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Abstract

Background: Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in
sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using
mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a
function of object center of mass (CM) during whole-hand grasping.

Methods: Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and
release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object
CM was changed by adding a mass at different locations at the base of the object. We measured forces and
torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at
object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset
to generate a compensatory moment to counteract the external moment caused by the added mass and to
minimize object tilt.

Results: We found that CTS patients learned to generate a compensatory moment and minimized object roll to
the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF) in
coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces,
and the net center of pressure on the finger side of the device at object lift onset and during object hold. In
contrast, patients modulated only one of these DoFs (the net center of pressure) to object CM by modulating
individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit
tangential force distribution to object CM.

Conclusions: Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation
task, it interfered with the modulation of specific grasp control variables. This phenomenon might be indicative of a
lower degree of flexibility of the sensorimotor system in CTS to adapt to grasp task conditions.

Keywords: Sensorimotor memories, Grasping, Learning, Center of mass
* Correspondence: Marco.Santello@asu.edu
1School of Biological and Health Systems Engineering, Arizona State
University, Tempe, AZ 85287, USA
Full list of author information is available at the end of the article

© 2012 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Marco.Santello@asu.edu
http://creativecommons.org/licenses/by/2.0


Zhang et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:83 Page 2 of 13
http://www.jneuroengrehab.com/content/9/1/83
Background
Carpal tunnel syndrome (CTS) is a compression neu-
ropathy of the median nerve. Prolonged mechanical
compression of the nerve can result in ischemic damage
and/or changes in the myelination of the nerve, which in
turn leads to slowing of axonal conduction velocity,
nerve block, and in severe cases axonal loss [1,2]. CTS is
characterized by a constellation of symptoms including
aching and burning, tingling, numbness, weakness, and
clumsiness in the affected hand. CTS also results in sen-
sory deficits in the thumb, index, middle, and radial half
of the ring finger (palmar and the most distal dorsal as-
pect of these digits). In severe cases, CTS can also cause
motor deficits particularly in the thumb. Complications
from CTS result in an average of 25 days lost from work
per employee per year [3] with an average lifetime cost
of $30,000 per individual in the U.S. [4]. Despite the high
societal costs of CTS, there is little research done on the
impact of CTS on activities of daily living such as grasp-
ing and manipulation. A few studies that have quantified
the control of two-digit manipulation in CTS patients
have revealed an intact ability to modulate grip forces
with respect to load forces as a function of texture [5]
and the use of excessive grip forces [6]. The former re-
sult may suggest a role for residual tactile sensitivity
through afferent fibers spared by the median nerve com-
pression, whereas the latter finding is reminiscent of
compensatory strategies to prevent object slip elicited by
anesthesia of the fingertips [7-10]. It should be noted,
however, that activities of daily living often require
multi-digit manipulation, e.g., grasping and lifting a bot-
tle to pour a liquid in a glass or using tools such as a
hammer. Furthermore, CTS might affect the control of
two-digit grasping differently than five-digit grasping as
two-digit grasping involves digits (thumb and index fin-
ger) that are both affected by CTS. As long as the two
digits employed in a two-digit grasping are at collinear
locations on the object, they do not generate a moment
in the frontal plane, hence no object tilt, regardless of
how much grip force they exert. In contrast, in a five-
digit grasp excessive grip forces might have behavioral
consequences. Because not all grip forces are collinear,
they may cause unwanted moments and object tilt. To
prevent these moments, fingertip forces have to be dis-
tributed such that the net moment on the object is zero.
Being able to do so is important because often multi-
digit forces have to be coordinated to prevent net
moments while grasping or lifting the object to prevent
it from rolling, e.g., spilling a liquid from a glass. There-
fore, the execution of whole-hand grasping and manipu-
lation might be challenged by CTS differently than in
two-digit grasping. Last but not least, in whole-hand
grasping not all digits have sensorimotor deficits. Specif-
ically, for grasp tasks that involve all digits, CTS patients
have to integrate sensory feedback from the CTS-
affected and non-affected digits (part of the ring finger,
little finger). These considerations motivated our recent
study on the effects of CTS on modulation of multi-digit
forces to object weight for whole-hand manipulation
[11]. This work revealed that CTS patients are able to
adapt grip force to object weight. Nevertheless, multi-
digit force coordination in CTS patients differed from
controls in several ways. Specifically, force modulation
was more variable across trials in patients and they did
not discriminate between lighter object weights. Another
distinctive feature of CTS patients was their lower ability
to minimize net moments on the object, thus potentially
interfering with the task requirement to lift the object
while preventing it from rolling. Furthermore, CTS
patients consistently used excessively large digit forces
across consecutive trials and, most importantly did so
with both CTS-affected digits and digits with intact sen-
sorimotor capabilities. We interpreted these findings as
indicative of an interference of CTS-induced deficits in
tactile sensitivity with the formation of accurate sen-
sorimotor memories of previous manipulations. Conse-
quently, CTS patients might have used compensatory
strategies to maximize grasp stability at the expense of
exerting consistently larger multi-digit forces than con-
trols. The objective of the present study was to determine
the effects of CTS on the ability to adapt multi-digit
forces as a function of object center of mass (CM) for
whole-hand manipulation. The rationale for extending
our previous work to multi-digit force coordination as a
function of object CM is that this scenario introduces
different constraints relative to multi-digit force coor-
dination to object weight. As noted above, the ability to
manipulate an object (e.g., lifting an object maintaining
its vertical orientation) with an asymmetric mass distri-
bution requires changing fingertip force distributions
such that the external moment of the object can be coun-
teracted by the net moment generated by the digits. The
extent to which this ability might be affected by CTS
cannot be inferred from our previous work as it requires
a significantly higher degree of digit force individuation
than the uniform scaling of all fingertip forces observed
when changing object weight [11]. Based on our previ-
ous work (see above [11]), we hypothesized that CTS
patients (1) would maintain the ability to modulate both
total digit normal force and tangential force distribution
to object CM. However, we expected CTS patients to be
less skilled than controls in coordinating digit normal and
tangential forces, and therefore (2) use larger grip forces
than controls with both CTS–affected and –unaffected
digits, (3), be less skilled than controls in generating a
compensatory moment at object lift onset to counteract
the external moment on the object, thus leading to
larger object roll during lift, and (4) be characterized
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by higher trial-to-trial variability of compensatory mo-
ment than in controls. The rationale underlying expected
findings (2)−(4) was that CTS-induced deficits in tactile
sensitivity would interfere with both feedback-driven
regulation of forces and the formation of accurate sen-
sorimotor memories for anticipatory grasp control.
Methods
Ethics statement
All participants gave their written informed consent
according to the declaration of Helsinki and the proto-
cols were approved by the Institutional Review Boards at
Arizona State University and Mayo Clinic Hospital.
Table 1 Participant’s descriptive information and CTS patient

No. CTS patien

Gender Age Handedness Tested
hand

Electrodia

Median nerve
study

1 F 48 R L Sensory

Motor

2 M 54 R R Sensory

Motor

3 F 57 R R Sensory

Motor

4 F 60 R R Sensory

Motor

5 F 56 R L Sensory

Motor

6 F 30 R R Sensory

Motor

7 M 52 R L Antidromic sensory

Motor

8 F 56 R R Sensory

Motor

9 F 42 R R Sensory

Motor

10 F 55 R R Sensory

Motor

11 F 48 R R Sensory

Motor

12 F 47 R L Sensory

Motor

13 F 60 R R Sensory

Motor

14 M 47 R L Sensory

Motor
1Normative values are listed in Table 2. Sensory studies are orthodromic except pat
2Amplitude values for sensory studies are microvolts and motor studies are millivol
3,4 Conduction velocities and F-wave latencies were normal for all nerve studies.
Subjects
Fourteen Carpal Tunnel Syndrome (CTS) patients (51 ±
2 years old, 3 males and 11 females) and fourteen age-
and gender-matched healthy controls participated as
subjects in the current study. The weight and height of
the subjects averaged 84.8 ± 6.7 kg and 167.4 ± 3.9 cm
for CTS patients, and 79.7 ± 3.6 kg and 169.7 ± 3.6 cm
for controls, respectively. Patients were diagnosed with
CTS by the same neurologist (Mayo Clinic Hospital,
Phoenix, AZ) based on clinical symptoms and results of
electrodiagnostic tests (Table 1; normative values are
shown in Table 2; ulnar motor and sensory tests revealed
normal values for all patients and are not shown in
Table 1). The inclusion and exclusion criteria for CTS
’s results of electrodiagnostic tests

ts Control

gnostic test results (abnormal values in bold)1 Age

Amplitude2 Velocity3

(m/s)
Distal

latency (ms)
F-wave

latency4 (ms)

11.4 57 2.8 48

10 54 5.6 29.7

13.5 2.9 54

8.7 52 6 35.1

71.2 59 2.5 59

11.5 57 4.1 26.1

10 62 3.3 60

9.6 60 4.8 26.2

60.2 2.3* 56

8.7 59 3.9

53.8 64 2.4 30

11.7 59 3.4 24.1

15.2 4.0 54

8.4 4.8

17 53 5.4 56

8.8 7.1 31

45.2 2.5 40

11.8 55 3.9

63.5 66 2.8 55

8.9 52 5 25.9

51.1 62 2.6 47

7.2 51 5.3 27.5

84.6 63 2.5 46

10 51 3.9 27.1

27.7 59 3.6 59

6.1 53 5.8 28.2

52.4 2.4 47

9.9 54 4.2

ient 7, who had an antidromic median sensory study.
ts.
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patients and control subjects have been reported in de-
tail in our previous study [11]. Briefly, for inclusion in
our study, CTS patients had to exhibit at minimum a
prolonged median nerve distal sensory latency (anti-
dromic or orthodromic, relative or absolute). Eligibility
for participation in our study of control subjects
included absence of CTS-like symptoms. Detailed clin-
ical history of CTS patients and controls was carefully
reviewed and we further verified eligibility for participa-
tion based on a list of exclusion criteria. a Only patients
with idiopathic CTS were included in the study. All CTS
patients and controls were right-handed (self-reported).
Five CTS patients were tested on their left hand and
nine patients were tested on their right hand. The tested
hand of control subjects was matched to the hand tested
in CTS patients. All participants were naïve to the pur-
pose of the study.

Apparatus
The grip device used for our experiments (Figure 1A)
has been described in a previous study [11]. Briefly, one
force/torque (F/T) transducer (Nano-25, ATI Industrial
Automation, Apex, NC) for the thumb (T) and four F/T
transducers (Nano-17), one for each finger (I, index; M,
middle; R, ring; L: little), were used to measure three
force and three moment-of-force components produced
by each digit. The center of the thumb sensor was
aligned with the midpoint between the middle and ring
finger sensors. The surface of each sensor was covered
with insulating circular plates. An electromagnetic pos-
ition/orientation tracking sensor (Polhemus Fastrak,
Colchester, VT; 0.075 mm and 0.05° resolution) was
affixed on the top of the grip device to measure the ob-
ject position and angle about the vertical axis in the
frontal plane, i.e., object roll. Three compartments
underneath the grip device were used for positioning a
200 g load to change the object center of mass (CM) to
the thumb side (TCM), center (CCM), or finger side (FCM)
(Figure 1A). When the load was placed on the thumb,
center, or finger side of the grip device, it generated an
Table 2 Normative median and ulnar nerve conduction value

Nerve Age < 60

Median Amplitude1 Wrist latency

Orthodromic sensory ≥50 < 2.3

Antidromic sensory ≥ 15 < 3.5

Motor ≥ 4 < 4.5

Ulnar

Orthodromic sensory ≥ 15 ≤2.3

Antidromic sensory ≥ 10 < 3.1

Motor ≥ 6 < 3.6
1Amplitude values for sensory studies are microvolts and motor studies are millivol
2 Note that some normal values for subjects 60 years old and older are gender spe
external moment of 12.4 and 0.7 N∙cm in the pronation
direction, and 11.1 N∙cm in the supination direction
about the origin ‘O’ (the approximate center of gravity
of the grip device without load; Figure 1A). The mass of
the grip device with the load was 545 g. Note the location
of the load was not visible to the subjects during the ex-
periment. Force and torque data from each sensor were
acquired by five 12-bit A/D converter boards (National
Instruments, Austin, TX) at a sampling frequency of
1 kHz. Collection of position data was triggered by the
onset of force data acquisition and collected on a separ-
ate computer at a sampling frequency of 80 Hz. Force
and position data were synchronized offline for analyses.
Custom software (LabVIEW 6.1, National Instruments)
was used to acquire, display and store force data.

Experimental procedures
Before the experiment, subjects were asked to sit facing
the grip device with the shoulder of the tested hand
aligned with the grip device to ensure that the object
could be comfortably grasped. Subjects were instructed
to wait for a ‘go’ signal, after which they reached, grasped,
lifted ~ 10 cm from the table, held for 4 s, and replaced
the grip device on the table at a comfortable, self-
selected pace. One of the experimenters visually verified
that the subject contacted each sensor with the tip of a
single digit. The only task requirement was to lift and
hold the grip device vertically. When the mass was
placed on the thumb or finger side, an external moment
could cause the object to roll during the lift if not suffi-
ciently compensated for. During the experiment, subjects
were instructed to perform object grasping and lifting in
three different CM conditions (TCM, CCM, and FCM) for
7 consecutive trials per CM condition. Thus, each sub-
ject performed a total of 21 trials. Note that subjects
were unaware of the load location on the first trial in
each CM condition, but were aware that the load loca-
tion would remain the same within each block of 7 trials.
The CM conditions were presented in a counterbalanced
order across CTS patients. The order of CM presentation
s, Mayo Clinic Arizona EMG laboratory

Age ≥ 602

(ms) Amplitude1 Wrist latency (ms)

M ≥ 17.4; F ≥ 40.1 < 2.5

M ≥ 12.2; F ≥ 15.9 < 3.7

≥ 4.5 M: < 4.4; F < 3.8

M ≥ 3.4 ; F ≥ 14.4 < 2.3

M ≥ 3.9; F ≥ 15.9 M < 3.5; F < 3.1

≥ 4.8 M: < 3.2; F < 2.9

ts.
cific. M = male; F = female.



Figure 1 Experimental setup and experimental variables. Panel A shows the front and side views of the grip device used for the
experiments and its dimensions (in cm). Force/torque sensors are mounted on both sides of the device to measure forces and moment of forces
exerted by each digit (thumb, index, middle, ring, and little fingers: T, I, M, R, and L, respectively). A mass (200 g) was inserted in one of three
compartments at the bottom of the grip device to change the object center of mass towards the thumb, in the center, or the finger side of the
device (TCM, CCM, FCM, respectively). Panel B shows, from top to bottom, the time course of the object vertical position, object roll, compensatory
moment (Mcom), individual digit normal and tangential forces (Fn and Ftan, respectively), and the vertical distance between center of pressure of
T and the other four fingers (ΔCoP). Experimental variables are aligned with object lift onset (‘a’, vertical line). Note that analysis of digit forces
during object hold (‘b’) was performed on data averaged over the last 2 seconds of the hold. Data are from one representative CTS patient (S8)
and her matched control (left and right column, respectively) performing the task on the fifth trial in the TCM condition.
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was matched between each CTS patient and his/her con-
trol. Subjects were given a minimum of 10-s rest period
between trials and experimental conditions to prevent
pain, fatigue, or worsening of the CTS symptoms. The
entire experiment lasted approximately twenty minutes.
None of our subjects reported any of these adverse
reactions.

Data processing
Our analysis focused on two epochs: (1) object lift onset
and (2) object hold. Object lift onset (“a”, Figure 1B) was
defined as the time at which the vertical position of the
grip device crossed and remained above a threshold
(mean + 2 SD of the signal baseline) for 200 ms. Object
hold (“b”, Figure 1B) was defined as the time period be-
tween the end of object lift and the onset of object re-
placement on the table. The end of object lift was
defined as the instant at which the absolute derivative of
the object vertical position dropped less than 3% of its
maximal value during object lift. The onset of the object
replacement was defined as the instant at which the ab-
solute derivative of the object vertical position increased
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more than 3% of its maximal value during the object
downward movement. Object lift onset was used to
examine anticipatory scaling of digit forces and moment
to object CM based on previous manipulations, whereas
object hold was used to evaluate subjects’ ability to adapt
digit forces as a result of sensory feedback acquired fol-
lowing object lift onset. As force transients occur at the
onset of object hold, digit forces were averaged over the
last 2 s of the object hold. We analyzed the following
variables:

1.Digit forces. Digit normal force (Fn) is the force
component perpendicular to the grip surface
(Figure 1B). Grip force (FG) was defined as the sum
of Fn produced by all digits. Digit tangential force
(Ftan) is the vertical force component parallel to the
grip surface produced by each digit to lift and hold
the object against gravity (Figure 1B). The difference
between Ftan produced by the thumb and all fingers
(ΔFtan) was used for analysis of moment of forces
(see below).

2.Moment of forces. Moment of force (referred as
‘moment’ hereafter) was defined as moments exerted
in the frontal plane (yz plane) about the origin ‘O’
(Figure 1A). Moment analysis was used to quantify
the extent to which subjects could generate a
moment at object lift onset in the direction opposite
to the external moment caused by the additional load
[12,13]. The task requirement of lifting the object
vertically while preventing it from rolling is fulfilled
when the moment generated on the object matches
the external moment from lift throughout object
hold. The moment generated by the subjects was
defined as compensatory moment (Mcom) and was
computed as the resultant moment produced by all
the digits’ normal forces (normal moment; Mn) and
digits tangential forces (tangential moment; Mtan).
The magnitude and direction of Mn and Mtan are
dependent on the FG combined with the vertical
distance between thumb and fingers center of
pressures (CoPs) applied on each side of the grip
device (ΔCoP), and ΔFtan, respectively. Hence,
Mcom is a function of FG, ΔFtan, and ΔCoP
(for details see [11,13]). The trial-to-trial variability
of anticipatory moment production was quantified
as standard deviation (SD) of Mcom at object lift
onset and during hold (trial 4 to 7) per CM
condition.

3. Finger normal force sharing (SFn) was calculated as
Fn exerted by each finger expressed as percentage of
thumb Fn. SFnj was used to denote the normalized
individual finger grip force (i = I, M, R, L). SFn is an
important variable as it reflects the strategy used by
subjects to modulate the resultant center of pressure
on the finger side, hence Mcom magnitude and
direction.

4.Object roll. The current task required subjects to
minimize object roll during object lift and object
hold. Thus, peak object roll [13,14] was used as a
performance measure to further quantify the
effectiveness of anticipatory grasp control.

5.Object lift velocity. To assess potential group
differences in object lift velocity, we computed the
first derivative of the object position from onset to
end of lift. We analyzed peak object lift velocity to
determine whether CTS patients lifted the object at
different velocities from control subjects.

Statistical analysis
To determine differences between CTS patients and
controls in trial-to-trial adaptation of the task perform-
ance, we performed 3-way analysis of variance (ANOVA)
with repeated measures on (a) Mcom at object lift onset
and (b) peak object roll during lift, with CM (three
levels: TCM, CCM, and FCM) and Trial (seven levels: 1st

through 7th trials) as within-subject factors, and Group
(two levels: CTS and controls) as the between-subject
factor. Within the first 2–3 trials, both CTS and control
subjects learned to develop Mcom to counteract the ex-
ternal torque, and therefore reduced peak roll. Specific-
ally, the above statistical analyses on Mcom and peak roll
revealed 1) no trial-to-trial difference from 4th to 7th

trial, and 2) no significant Group × Trial interaction
(these results are described in more detail in the Results
section). Therefore, for the following analyses we omit-
ted the Trial factor by using the mean of each experi-
mental variable averaged across the last 4 trials for each
CM (trial 4 through 7). To evaluate potential group dif-
ferences in object lift velocity, we performed a 2-way
ANOVA with repeated measures on peak object lift ve-
locity with Group as the between-subject factor and CM
as the within-subject factor. To determine the extent to
which CTS and controls differed in multi-digit force co-
ordination and modulation to object CM, we performed
3-way ANOVA with repeated measures on (a) grip force
(FG), (b) ΔFtan, and (c) ΔCoP with CM and Epoch (two
levels: object lift onset and object hold) as within-subject
factors, and Group as the between-subject factor. To de-
termine the existence of potential group differences in
trial-to-trial variability of anticipatory moment produc-
tion as a function of object CM, we performed 3-way
ANOVAs with repeated measures on SD of Mcom with
CM and Epoch as within-subject factors and Group as
the between-subject factor. To quantify group differences
in the adaptation of individual finger normal force shar-
ing (SFn) to object CM, we performed 4-way ANOVAs
with repeated measures with CM, Epoch and Digit
(four levels: index, middle, ring, and little finger) as
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within-subject factors, and Group as the between-subject
factor. Fisher’s z transformation was performed on SFn
before performing statistical analysis. Mauchly’s test was
used to test for sphericity. When sphericity assumption
was violated, Greenhouse-Geisser correction was used as
an alternative method. When appropriate, we performed
post-hoc pairwise comparisons with Bonferroni adjust-
ments. A significance level of P < 0.05 was used for all
comparisons.

Results
Compensatory moment and task performance
All subjects completed the lifting and holding task suc-
cessfully without slipping or dropping the object while
attempting to minimize object roll as instructed. CTS
patients and controls lifted the object at similar veloci-
ties regardless of the object center of mass condition (no
significant main effect of Group, CM, or interaction be-
tween these two factors; P > 0.05). To prevent object roll
during object lift, subjects had to produce a compensa-
tory moment cancelling the external moment before the
object lift in an anticipatory fashion, i.e., at object lift
onset. Figure 2A shows the compensatory moment
(Mcom) produced at object lift onset and object peak
Figure 2 Object peak roll and compensatory moment. Panels A and B
onset and object peak roll during lift, respectively, for each center of mass
of mass location on the thumb, center, and finger side of the grip device, r
of the ideal moment that subjects should have generated to neutralize the
conditions. Data are averages of all subjects. Vertical bars denote standard
roll averaged across subjects within each group from
the 1st through 7th lift for each CM condition. As
expected, subjects exerted little or no Mcom on the first
lift due to lack of knowledge of object mass distribution
(Figure 2A), thus resulting in a relatively large object peak
roll (~5° for TCM, FCM, Figure 2B). In the subsequent lifts,
however, CTS patients showed similar learning ability of
Mcom production as controls (no main effect of Group or
Group × Trial interaction on Mcom or peak object roll,
P > 0.05 for all comparisons) as they increased Mcom in
the appropriate direction required to reduce object roll
(~ 2°) after the first three lifts (main effect of Trial on
object roll: F[6,156] = 52.72, P < 0.001; post-hoc tests
showed Trial 1 > Trial 2 to 7 and Trials 2 and 3 > Trial 4
to 7) and especially so for TCM and FCM (main effect of
CM; for Mcom: F[2,52] = 151.451; for peak object roll:
F[2,52] = 23.66; < 0.001). Specifically, after experiencing
the first lift both groups of subjects learned to produced
supination or pronation Mcom (positive or negative
values, respectively) to minimize object roll when the
mass was added on the thumb or finger side (interaction
effect of Trial × CM; for Mcom: F[12,312] = 11.135; for peak
object roll: F[12,312] = 6.86; P < 0.001). These findings do
not support one of our hypotheses that CTS would be
show trial-to-trial changes in compensatory moment at object lift
condition and subject group. TCM, CCM, and FCM denote object center
espectively. Dashed horizontal lines in panel A denote the magnitude
external moment caused by the added mass for TCM, CCM, and FCM
errors.
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less skilled than controls in generating Mcom. Contrary
to our hypothesized group-difference in trial-to-trial
variability (standard deviation) of Mcom, CTS patients
did not differ significantly from controls (no main
effect of Group; P > 0.05) at either object lift onset or
hold.

Components of compensatory moment
Mcom can be produced using two strategies. One strat-
egy consists of changing the point of force application
on each side of the grip device such that thumb and fin-
ger normal forces are exerted through non-collinear cen-
ters of pressure. To modulate CoP on the finger side,
subjects have to change the distribution of normal forces
among the fingers. A second, non-mutually exclusive
strategy consists of generating asymmetrical tangential
forces such that vertical forces are larger on one side of
the grip device. Therefore, Mcom is dependent on the
modulation of grip force, vertical distance between
thumb and fingers CoPs, and the difference between
thumb and the sum of the fingers tangential forces
[12,13]. These variables, averaged over the last four trials
of each CM condition, are shown in Figure 3 for each
group and CM condition. Both groups exhibited a drop
in FG from object lift onset to object hold phase (main
Figure 3 Compensatory moment components. Grip force (FG), the diffe
vertical distance between thumb and finger center of pressure applied on
and right column, respectively). Data are mean values averaged across trial
denote standard errors.
effect of Epoch: F[1,26] = 4.344, P < 0.05). However, as
expected, in both object lift onset and object hold CTS
patients tended to produce larger grip force than con-
trols for each CM condition (Figure 3, top row; main ef-
fect of Group: F[1,26] = 5.233, P < 0.05). This group
difference was stronger for the CCM condition than lat-
eral CM conditions (TCM, FCM; significant interaction
Group × CM: F[2,52] = 5.511, P < 0.01). Post-hoc tests
further revealed that controls modulated FG to object
CM at both object lift onset and during hold, whereas
CTS patients exerted similar FG regardless of object CM
in both epochs. Both groups exhibited ΔFtan modula-
tion to object CM (middle row, Figure 3; main effect of
CM: F[2,52] = 50.796, P < 0.001; post-hoc tests revealed
ΔFtan TCM > CCM > FCM). However, we also found
a significant interaction Group × CM (F[2,52] = 3.806,
P < 0.05). Post-hoc tests revealed that CTS patients
exhibited ΔFtan modulation (TCM > CCM > FCM) to CM
during object hold but not at lift onset, whereas controls
modulated ΔFtan in both epochs (middle row, left col-
umn, Figure 3). Unlike FG and ΔFtan, the modulation of
digit center of pressure (CoP) was similar in CTS
patients and controls (bottom row, Figure 3; no main or
interaction effect of Group) at both object lift onset and
hold. Specifically, both groups showed ΔCoP modulation
rence between thumb and finger tangential forces (ΔFtan), and the
each side of the grip device (ΔCoP) at object lift onset and hold (left
4 through 7 for each subject group and CM condition. Vertical bars
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by exhibiting higher thumb CoP (positive ΔCoP) for the
TCM condition, collinear CoPs for the CCM condition,
but higher fingers’ CoP (negative ΔCoP) for the FCM
condition (main effect of CM: F[2,52] = 127.285, P < 001).
Larger separation between CoPs of thumb and fingers
was observed during object hold than at object lift onset
in both groups and particularly for the FCM condition
(bottom row, right column, Figure 3; significant inter-
action Epoch × CM: F[2,52] = 43.825, P < 0.001).

Digit normal force distribution
The relative relation of CoPs at thumb and fingers can
be altered through 1) variation of digit initial contact
position, 2) digit contact rolling along object surface,
and 3) changes of normal force (Fn) distribution among
fingers. The grip device used in our current study sig-
nificantly limits subjects’ use of the first two strategies,
therefore the above-described modulation of digit CoP
to object CM resulted primarily from changing the nor-
mal force distributions among the four fingers. Figure 4
shows the sharing patterns of finger Fn expressed as per-
centage of thumb Fn (SFn) averaged across the last four
trials of each CM condition and subjects. At object lift
onset, for the CCM condition all subjects tended to evenly
distribute normal forces among the fingers (range:
23.5±1.1% at little finger to 27.6±1% at ring finger). Dur-
ing object hold, however, most Fn was exerted by the
middle and ring fingers (~60% of thumb Fn). For off-
centered object CM conditions, both CTS and control
groups modulated the distribution of finger Fn to object
CM, which was primarily reflected in the index and little
Figure 4 Digit normal force sharing patterns. Individual finger Fn sharin
averaged across trials 4 through 7 and across all subjects in each group an
(lower panels).
fingers normal force (main effect of Digit: F[3,78] =
10.032, P < 0.001; significant interaction Digit ×CM:
F[3.6,93.61] = 58.386, P < 0.001). Specifically, when object
CM was changed from the thumb side (TCM) to the
finger side (FCM), both groups increased and decreased
the normal force exerted by the index and little finger
relative to thumb normal force, respectively, throughout
the object lift onset and hold. This resulted in the lowest
Fn sharing at the index and little fingers for TCM and
FCM conditions, respectively. In contrast, neither group
modulated the middle finger SFn as a function of object
CM. The only group difference in Fn sharing patterns
consisted of an epoch-dependent group difference in fin-
ger Fn distribution (significant interaction Digit Epoch
Group: F[3,781] = 3.377, P < 0.001). Post-hoc analysis
revealed that this interaction was caused by a different
pattern of re-distribution of individual finger Fn from
object lift onset to object hold in controls than in CTS
patients. Specifically, CTS patients significantly increased
the Fn share at middle and ring fingers while reducing
the share at index and little fingers from lift onset to
object hold phase. In controls, however, such variation
of individual finger share between two epochs only
occurred at middle and little fingers.

Discussion
The present study examined the effects of CTS on an-
ticipatory control and adaptation of multi-digit forces to
object center of mass in a whole-hand grasping task.
CTS patients were able to satisfy the task requirement of
minimizing object roll during the lift by learning to exert
g expressed as percentage of thumb (T) normal force (SFn). SFn were
d for each CM condition at object lift onset (upper panels) and hold
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a compensatory moment in an anticipatory fashion to
the same extent as controls. Further analysis, however,
revealed that CTS patients used significantly different
control strategies than healthy individuals. Specifically,
patients (a) exerted larger grip force than controls
throughout the task and regardless of object CM, and
(b) did not modulate the magnitude of normal forces or
the distribution of tangential forces to object CM in an-
ticipatory fashion as did the controls. Nevertheless, CTS
patients’ ability to modulate the distribution of finger
normal forces, hence the finger center of pressure, to
object CM effectively compensated for the lack of
modulation of digit normal and tangential forces, thus
resulting in successful modulation of the compensatory
moment. These findings are discussed within the frame-
work of compensatory strategies associated with sen-
sorimotor deficits caused by CTS that selectively affect
specific aspects of fine motor control.

Multi-digit force coordination as a function of object
properties in CTS
Contrary to two of our hypotheses, CTS patients learned
to exert a compensatory moment at object lift onset at a
similar rate and exhibited similar across-trial variability
as controls (Figure 2A). By coordinating multi-digit
forces to produce the required Mcom, albeit by using
different strategies, both groups were able to counteract
the external moment on the object, thus minimized ob-
ject roll during object lift to a similar extent (Figure 2B;
the relation between compensatory moment and object
roll is described in our previous studies [12,13]). The ob-
servation that CTS patients can modulate Mcom to ob-
ject CM is consistent with the finding of a previous
study that CTS patients exhibit a residual ability to
modulate multi-digit forces to object mass [11]. Al-
though both of these tasks shared the same task require-
ment (lifting an object straight by minimizing object
roll), in healthy individuals multi-digit force modulation
to object mass is implemented through different digit
force coordination patterns than modulation to object
CM. Specifically, multi-digit force modulation to object
mass can be attained through scaling all digit forces uni-
formly while cancelling the net moment on the object
[15]. In contrast, digit force modulation to object CM
requires non-uniform scaling of digit forces to generate a
net moment [16,17]. Interestingly, in our previous study
we found that CTS patients were less able to minimize
the net moment when lifting an object with different
symmetrical masses than were controls. In contrast, the
present findings indicate no group differences in the
ability to learn to generate an appropriate compensatory
moment. This discrepancy indicates that learning ma-
nipulation of objects with different masses may challenge
CTS patients’ ability to coordinate multi-digit forces to
a greater extent than objects with different CM. On-
going work is addressing the mechanisms underlying
these differences.
CTS patients use different multi-digit force coordination
strategies from controls
Contrary to what the above findings might lead one to
conclude, further analyses showed that the coordination
of multi-digit forces as a function of object CM in CTS
patients was significantly different from controls. Specif-
ically, as described in the Methods, compensatory mo-
ment can be modulated through different combinations
of grip force, the difference between tangential forces,
and the vertical distance between thumb and finger CoP
(FG, ΔFtan, and ΔCoP, respectively). We found that CTS
patients modulated two of these three variables, FG and
ΔFtan, differently from controls, thus refuting our hy-
pothesis that CTS patients would be able to modulate
total digit normal and tangential force distribution to
object CM.
Grip force
As hypothesized, CTS patients exhibited significantly
larger FG than controls (Figure 3A) both before and after
object lift onset. This finding was expected based on the
results of our previous study of CTS patients [11] as well
as the effects of reduced tactile sensitivity due to median
nerve compression [6,18] or digit anesthesia [7-10].
Zhang et al. [11] suggested that exertion of excessive FG
might be a compensatory strategy to prevent object slip
in response to the inability to form accurate sensori-
motor memories from previous manipulations. Although
this interpretation might also account for the present re-
sult, an additional and important finding here is that FG
modulation to object CM observed in controls was not
found in CTS patients. Specifically, controls exerted lar-
ger FG for the task condition that required a compensa-
tory moment (TCM and FCM) and smaller FG for the
CCM condition where zero compensatory moment was
required (Figure 3A). In contrast, CTS patients did not
modulate FG to object CM, even though in our previous
study the same group of patients exhibited FG modula-
tion to object mass [11]. We speculate that the present
lack of FG modulation to object CM might originate
from the patients’ predominant tendency of using larger
than necessary FG to prevent object slip, a tendency that
was also found in our previous study. Even though this
strategy is less ‘economical’ than that used by controls,
CTS patients exerted the same, but larger than necessary
FG across different object CM locations to ensure attain-
ment of one of the main task objectives: preventing ob-
ject slip regardless of object mass distribution.
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Tangential force difference
Besides FG, CTS patients differed from controls also
with respect to ΔFtan modulation to object CM. Specif-
ically, controls learned to exert larger Ftan on the heav-
ier side of the object before object lift and throughout
object hold (Figure 3B). This observation is consistent
with studies of precision grips [12,13,19]. In contrast,
CTS patients were able to learn to modulate digit Ftan
to object CM during object hold, but did not use this
strategy in an anticipatory fashion, i.e., at object lift
onset, despite manipulating the same object across con-
secutive lifts. This observation points to a feedback-
driven adjustment of ΔFtan in CTS patients, hence to a
potentially different strategy from that used for FG. This
behavior is also reminiscent of the reduction in FG from
object lift onset to hold recently described in our pre-
vious study on multi-digit force modulation to object
mass [11].

Vertical distance between thumb and finger CoP
In our task, the net point of force application of the
normal forces exerted by each finger is an important
variable because it affects the magnitude of the compen-
satory moment. Specifically, the vertical distance bet-
ween the (overall invariant) center of pressure of the
thumb and the (variable) net center of pressure of all
fingers is one of the three components, ΔCoP, whose
magnitude affects the magnitude of the moment gener-
ated by FG. Using the present grip device that constrains
digit placement, the primary way to modulate ΔCoP is
to change the sharing of individual digit normal forces
on the finger side of the device to match the normal
force exerted by the thumb. At object lift onset, we
found that ΔCoP was the only component of the com-
pensatory moment that CTS modulated to object CM
similarly to controls (Figure 3C). As expected from the
above considerations and consistent with our previous
work [11], CTS and controls exhibited similar normal
force sharing patterns (Figure 4). It is therefore clear
that, regardless of whether the goal is to scale all digit
forces to object mass or share them in a non-uniform
fashion to object CM, CTS patients are able to individu-
ate normal forces of individual digits to the task’s mech-
anical requirements. According to the mechanical
advantage principle, i.e., larger force production in the
element(s) with longer lever arms in moment of force
production [20,21], finger normal force sharing at the
index and little fingers were modulated the most to ob-
ject CM, this being likely due to the need modulate the
net center of pressure on the finger side of the grip de-
vice as a function of object CM (Figure 3). In the
present study, however, the ability to modulate normal
force sharing pattern was instrumental in attaining the
necessary compensatory moment through modulation of
ΔCoP which, accompanied by greater FG, effectively
compensated for the above-discussed lack of modulation
of ΔFtan and FG to object CM.

Mechanisms underlying modulation of multi-digit forces
in CTS
Anticipatory grasp control
Both the present and previous findings reveal that CTS
patients exhibit a residual ability to learn anticipatory
grasp control, as indicated by the scaling of grip force to
mass [11] and compensatory moment to object CM
(Figure 2A) before the object is lifted. The mechanisms
responsible for this behavior require (1) accurate sensing
of object properties, (2) the formation and retrieval of
sensorimotor memories, thus leading to (3) an appropri-
ate force output modulation (see [11] for further discus-
sion). With regard to acquiring feedback about object
properties, CTS patients are likely to rely on residual
tactile sensation from the CTS-affected digits, intact
sensation from digits not affected by CTS, as well as
proprioceptive feedback from muscles, tendons, and
joints mostly above the wrist, i.e., extrinsic finger mus-
cles and wrist muscles. As discussed above, however, the
modulation of normal and tangential forces in CTS
patients was significantly different from controls, indi-
cating that the sources of feedback spared by median
nerve compression were not adequate to allow them to
choose the multi-digit force coordination strategy that
healthy individuals chose to implement. Specifically, un-
like controls, at object lift onset patients modulated only
one of the three available variables to object CM, i.e.,
ΔCoP. This finding can be interpreted as solving the
problem of redundant degrees of freedom by ‘freezing’
some of them [22-25]. The use of this strategy might
have been preferable because the modulation of one
variable to CM while keeping two other variables con-
stant (FG and ΔFtan) might be easier to implement than
concurrent modulation of three variables as found in
controls. The selective modulation of ΔCoP also indi-
cates that residual tactile and proprioceptive feedback
(above) in CTS can be more effectively integrated with
motor commands for generating individuated finger
forces than for the fine scaling of finger force magnitude.
This might account for patients’ reliance on exploiting
finger force sharing pattern modulation to attain the
desired compensatory moment.

Online grasp control
Following object lift and during object hold, sensory
feedback about the manipulation (i.e., object tilt)
becomes available through vision and residual somato-
sensory feedback (above), thus allowing individuals to
detect errors in the anticipatory control of grasp vari-
ables. Interestingly, whereas CTS patients did not
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modulate ΔFtan to object CM at object lift onset, they
did so during object hold. This suggests that the above-
discussed ‘freezing of degrees of freedom’ strategy used
at lift-off was deliberate, as opposed to unavoidable. Spe-
cifically, and as we suggested in our previous work [11],
CTS patients might be particularly conservative before
the dynamic phase of the task than during the static
phase – this is because avoidance of object slip or roll
during the first 100–150 ms of object lift relies on feed-
forward control of the compensatory moment. Following
object lift, however, the predictive component of com-
pensatory moment control can be replaced by online
feedback control. In addition to somatosensory feedback
from the hand and the arm, vision of object orientation
might have contributed to the modulation of ΔFtan to
object CM.

Grasp control strategies in CTS
Our findings indicate that, to attain the required com-
pensatory moment, controls fully took advantage of the
possibility to modulate all of the three variables asso-
ciated with normal and tangential force modulation as
well as the vertical distance between centers of pressure.
In contrast, CTS patients solved the problem of generat-
ing a given compensatory moment at object lift onset by
using the same normal and tangential forces regardless
of object CM location while modulating the finger nor-
mal force distribution. This important finding suggests
that CTS patients narrow the number of available
degrees of freedom or force coordination strategies to
comply with the mechanical requirement of grasp tasks
resulting in a reduced flexibility in the adaptability to
task conditions. The extent to which these phenomena
might affect CTS patients’ adaptability to manipulations
that are more similar to those encountered in activities
of daily living is currently under investigation.

Endnotes
aExclusion criteria for both controls and patients

were: 1) clinical history or electrodiagnostic test results
indicating ulnar, radial or proximal median neuropathy,
brachial plexopathy, cervical radiculopathy or polyneur-
opathy, 2) orthopaedic, joint degeneration (i.e., arthritis,
verified by x-ray) affecting the hand or cervical spine,
3) visual problems that would interfere with our grasp
task, 4) co-existing central nervous system disease (e.g.,
multiple sclerosis, motor neuron disease, myasthenia
gravis, Parkinson’s disease, dystonia) revealed in medical
history 5) significant rigidity as assessed through range
of motion testing, 6) active psychiatric illness, 7) preg-
nancy, 8) thyroid disorders, 9) introduction of clinically
significant dose change of medication known to affect
motor or sensory function within 3 months of enroll-
ment, 10) history of hand surgical interventions or
corticosteroid injections for carpal tunnel syndrome
and/or other musculoskeletal hand disorder, and 11)
older than 60 years.
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