in firing rate response from 0 to 20 impulses/s, or a
decrease in average ISIs from 1000 to 50 ms. While the
findings from both works did not share the exact magni-
tude of stimuli, the trend of response to increasing magni-
tude is consistent. Inconsistencies in response range may
be due to, but not limited to, different tactile sensitivities
across animal species.
Furthermore, this work replicated the mouse SAI

afferent’s discrimination of rates of stimulus ramp-up.
Regarding the fit of predicted and observed ISIs in the
dynamic ramp-up phase, as the rate of indentation
increased during the ramp-up phase from 1.43 N/ms
(indentation type I), 1.78 N/ms (II), to 2.19 N/ms (III),
the spiking-sensor model predicted a trend of increased
spike firing, inferred from decreasing average ISIs (21.85,
19.98, 15.42 ms respectively) in the dynamic ramp-up
phase (Figure 8a). These predictions fit favorably (mean
dyn_FSS= 0.900) to those observed average dynamic
ramp-up ISIs (24.58, 18.32, 17.86 ms respectively). The
closest connection to these findings is work by Pawluk
[34] in which ramp-up stimuli were used. However, that
work did not provide quantitative descriptions, with
which one could directly compare. Indirectly related to
the rates of stimulus ramp-up used here are vibration
studies, if one considers that increased frequency corre-
sponds indirectly. In those studies employing repeated
sinusoidal vibration, increases in frequency from 10 to
60 Hz lead evoke increases the SAI afferent response
from ~23 to 42 impulses/s (or a decrease in �ISI s from
43.48 to 23.81 ms) in a macaque monkey [35].

First spike latency
In addition to ISI, others have sought to tie the timing of
the first few neural spikes to perception. We have prelimin-
arily analyzed the time elapsed between stimulus onset and
the first spike elicited, or first spike latency, as stimulus
magnitude and ramp-up rate are changed. Our predicted
first spike latencies exhibit decreasing trends as both ramp-
up rate and hold magnitude was increased. In addition, the
predictions are an order of magnitude greater than both
those recorded from the mouse SAI afferent and reported
by Johannson [36] for human SAI afferents (range of ~20
to 90 ms).
We believe the discrepancy to be due to our model fitting

procedure’s exclusion of this metric, filtering artifacts, re-
sponsiveness of the sensor in silicone (see section Responsive-
ness of sensor and load cell), and sensor location and size.
Furthermore, current force sensors may not respond on the
timescales of biological mechanoreceptors, which exceeds
even our analog load cell. Future efforts will seek to better
match first detection of stimuli to biological scales through
improvements in modeling and sensor miniaturization.

Interspike interval irregularity
In addition to the presented findings, future efforts might
recreate the irregularity of neuronal spike firing. Although



Figure 10 Responsiveness of sensor and load cell. 0.4 mm indentation of the probe tip (top) into a Flexiforce sensor separated from the
elastic substrate (bottom, gray trace) is plotted with the response from the load cell (black trace). The slight initial offset of the load cell trace
helped differentiate the curves.
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our model predicts regular ISIs, it may be useful to match
to the highly-variable ISIs that are characteristic of SAI
responses [22,37]. Noise in the nervous system may origin-
ate from innate signal transduction mechanisms, or synap-
tic transmission, might be a consequence of SAI neurite
arbor integration, or may stem from other unknown
sources. It may be simulated using a combination of or one
of two methods: adding noise or manipulating sensor-
output filtering. The first method could simulate the intro-
duction of noise directly into the computation model, as
demonstrated by Russell et al. [38], where Gaussian noise is
added after the filtering processes. The second method
could reconsider our filtering procedure of the sensor
analog voltage output and reintroduce a small band of fre-
quencies and thereby a small level of variance in computa-
tions of both current and membrane potential.
Responsiveness of sensor and load cell
The onset response of the Flexiforce sensor, apart from the
silicone-elastomer substrate was also analyzed. As is ob-
servable in Figure 10, the response of the load cell’s trace
lags the displacement trace slightly, as does that of the Flex-
iforce sensor. However, the onset timing of the responses of
Flexiforce sensor and load cell are identical. This indicates
that the temporal lag in sensor response (Figure 4, lower
trace) is predominantly due to its encasement in an elastic
substrate, analogous to the skin’s effects on mechanorecep-
tor response in the biology [39].
Direct nerve interfacing
Finally, toward the goal of direct nerve interfacing, we
note that work has been done to deliver trains of current
pulses by directly inserting electrodes into sensory fibers
of the median nerve [40]. Current pulses depolarized
nerves to elicit action potentials. Some of these research-
ers validated action potential elicitation against expected
signal trains while others recorded psychophysical graded
perceptions. At present, the majority of their work has fo-
cused upon the transformation of signal from force sensor
to current pulse not informed by native transduction
mechanisms. While our work herein has sought to gener-
ate the characteristic features within trains of action
potentials, the next steps are to link this model with
current pulse waveforms that stimulate single action
potentials at the peripheral afferent.
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