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Abstract

Background: To observe brain activation induced by functional electrical stimulation, voluntary contraction, and
the combination of both using functional magnetic resonance imaging (fMRI).

Methods: Nineteen healthy young men were enrolled in the study. We employed a typical block design that
consisted of three sessions: voluntary contraction only, functional electrical stimulation (FES)-induced wrist
extension, and finally simultaneous voluntary and FES-induced movement. MRI acquisition was performed on a
3.0 T MR system. To investigate activation in each session, one-sample t-tests were performed after correcting for
false discovery rate (FDR; p < 0.05). To compare FES-induced movement and combined contraction, a two-sample
t-test was performed using a contrast map (p < 0.01).

Results: In the voluntary contraction alone condition, brain activation was observed in the contralateral primary
motor cortex (Ml), thalamus, bilateral supplementary motor area (SMA), primary sensory cortex (SI), secondary
somatosensory motor cortex (Sll), caudate, and cerebellum (mainly ipsilateral). During FES-induced wrist movement,
brain activation was observed in the contralateral MI, SI, SMA, thalamus, ipsilateral SlI, and cerebellum. During
FES-induced movement combined with voluntary contraction, brain activation was found in the contralateral M,
anterior cingulate cortex (ACC), SMA, ipsilateral cerebellum, bilateral SlI, and SI.

The activated brain regions (number of voxels) of the M|, S, cerebellum, and SMA were largest during voluntary
contraction alone and smallest during FES alone. Sll-activated brain regions were largest during voluntary
contraction combined with FES and smallest during FES contraction alone. The brain activation extent (maximum
t score) of the MI, SI, and SIl was largest during voluntary contraction alone and smallest during FES alone. The
brain activation extent of the cerebellum and SMA during voluntary contraction alone was similar during FES
combined with voluntary contraction; however, cerebellum and SMA activation during FES movement alone was
smaller than that of voluntary contraction alone or voluntary contraction combined with FES. Between FES
movement alone and combined contraction, activated regions and extent due to combined contraction was
significantly higher than that of FES movement alone in the ipsilateral cerebellum and the contralateral Ml and SI.

Conclusions: Voluntary contraction combined with FES may be more effective for brain activation than FES-only
movements for rehabilitation therapy. In addition, voluntary effort is the most important factor in the therapeutic
process.
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Introduction

Upper extremity hemiparesis is the primary impairment
underlying stroke-induced disability and is most fre-
quently treated by therapists [1]. Only 20% of stroke sur-
vivors have normal upper extremity function 3 months
later [2]. Periodic functional electrical stimulation (FES)
promotes motor function recovery after a stroke [3,4],
but the neural basis of this treatment is not fully under-
stood at the level of the central nervous system. Besides
the well-known peripheral effects on muscles them-
selves, the central therapeutic benefits of FES have been
described in a few reports about central reorganization
[5,6]. Previous studies also suggested that the FES effect
is optimal when patterned electrical stimulation is deliv-
ered in close synchrony with attempted voluntary move-
ment. Although functional neuroimaging studies have
demonstrated that the clinical use of FES can activate
the cerebral cortex [7], no reports have compared the
effects of FES-induced cerebral cortex activation alone,
voluntary contraction alone, and FES combined with
voluntary contraction. Therefore, we investigated and
compared these three treatments applied to wrist exten-
sors in normal subjects using functional magnetic reson-
ance imaging (fMRI).

Subjects and methods

Subjects

Nineteen healthy right-handed subjects who had no
known neurological disorders (mean age + standard devi-
ation, 28 vyears +3.033) participated in the study after
giving informed consent. The investigation complied
with the Helsinki declaration and was approved by the
local ethics committee.

FES parameters and protocols

FES was performed with a two-channel portable elec-
trical stimulator (Cybermedic Corp., Iksan, Korea). We
applied asymmetric, biphasic, charge-balanced, rectangu-
lar pulse shapes. The rising and falling times were 0.5 s,
and the stimulation and rest times were 1 s. The de-
polarizing pulses had a width of 200 ps and a frequency
of 20 Hz. The wrist extensor muscles (i.e., extensor carpi
radialis longus, extensor carpi radialis brevis, extensor
digitorum communi, and extensor carpi ulnaris) were
stimulated by a stimulating channel with a Synapse self-
adhesive electrode (30 mm X 30 mm; Ambu A/S, Baltorp-
bakken 13, 2750 Ballerup, Denmark). The stimulation
intensity was adjusted to produce wrist extension in the
range of motion between 50-70 degrees within the limit
in which the subject felt no discomfort (Figure 1). Some
subjects felt discomfort and needed lower amplitudes.
The resulting stimulation current amplitudes were in the
range of 16—20 mA.
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fMRI experimental protocols

The fMRI protocol had three stimulation sessions: vol-
untary contraction alone, FES alone, and FES combined
with voluntary contraction. During each task or stimula-
tion session, experimental blocks consisting of control
(resting stage) and task or stimulation period were
repeated four times with 10 scans each time. The experi-
mental blocks consisted of four rest periods and four
stimulation periods (30 s each). Voluntary contraction
was performed at the same speed and manner as the
FES-only protocol. FES combined with voluntary con-
traction was performed to make maximal voluntary wrist
contraction while FES was applied at the same speed
and manner as the FES-only protocol.

Each subject was asked to lie down in the supine pos-
ition and to look at a computer monitor displaying
instructions. The head was secured and movement was
minimized with foam padding. The arms were supported
if subjects were uncomfortable, and the right elbow was
fixed, which only allowed hand movement. FES stimula-
tion was triggered with a push-button switch that was
controlled outside of the MRI room.

fMRI acquisition and analysis
Blood oxygenation level-dependent (BOLD) fMRI, which
detects neural activity, was performed in a 3.0 T mag-
netic resonance imaging scanner (Verio, Siemens, Erlan-
gen, Germany) with a 12-channel head coil. T1-weighted
images were obtained using a magnetization-prepared
rapid acquisition gradient recalled echo (MPRAGE)
pulse sequence for gross anatomic visualization and co-
registration. BOLD images were obtained using the fol-
lowing echo planar imaging (EPI) sequence: repetition
time (TR)=3000 ms, echo time (TE)=21 ms, flip
angle=90°, field of view (FOV)=19.2 cm, matrix
size = 64 mm x 64 mm and slide thickness =3 mm.
Functional image analysis was performed using the
SPMS8 (http://www filion.ucl.ac.uk/spm) software pack-
age on the MATLAB (The Mathworks, Natick, MA,
USA) platform. Images from each session were rea-
ligned using affine transformation to correct for head
motion. Realigned images were co-registered with T1
anatomical images, and then normalization was con-
ducted using the 152 Montreal Neurological Institute
(MNI) template. To increase the signal-to-noise ratio
(SNR), smoothing was performed using a Gaussian ker-
nel with an 8-mm full-width half maximum (FWHM).
Preprocessed images from each session were regressed
by the time series hemodynamic response function
(HRF) and then correlated. For comparison within each
session, one-sample t-tests were performed after cor-
recting for the false discovery rate (FDR; < 0.05) to
compensate for type 1 errors, in addition to identifying
statistical differences between FES-induced alone and
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Figure 1 Experimental design.
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combined movement. Two-sample ¢-tests were per-
formed using a contrast map, which was analyzed by
one-sample f-tests.

Results

In the voluntary contraction alone condition, brain acti-
vation was observed in the contralateral primary motor
cortex (MI), thalamus, bilateral supplementary motor
area (SMA), primary sensory cortex (SI), secondary som-
atosensory motor cortex (SII), caudate, and cerebellum
(mainly ipsilateral; Figure 2, Table 1). During FES-
induced wrist movement, brain activation was observed
in the contralateral MI, SI, SMA, thalamus, ipsilateral
SII, and cerebellum (Figure 3, Table 2). During FES-
induced movement combined with voluntary contrac-
tion, brain activation was found in the contralateral MI,
anterior cingulate cortex, SMA, ipsilateral cerebellum,
bilateral SII, and SI (Figure 4, Table 3).

The activated brain regions (number of voxels) of the
M, SI, cerebellum, and SMA were largest during volun-
tary contraction alone and smallest during FES alone.
The activated brain regions of the SII were largest dur-
ing voluntary contraction combined with FES and smal-
lest during FES contraction alone. The brain activation
extent (maximum ¢ score) of the MI, SI, and SII was lar-
gest during voluntary contraction alone and smallest
during FES alone. The brain activation extent of the
cerebellum and SMA during voluntary contraction alone
was similar during FES combined with voluntary con-
traction; cerebellum and SMA activation during FES
movement alone was smaller than voluntary contraction
alone or voluntary contraction combined with FES
(Figures 5 and 6). Between FES movement alone and
combined contraction, activated regions and extent of

combined contraction was significantly higher than that
of FES movement alone in the ipsilateral cerebellum,
contralateral MI, and SI (Figure 7, Table 4).

Discussion

We compared the effects of three different fMRI para-
digms (i.e., FES alone, voluntary contraction alone, and
FES and voluntary contraction combined) on cortical
activation, and our results demonstrated that five dis-
tinct brain regions (ie, MI, SI, SMA, SII, and cerebel-
lum) contributed to active and passive motor tasks [8]
and showed significant and reproducible activation.
Strong activation was elicited in the MI and SI and
extended to the same degree in both somatosensory and
motor areas adjacent to the central sulcus. These areas
were closely connected to each other, and sent efferent
inputs to and received afferent outputs from the distal
extremities. Their co-activation was expected due to the
nature of our stimulation and the motor output it
produced.

Primary motor cortex activation have been observed
with passive movement, even without electrical stimula-
tion [9], and recent functional neuroimaging studies
have demonstrated that electrical stimulation or proprio-
ceptive inputs can activate the M1 and S1 [10]. The M1
receives afferent inputs via the SI or thalamus [11,12].
Increased motor cortical excitability may then facilitate
greater voluntary activation of the relevant neuronal net-
work, thereby leading to improved function [13].

In the present study, there was additional activation of
the contralateral SMA in subjects in all three stimulation
sessions (voluntary contraction alone, FES contraction
alone, and FES combined with voluntary contraction).
Although the SMA is associated with motor planning of
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Figure 2 Voluntary contraction (N=19, t(18) > 3.141, FDR < 0.05).

the performance of a complex motor task [14], it also
receives somatosensory inputs and is activated by passive
movement [15,16]. As seen in previous studies, the SMA
was activated by FES through passive movement and

somatosensory inputs. Significant increases in activity
were found in the SII bilaterally during all three stimula-
tion sessions. SII activity has also been reported in other
electrical stimulation paradigms. For example, Backes

Table 1 Activation region in voluntary contraction only movement

Contralateral Ipsilateral
Cluster functional region X y z Max t No.Voxels X y z Max t No.Voxels
PrCG Mi —34 —26 62 12.97 1087
SFG SMA =16 -5 71 791 986 6 4 66 343 356
PoCG Sl -36 —45 63 740 1556 62 -26 36 577 684
S| 62 -26 20 4.89 416
RO, STG Sl —46 0 6 7.02 285 50 2 6 548 202
Sli —60 8 0 6.37 257 58 8 2 536 106
IFG —-58 6 28 4.72 125 58 12 22 481 148
Thalamus —14 =20 8 5.00 184
Caudate =12 -6 16 412 25 14 -8 18 3.65
Pallidum -26 -12 0 391 5
Cerebellum -34 -54 -26 539 208 20 -54 —46 6.74 2656

Coordinates depict voxel with the highest t-value.

Max t: maximum t-score; No. Voxels:, number of voxels; PrCG: primary central gyrus;

SFG: superior frontal gyrus; PoCG: post central gyrus;RO:rolantic operculum;

STG: superior temporal gyrus; IFG: inferior frontal gyrus; MI: primary motor cortex;

SMA: supplementary motor area; Sl: primary somatosensory cortex;
Sll: secondary somatosensory cortex.
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Figure 3 FES-induced stimulation (N=19, t(18) > 3.116, FDR < 0.05).
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et al. [17] stimulated the median nerve while participants
performed a selective attention task and observed
enhanced secondary somatosensory activity that they
ascribed to selective attention. Secondary somatosensory
areas are considered sites for higher-order processing of
sensory information and sensorimotor integration [18].

Table 2 Activation region in FES only movement

Bilateral activity in such areas is observed when brushing
the fingers and the palm of the hand with a rough sponge
[19], when vibration stimulation is applied to the left
thumb [20], during median nerve stimulation [17], and
wrist flexion/extension stimulation [21]. This may ex-
plain the larger activated brain regions during voluntary

Contralateral Ipsilateral
Cluster functional region X y z Max t No.Voxels X y z Max t No.Voxels
PrCG M1 -36 -28 62 6.62 300
SMA -20 -16 76 354 4

Cerebellum 22 —52 -20 5.89 370
22 =52 =50 430 49
16 -58 -50 4.26 73

PoCG S1 -54 -28 20 5.02 237

SFG SMA =12 =10 78 428 34

SMG Sl 60 —28 34 427 178

Thalamus -14 -8 14 4.22 103

-4 =12 10 4.21 4

Coordinates depict voxel with the highest t-value.

Max t: maximum t-score; No. Voxels: number of voxels; PrCG: primary central gyrus;

PoCG: post central gyrus; SFG: superior frontal gyrus; SMG:supramarginalgyrus;
MI: primary motor cortex; SMA: supplementary motor area;
SI: primary somatosensory cortex; Sll: secondary somatosensory cortex.
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Figure 4 FES combined voluntary contraction (N=19, t(18) > 3.961, FDR < 0.05).

10

J

contraction combined with FES rather than during vol-
untary contraction alone.

We also found that cerebellum activation was mainly
ipsilateral. This pattern of cerebellar activation is in line
with those of other studies using passive movements [9].
A previous study using lower extremity electrical stimu-
lation indicated that afferent spinocerebellar information
from muscles, joints, and tactile receptors is important
for the preparation and correction of ongoing movement
[22]. Takanashi et al. [23] also demonstrated a similar
somatotopical organization within the cerebellum after
electrical stimulation. It is conceivable that the cerebellar
activation pattern observed in the present study was eli-
cited by passive movement, as well as by the electrical
stimulation itself.

The activated brain regions of the MI, SI, cerebellum,
and SMA were largest during voluntary contraction
alone and smallest during FES alone. The brain activa-
tion extent of the MI, SI, and SII was largest during vol-
untary contraction alone and smallest during FES alone.
These results suggest that FES combined with voluntary
contraction can enhance the cortical plasticity resulting
from the cumulative effects of FES-induced cortical ex-
citability together with excitability due to voluntary con-
traction. FES produces changes in cortical excitability
[22]. Furthermore, the repetition of even a simple

movement can produce changes in cortical excitability
that leads to transient reorganization in motor connect-
ivity [24].

The smallest brain activation areas and extent during
FES contraction alone may be explained in other ways.
In a study regarding the reproducibility of cerebral sen-
sorimotor activation with fMRI, Loubinoux et al. [25]
observed significant changes in signal intensity and
decreases in brain activation between the first and sec-
ond fMRI sessions. These changes were marked in the
contralateral MI, SI, SMA, cigulum, and parietal cortex.
They also conducted an experiment on the brain activa-
tion test—retest effect during active and passive move-
ment [25] and reported that changes in brain activation
areas and extent were marked during passive movement
but not during active movement. In the present study,
FES contraction alone was performed after voluntary
contraction alone. Passive wrist movement with FES
may be the reason why brain activation areas and extent
were smallest with repetitive fMRI.

As previously mentioned, stimulation was well toler-
ated, although not comfortable for all subjects. Despite
the non-painful nature of the stimulus, activation within
the cingulate was observed during FES combined with
voluntary contraction. This may be explained in that
some subjects felt discomfort but did not require
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Table 3 Activation region in FES combined voluntary contraction

Contralateral Ipsilateral
Cluster functional region X y z Max t No. of Voxels X y z Max t No. of Voxels

PrCG Mi —34 -26 52 847 786
SMA -34 -28 64 832 691

PoCG, IPL Sl -50 -36 58 6.11 1107 56 —46 52 5.07 292
N —62 =22 24 493 986

Cerebellum -34 —68 =24 5.16 253 18 =50 -18 7.50 1219

30 —44 -28 524 136

4 —62 -16 4.74 54

RO, SMG, PoCG Sl -54 -28 18 481 194 54 -30 34 5.36 871

SlI —48 0 6 4.77 434 50 4 8 378 943

SlI —54 8 14 436 244 64 —40 36 499 292
Insula —46 -24 22 595 842
ACC -8 -26 48 573 73
Thalamus =12 -8 14 4.84 315
=14 =20 8 476 257
-4 -8 10 413 16

IFG 60 14 18 442 184

Coordinates depict voxel with the highest t-value.

Max t: maximum t-score; No. Voxels: number of voxels; PrCG:precentralgyrus;
PoGG:postcentralgyrus; ACC: anterior cingulate cortex; IPL: intra-parietal lobule;
RO:rolanticopeculum; SMG:supramarginalgyrus; IFG: inferior frontal gyrus;

MI: primary motor cortex; SI: primary somatosensory cortex;

Sll: secondary somatosensory cortex.

reduced amplitude, while others did. This also means
that current intensity was set differently for each subject
to avoid painful sensations. We focused on maximum
wrist extension and thus we used different current

intensities for each subject to induce maximum move-
ment without pain. This FES application method is cur-
rently used for rehabilitation therapy in rehabilitation
centers; we applied FES to mimic the current method of

3000
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w
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= 1500
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SMA, supplementary motor area.

Functional area

Figure 5 Comparison of brain activation areas during three stimulation sessions. Abbreviations: No. Voxels, number of voxels, VC, voluntary
contraction, FES, functional electrical stimulation, MI, primary motor cortex, S, primary somatosensory cortex, S, secondary somatosensory cortex,

Sl Cerebellum SMA




Joa et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:48 Page 8 of 10
http://www.jneuroengrehab.com/content/9/1/48

14
. \VC
12 4 1 FES
I Combined
10 4
- a T
x
g _
64 i
4 4
24
0 T T
Mi Sl Sl Cerebellum SMA
Functional area
Figure 6 Comparison of brain activation extents during three stimulation sessions. Abbreviations: Max t, maximum t-score, VC, voluntary
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SMA, supplementary motor area.
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Figure 7 Combined movement > FES only movement (N =38, t(36) > 3.333, p < 0.001).
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Table 4 More activation region in combined movement than FES only movement
Contralateral Ipsilateral
Cluster functional region X y z Max t No.Voxels X y z Max t No.Voxels
PrCG M1 —-14 -30 58 285 58
Cerebellum 10 —54 -26 3.00 30
PoCG S1 —40 -32 32 3.05 77
IPL S1 42 -56 46 267 54

Coordinates depict voxel with the highest t-value.

Max t: maximum t-score; No. Voxels: number of voxels; PrCG: primary central gyrus;

PoCG: post central gyrus; MI: primary motor cortex; SI: primary somatosensory cortex; IPL: intra-parietal lobule.

FES therapy for stroke patients. Previous fMRI studies
on FES-induced wrist movement did not standardize
FES during wrist movement. Thus, standardization of
electrical stimulation was not essential in this study.

In rehabilitation clinics, FES combined with voluntary
contraction is used as a new hybrid FES therapy in
stroke patients [19]. Grisenko et al. [26] reported that
FES-assisted exercise therapy improved hand function in
patients with hemiplegia whose level of motor function
excluded them from constraint-induced movement ther-
apy. They also found that cerebral blood flow in the
sensory-motor cortex area on the injured side increased
during the power-assisted FES session compared to sim-
ple active movement or simple electrical stimulation in a
multichannel near-infrared spectroscopy study to nonin-
vasively and dynamically measure hemoglobin levels in
the brain during functional activity. This suggests sen-
sory components as a possible mechanism for motor im-
provement in FES therapy.

However, the present study has several limitations.
First, the subject group was unbalanced, as it consisted
of 19 males and 4 females. Because the number of fe-
male participants was small and the results for the fe-
male group were significantly different from those for
the male group, females were not included in the statis-
tical analyses. Therefore, we analyzed the fMRI data
using only the male group throughout. Second, a force
measurement during voluntary contraction and volun-
tary contraction combined with FES was not carried out.
If we measured force during maximum voluntary con-
traction and had subjects do voluntary contraction with
the same power during FES combined with voluntary
contraction, the results may have been more persuasive.
Finally, because the three stimulation sessions were not
randomized, we do not know whether session order
influenced the results.

The most important factor in brain rehabilitation is not
the activated pathway per se, but rather cortical activa-
tion itself. Brain plasticity refers to the brain’s ability to
change structures and functions altered by the environ-
ment. Therefore, the principal rehabilitation procedure
for brain-injured patients is environmental manipulation
[27]. By combining patterned electrical stimulation with

attempted voluntary movement, the movement may be
interpreted more as the patient’s own and, like ordinary
voluntary movement, may co-activate more motor con-
trol regions and sensory areas. This may be crucial in
motor recovery at the brain level. The present study
showed that the clinical use of FES has a direct effect on
the cerebral cortex, and that FES in combination with
voluntary training may enhance the benefits of the stand-
ard FES therapy.

Conclusion

Neuromuscular stimulation combined with voluntary
movement produces more brain activation areas and ex-
tent than neuromuscular stimulation alone. These results
suggest that, for rehabilitation therapy, voluntary contrac-
tion combined with FES may be more effective for brain
activation than FES movement alone and may provide the
basis for FES-related research for understanding mechan-
isms of neural plasticity or reorganization in motor func-
tion recovery.
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