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Abstract

Background: sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as
in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in
different muscles. However, such configuration may disregard some aspects of the spatial distribution of the
potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular
fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with
activation maps obtained from High Density EMG signals (HD-EMG), these lasts recorded with arrays of closely
spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them
with four movement directions at the elbow joint and with different strengths of those tasks. Although the
activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features
that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to
have a better differentiation between tasks and effort levels.

Methods: An experimental protocol consisting of isometric contractions at three levels of effort during flexion,
extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D
electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are
explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the
intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of
traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between
information extracted from single bipolar signals or from HD-EMG maps and to analyze differences due to type of
task and effort level.

Results: Significant differences were observed between EMG signal power obtained from single bipolar
configuration and HD-EMG and better results regarding the identification of tasks and effort levels were obtained
with the latter. Additionally, average maps for a population of 12 subjects were obtained and differences in the
co-activation pattern of muscles were found not only from variables related to the intensity of the maps but also to
their spatial distribution.

Conclusions: Intensity and spatial distribution of HD-EMG maps could be useful in applications where the
identification of movement intention and its strength is needed, for example in robotic-aided therapies or for
devices like powered- prostheses or orthoses. Finally, additional data transformations or other features are necessary
in order to improve the performance of tasks identification.
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Background

The electromyographic (SEMG) signals detected on the
skin above human muscles are important to infer mo-
tion intention and therefore could be used to control
devices such as exoskeletons, biofeedback systems or as-
sistive tools [1,2]. Central to these goals is the extraction
of information from myoelectric signal which is com-
monly detected with electrode pairs. Other purposes in-
clude the estimation of muscle force, biofeedback of the
activity of the muscle and the analysis of myoelectric
fatigue.

The main disadvantage of bipolar signals is that its
amplitude depends on the distance between the active
motor units and the recording electrodes [3]. Due to the
low spatial resolution of the bipolar signal, the standard
surface EMG reflects the activity of a number of motor
units (MU) within a delimited area of the muscle. How-
ever, amplitude variations are expected in both, the par-
allel and the perpendicular directions of propagation of
the MU action potentials (MUAP): in the former, the
amplitude of the signal varies with the proximity to in-
nervation zones and tendons, while in the latter the
amplitude is attenuated because of the propagation pro-
perties of the conductor volume [4]. As pointed out by
Zwarts et al. in [5], single channel approaches do not
reflect the physical propagation of the potentials and
therefore only the time-varying properties of the signals
are usually analyzed, disregarding important spatial as-
pects of the propagation like extent and length of the
muscle fibers, which are essential for the force-generating
capacity of the muscle, and, if not well addressed can lead
to incorrect conclusions. In recent years, on the other
hand, the development and application of electrode arrays
in one or two dimensions have allowed the study of the
sEMG signal in the temporal and the spatial domain,
opening new possibilities to the study of the neuromuscu-
lar system [5-7] and to the field of myoelectric control [8].

What is more, recent studies have demonstrated that
the muscles do not activate homogeneously, that is, dis-
tinct regions of the muscle are activated differentially de-
pending on the position of the joint [9] and the duration
[10] and strength of the contraction [11]. Such activation
may be related to bundles of fiber types organized in dif-
ferent regions within the muscle, each of them following
different recruitment strategies according to Henneman’s
size principle [11].

Therefore, EMG amplitude information provided by a
single bipolar channel is highly dependent on the loca-
tion of the recording electrodes, even when they are well
located away from innervation zones and tendons and it
does not offer the possibility of tracking inhomogeneities
in the activation of the muscles.

The recording of SEMG signals with 2D arrays in a
wide area of the muscles and the processing of the signal
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in the space dimension [5,12] can overcome some of the
drawbacks of single-channel approaches, providing a
quantification of the temporal and spatial properties of
the electrical muscle activity [13,14]. In this study, High
Density surface EMG (HD-EMG) signals recorded with
2-dimensional (2D) arrays of closely spaced electrodes
were used to calculate activation maps for the upper
arm and forearm. These maps provided a larger amount
of information related to the tracking of (task changing)
skin surface areas where EMG amplitude is maximal
and a better estimation of muscle activity by the proper
selection of the most significant channels. The main ob-
jective is to analyze patterns in the activation maps asso-
ciating them with four movement directions at the
elbow joint and with different strengths of those move-
ments. Although the activation pattern can be assessed
with bipolar electrodes, HD-EMG signals from upper-
arm and forearm muscles could enable the extraction of
features that depend on the spatial distribution of the
MUAPs and on the load-sharing between muscles in
order to have a better differentiation between tasks and
effort levels.

For this purpose, two additional automatic algorithms
are proposed, one intended for the automatic detection
of low-quality signals and the other, for the segmenta-
tion of global activation areas. In the first case, different
algorithms based on the spatial spread of the potentials
over the skin surface have been proposed in the lite-
rature [9,15,16]. Such algorithms considered only the
information of the bulk of data for the detection of out-
liers in 2D multichannel recordings. The approach pro-
posed here takes into account features extracted from
channels in the close- proximity neighborhood to evalu-
ate the quality of a given signal and to interpolate its
value from neighboring channels when needed. Besides,
the method was designed to compromise between preci-
sion and sensitivity of the detection in order to reduce
the number of misclassifications of good-quality signals.

In the second case, watershed segmentation has been
previously proposed for determining the regions of activity
in HD-EMG recordings [9], however this method is prone
to over-segmentation in the presence of multiple discon-
tinuities [17], particularly, those introduced by dissimila-
rities in the electrode-skin impedance of the different
channels. The segmentation proposed here offers an alter-
native, being less sensitive to local maxima. Results show
that features extracted from HD-EMG maps could be use-
ful in the identification of movement intention.

Methodology
Instrumentation
Three 2-D electrode arrays were fabricated in hydropho-
bic fabric for the recording of high density surface EMG
signals (HD-EMG). The arrays were developed in our



Rojas-Martinez et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:85

http://www.jneuroengrehab.com/content/9/1/85

laboratory and consisted in silver-plated and gel-filled
eyelets (external diameter of 5 mm) equally spaced by 10
mm in rows (y in the proximal-distal direction) and col-
umns (x in the medial-lateral direction). Textile fabric
adapts to the geometry of the muscle while maintaining
inter-electrode distance and good adhesion to the skin
provided by elastic straps. Array 1 (forearm) had 6 rows
and a variable number of columns (between 17 and 19)
depending on the dimensions of the limb of the subject
whereas arrays 2 and 3 (upper arm) consisted of 120
electrodes distributed in 8 rows x 15 columns. About
350 channels were recorded for each subject and were
sufficient to cover the muscles of interest.

High Density monopolar signals were recorded si-
multaneously by three synchronized amplifiers (EMG-
USB- 128 channels, sampling frequency of 2048 Hz, 3dB
bandwidth 10-750 Hz, programmable gains of 100, 200,
500, 1000, 2000, 5000 and 10000, LISiN-OT Bioelettro-
nica). Power line interference was reduced by using a
“driven right leg” (DRL) circuit [18] and reference elec-
trodes were placed at the clavicle, wrist, and shoulder of
the same (dominant) side. The force exerted in the four
directions of movement (flexion, extension, pronation
and supination of the forearm) was measured by two
torque transducers (OT Bioelettronica, range 150 N.m,
resolution 2.5 mV/V) located at the joints of a mecha-
nical brace and aligned with the joint rotational axis.
This brace also included an adjustable wrist lock at the
end of the bars, in order to avoid hand gripping and
wrist flexion/extension efforts (Figure 1). Torque signals
were displayed on real time for visual feedback of the
exerted force.

Experimental protocol

Twelve healthy male volunteers (age, 28.3 + 5.5 years;
height: 177.8 + 6.0 cm; body mass: 75.7+ 8.7 kg) partici-
pated in the experiment. Subjects did not have any his-
tory of neuromuscular disorders, pain or regular training
of the upper limb. All subjects gave informed consent to
participate to the experimental procedure.

Five muscles associated with flexion, extension, prona-
tion and supination of the forearm were selected for the
study: Biceps and Triceps Brachii in the upper arm and
Anconeus, Brachioradialis and Pronator Teres in the
forearm. Array 1 (A1) was located on the forearm, with
the most proximal electrode row 2 cm below the elbow
crease, and was intended for covering the three forearm
muscles whose edges were previously drawn over the
surface of the skin according to Kendall et al. [19]. The
columns of the array laid along the axis oriented from
lateral to medial direction in order to cover each
selected muscle with at least three columns. Array 2 and
array 3 (A2 and A3) were located in the distal and pro-
ximal regions of the upper arm, respectively, with their
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Figure 1 Experimental set-up. The three arrays (A1, A2 and A3)
and the mechanical brace can be observed. The forearm is held
distally to avoid the action of the muscles of the wrist and hand (B)
The exerted force is measured by transducers located at the joint of

the mechanical brace (C).

centers on the location recommended by SENIAM [20].
Previous to the positioning of the electrode array, the
skin was shaved and cleaned with abrasive paste. Con-
ductive gel (20 ul) was inserted in each electrode of the
array using a gel dispenser (Multipette Plus, Eppendorf,
Germany). Lengths and circumferences of the upper arm
and forearm segments were measured for each subject.
The length of the ventral side of the upper-arm was
measured from the acromion to the fossa cubit whereas
the length of its dorsal side was measured from the pos-
terior crista of the acromion to the olecranon. The
length of the forearm was measured from the medial
epicondyle to the apophysis of the radius. Circumfer-
ences of the arm segments were measured while con-
tracting different muscles: the distal and proximal upper
arm circumference were measured over the muscle belly
of biceps and triceps respectively and the proximal fore-
arm circumference was measured over the muscle belly
of the Brachio Radialis (approximately 2 cm below the
elbow crease). During the experiment, subjects sat in
front of the mechanical brace with the back straight, the
elbow joint flexed at 45°, shoulder abducted at 90° (arm
in the sagittal plane), and forearm rotated 90°, midway
between supination and pronation (Figure 1). Subject’s
Maximal Voluntary Contraction (MVC) during flexion,
extension, pronation and supination were obtained at
the beginning of the experiment as the maximum of
three trials for each task. Afterwards, subjects carried
out a series of isometric contractions at 10%, 30% and
50% MVC. Contractions were performed in randomized
order, each lasting for 10 seconds followed by 2 minutes
rest in order to avoid cumulative fatigue. In addition,
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subjects were previously trained to maintain the hand
and fingers at rest during signal recording.

Detection of low quality signals
Features extraction
When recording a large number of physiological signals
it is very likely to observe some low quality channels
affected by artifacts originated in deformations of the
skin under the electrodes, movement of the cables or in
bad contacts between each recording electrode and the
skin, inducing capacitive couplings and enabling power
line interference [21]. Visual inspection of the outliers
(channels with low-quality signals) is time-consuming
and depends on the expertise of the operators. Thus, it
becomes necessary to apply an automatic method to
identify such signals (and perform adequate processing
if necessary) before any kind of information extraction.
An example of low-quality signals is presented in
Figure 2. They are characterized by: a) high-power low
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frequency components (R6C2, Figure 2b), b) high power
components at power-line harmonics due to high-
impedance contacts and stray capacitive couplings
(R3C3, Figure 2b), and c) their energy may be much
higher or lower than that of neighboring monopolar
channels (R1C1, Figure 2c), especially if parallel-fibber
muscles are considered. Figure 2¢ constitutes an especial
case where the normalized power spectrum of the sig-
nals in R1C1 is similar to that corresponding to a non-
artifact; however its amplitude is much lower when
compared to its neighbors. Signals R4, R5 and R6 in col-
umn C3 have amplitude similar to R1C1, but they are
probably located over a region of the limb with lower ac-
tivation and cannot be considered as artifacts. Therefore,
a detection system should take into account spectral and
amplitude features and refer them not only to the bulk
of data but also to its neighborhood.

For this purpose, three features for the detection of
artifactual signals were defined:
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Figure 2 a) Signal subset recorded in array A1 (forearm) during elbow flexion at 50% MVC. Three columns (C1 to C3) and six rows
(R1 to R6) are shown. Different kinds of artifacts are observed in C1R1, C2R6, and C3R3. It is also possible to observe that the energy of the
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signals changes in both x and y directions. Normalized Power Spectral Density for different signals are displayed at the bottom. Each spectrum
was normalized with respect to its peak value. Artifactual channels can present higher or lower amplitude when compared to neighbor channels.
b) High amplitude signals. It is possible to observe power-line components on the artifactual channel R3C3 and low frequency components on
the artifactual channel R6C2. The attenuation of the analogue filter in the amplifier is not sufficient to remove the movement artifact on channel
R6C2. ¢) Low amplitude signals. Thought normalized PSD is similar for R6C3 and R1C1, the later can be identified as an artifact when compared
to neighbor channels in the temporal domain.
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Figure 3 Schematics of the algorithm for the detection of low quality signals. The symbols (>) or (<) represent the cases where the feature
was expected to be higher or lower than the specified threshold in order to determine if a given signal was labeled as artifact.

1. Relative power of low frequency components Py,
from 0 to 12 Hz

2. Relative power of power-line components Py,
corresponding to 50Hz and its first four harmonics, and

3. Signal power calculated from the root mean square
(RMS) of the signal

The Power Spectral Density of the signal was esti-
mated with the FFT in non-overlapping signal epochs of
500 ms. Features (P, Pine, and RMS) were computed
for each channel as the mean of the values obtained
from six epochs over segments of 3s where the exerted
force remained constant.

Automatic algorithm for artifact removal
An expert system based on thresholds associated with
the three features described previously was designed.

The algorithm was applied to a signals set, S, com-
posed by signals s;; recorded in the rows (i) and columns
(j) of a given electrode array Al to A3 (i=/L2,...6] and
j=[12,...,17] or j=[1,2,...,19] for array Al depending on
the size of the forearm of the subject, and i=/1,2,...,8]
and j=[1,2,...,15] for arrays A2 and A3 in the upper-
arm). A schematic of the decision algorithm is presented
in Figure 3.

Thresholds thresh,,, threshy,., and thresh,,,, were calcu-
lated from a subset of S composed of signals called refer-
ence (ref) that satisfied the following two conditions:

abs | Py(ref) — median| P(S) < 15IQR| P(S)

ref = t t t

abs | P, (ref) — median | Py, (S) < L5IQR| Py, (S)

t t t

(1)

where IQR represents the Interquartile Range. The median
was chosen instead of the mean because of its lower sensi-
tivity to outliers since it considers the highest breakpoint
(50%), that is, the smallest percentage of outliers that can
cause an estimator to take arbitrary large values [22].

The thresholds were calculated as following:

thresh; = ki (median (P%(ref)) + 1.5IQR (P%(ref)))
(2)

where the constant k; was subjected to an optimization
criterion in order to improve the performance of the de-
tection method as it is explained in the next section.

threshus: = Kiine [mediom <P%(ref )) + 1.5IQR (Pu%(ref ))}
(3)

where the constant kj,,. was subjected to a sensitivity
analysis (see Table 1, section Results) and set to 2.5, as a
tradeoff between the capacity of threshy;,., to identify
the highest proportion of signals presenting power-line
harmonics and the capacity to correctly identify such
signals avoiding the misdetection of good-quality signals.
In any case, threshy,., was always constrained to 0.85,
that is, signals presenting more than 85% of the signal
power in the bands related to power-line harmonics
were considered as artifacts.

thresh,ms = min{ﬂpm /"pbﬂ ﬂpc} (4)

+ ko max{stdpa, stdyyp, stdpc}

Table 1 Sensitivity analysis for constant Kj;,,. for the
detection of power-line artifacts

Kiine (2.5) 1 2 3 5 7

Acc 99,74 99,79 99,79 99,74 99,79
S 8333 8333 8333 75,00 75,00
P 99,83 99,87 99,87 99,87 99,91
P 7143 76,92 76,92 75,00 81,82

Kiine in Eq. 3 was chosen as 2.5 (presented in parenthesis). Increasing values of
Kiine reduced the sensitivity (S) of the threshold threshj,.., whereas decreasing
values decreased the precision (P). Variations in these two indexes affected
the Accuracy (Acc) and the Specificity (SP). kjj,e = 2.5 is a good compromise
between S and P.
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where p and std are the average and standard devi-
ation, respectively, of the RMS of the following three
neighbor-pairs in the proximity of a given channel s,
Pa=[RMS;_1;,RMS; ;] in the longitudinal direction,
and pj, = [RMS;_1;_1,RMS;, 1j,1] and p.=[RMS;, 1;_1,
RMS; 1 1] in the diagonal directions. This third condition
distinguished low amplitude signals corresponding to inner-
vations zones or non- active regions (for example R4C3,
R5C3 and R6C3 in Figure 2) from isolated low amplitude
signals (for example R1C1 in Figure 2) that were considered
as artifacts. Hence, the threshold in Eq. 4 takes into account
the spatial direction of propagation of Motor Unit Action
Potentials. Finally, the constant k, in Eq. 4 was tuned in
order to improve the performance of the method as it is
explained in next section.

Training and validation

Constant values of k; and k, on eq. 2 and eq. 4, allowed
to increase the performance of the detection method,
especially its sensitivity (or the capacity of the method
to identify the highest proportion of low-quality
signals) and the precision (or the capacity to correctly
identity low-quality signals avoiding the misdetection of
good signals as low-quality). Thus, the performance of
the method was measured in terms of Sensitivity
(S), Specificity (SP), Precision (P) and Accuracy (Acc)
as [23]:

P TN
S f— 'SP = P
1P + FN TN + FP
TP TP + TN
—Acc= ha (5)
1P + FP TP + FP+ TN + FN

where TP and TN is the number of channels correctly
identified as low and good-quality signals respectively,
EN is the number of low-quality signals not identified
by the algorithm and FP is the number of good-quality
signals identified as low-quality.

Signals were visually classified as low-quality or not by
three experts based on the observation of similarity be-
tween different channels and on the examination of
baseline fluctuations or periodicity patterns (related to
movement artifacts and power-line interference respect-
ively, see Figure 2a as an example). Two databases for
training and validation were obtained, each composed of
20 signal sets S selected from different contractions, ef-
fort levels and arrays 1 to 3. Fleiss’ Kappa index [24] was
used to measure agreement between experts, scoring
82.63% and 86.19% for the training and validation data-
bases respectively and indicating an “almost perfect
agreement”. The information of the three experts was
combined by obtaining the majority vote in each case
(i.e. the statistical mode of the three opinions) in order to
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obtain a binary classification-label as artifact/non artifacts
for each single-channel in the set S.

Optimal values for k; and kywere tuned according to
the following criteria: 1) by Receiver Operating Charac-
teristic (ROC) curves (S vs. 1-SP), widely used in signal
detection theory and clinical diagnostics [25] and, 2) by
Precision-Recall representations (P vs. SP), which are
commonly used in machine learning [26]. Both methods
assessed the accuracy of the prediction (or outcome) of
the described method based on its Sensitivity, Specificity
and Precision. The optimal classifier was found as a tra-
deoff between hit rates and false alarm rates. In the first
case the optimal can be found as the minimum distance
between the curve (S vs. 1-SP) and the point [0, 1], and
in the second case, as the minimum distance between
curve (P vs. SP) and the point [1, 1].

Segmentation of HD-EMG maps

Areas corresponding to electrodes lying over an active
region of a muscle or a set of muscles can change be-
tween subjects. Therefore, it was useful to extract a
delimited region related to each muscle of interest before
averaging between subjects, in order to finally obtain a
general activation map for the different tasks. Thus, an
algorithm for the segmentation of active regions was pro-
posed in this study. An activation map / in the 2D space
was calculated from HD-EMG signals as:

1L 1YL, 1 ¢
I :M; (N;Sij(n)> =12 RMS(si))  (6)

m=1

where s is an EMG signal in the channel located at the
position i, j of the 2D array (as explained before), N is
the total number of samples in an epoch of 500 ms and
the RMS value was averaged in M=6 non overlapped
epochs corresponding to three seconds of signal. Prior
to the calculation of RMS, the signals were filtered be-
tween 12 and 350 Hz with a 4th order Butterworth filter
in forward and backward direction in order to correct
for phase distortion following SENIAM recommenda-
tions for the processing of surface EMG signals [27].
RMS values corresponding to signals previously identi-
fied as artifacts were replaced by triangle-based cubic
interpolation based on Delaunay Triangulation for sur-
face fitting proposed in [28].

Each channel in the map can be considered as a pixel
located at the positions i and j of the electrode array
whose intensity is given by I;;. In other words, the map /
can be thought of three dimensions where the intensity
values represent elevations as in a topographical map.
Intensity levels in the maps correspond to the activation
level of a muscle (or a set of muscles) during the devel-
opment of a specific task.
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The activation map was segmented by applying an h-
dome transform Djy(I) over the image I, as proposed by
L. Vincent in [17]. Mathematically, the transformation is
defined as:

Dy(l) =1—p,(J) =1—p,(I—h) (7)

where the operator p; stand for morphological recon-
struction [29], and J is derived from I by subtracting a
constant value 4. This transformation preserved all the
domes above the height 4, including those that contain
various local maxima. In the case of activation maps,
such local maxima could correspond to local variations
of the amplitude of the 2D maps due to distinct contact
impedances in the various electrodes. Additionally, a
morphological opening (y) was applied to the resulting
image D, in order to avoid the segmentation of isolated
peaks, small in area, and which corresponded to pixels
with an amplitude slightly higher than that of the sur-
rounding channels. This was the case in “flat” maps (par-
ticularly at low-effort levels) where the activation is
mainly reflected on the synergistic muscles with levels
comparable to background noise and where only mar-
ginal activation can be observed in antagonist muscles.
Therefore, the final segmented image D’ was obtained
as:

D), = y(Dy) = Dyob = (D,©b)®b (8)

where b, the structuring element, is a disc of radius 1
and © and @ are the operators for dilation and erosion
respectively [29].

Average HD-EMG maps

Average maps for the 12 subjects who participated in
the study were obtained by averaging individual segmen-
ted maps, in order to obtain useful information related
to muscle co-activation pattern in terms of intensity
values and its spatial distribution during different kind
of tasks and levels of effort. Considering that upper-limb
dimensions, specifically circumference and length, are
different for every subject, it was necessary to normalize
and interpolate the image in the 2-D space so that
results could be comparable among subjects allowing
the calculation of an average map for the population. In
the case of arrays A2 and A3 (biceps and triceps), the
zero of the coordinate system was defined to correspond
to landmarks defined by SEMIAM project [20]. In the
case of forearm muscles, the origin of the x-axis laid in
the intersection of the line connecting the origin and in-
sertion of each muscle (Anconeus, Brachioradialis or
Pronator Teres) and an arch traced around the forearm,
2 cm below the elbow crease which in turn was the zero
of the y-axis. Values in the x dimension were normalized
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with respect to the circumferences of the different arm
segments: proximal forearm for array Al, distal upper-
arm for array A2 and proximal upper-arm for array A3,
and values in the y dimension were normalized with re-
spect to the muscle length as described in the protocol
description. In order to obtain individual maps with the
same (i, j) coordinates for the calculation of population’s
average map, RMS values in the 2-D space were re-
sampled by cubic splines interpolation in the x and y
directions, considering units relative to the total length
and total circumference of the arm segment as explained
in the previous paragraph.

Intensity of the maps was parameterized by the aver-
age RMS value (RMS,, yp) for the segmented area. In
addition, spatial distribution of the maps was parameter-
ized according to the median of its projection over the x
and y axes, that is, x=4, or y= p, where such projection
was divided into two regions of equal area, as following:

Haim . M . 1 M )
$en - 3" =13 9
k=1 k=t g k=1 ( )

where Q¢ = max(D,,, dim)
where Qf" is the value of the projection of the max-
imum of the segmented map D7, at the K coordinate along
the dimension dim= x or dim=y and y;,, corresponds to
the median of the projection QZ"". The median of the pro-
jections permitted to evaluate spatial shifts along the x and
y-axes of the maps, both of them associated with changes
in effort levels or even with different tasks.

On the other hand, data similar to that obtained with
bipolar electrodes was extracted by selecting two mono-
polar channels for each muscle in the 2D arrays: the first
electrode corresponded to the one located at the origin
of the coordinate system (i.e. reference in SENIAM re-
commendations [20]) as described previously for each
muscle, and the second one was located 10 mm apart in
the direction of the muscular fibers. For each muscle, a
single differential signal was obtained from these two
channels and its corresponding RMS,,. 1, value was cal-
culated at the same time-interval as in the case of
HD-EMG maps. The variables RMS,, 1, and RMS,,_1p
(from bipolar or HD-EMG configurations) were used in
the identification of tasks and their performances were
compared as later explained.

Statistical analysis

The statistical analysis was intended to assess differences
between information extracted from single bipolar sig-
nals or from HD-EMG maps and also to analyze differ-
ences due to type of task and effort level. Such analysis
was based in the variables determined in the previous
section, that is, RMS,, i, and RMS,, yp both of them
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related to the signal power, and p, and p, associated
with the spatial distribution of the maps.

Factors considered in the statistical analysis were:
1) the type of electrode (bipolar or HD-EMG@G), 2) The type
of task, that is, flexion, extension, supination and prona-
tion, and contraction level (10%, 30% and 50% MVC), and
3) Muscle (i.e. biceps, triceps, brachioradialis, anconeus
and pronator teres).

Differences between RMS,, 1, and RMS,, up were
evaluated with the non-parametric Friedman test in two-
way layout. In order to avoid differences between the
type of recording (bipolar and monopolar), both vari-
ables in each muscle were normalized with respect to
the mean value obtained in all tasks and contraction
levels. Data corresponding to different tasks and effort
levels were pooled together by considering blocks with
replication of cells of the factor muscle according to the
procedure described in [30] and implemented in the
statistical toolbox of MATLAB®.

On the other hand, the capacity of the extracted vari-
ables (RMS,y.pip or RMS,, np) for the identification of
tasks and/or effort levels was evaluated by classifying the
data into different groups based on linear discriminant
analysis [31] and cross-validation with the Leaving One
Out Method [32]. Data was classified into four or twelve
groups corresponding to type of task or to type of task
and effort level respectively. In the former case, samples
corresponding to the three levels of effort were pooled
together for each type of task. The overall classification
performance was obtained in terms of Accuracy, Sensi-
tivity, Specificity and Precision as described in [23] and
(Eq. 5). For this analysis TP were data samples well clas-
sified into any of the classes, EN corresponded to the
number of missing samples in any of the classes, that is,
samples belonging to a given class but that were classi-
fied in another, TN were not misclassified samples, and
FP were samples misclassified in any of the classes.

In addition, changes in the spatial distribution of
the maps due to type of task and effort level were
analyzed with a non-parametric repeated measures
design based on the Friedman test. In this case, var-
iations of the variables u, and u, were evaluated in
12 different measures corresponding to four types of
task by three levels of effort each. A Bonferroni cor-
rection was applied in order to take into account the
multiple comparisons.

Finally, pair-wise comparisons were analyzed trough
non-parametric Wilcoxon signed rank test.

Statistical significance was set to p=0.05. In the
Friedman test, y* statistics was considered significant for
¥ (d.of=1)> 3.84 for one degree of freedom (d.of = 2
types of electrode -1) and for y* (d.o.f=11)> 27.28 for
eleven degrees of freedom (d.o.f=12 measures —1) after
the Bonferroni correction.
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Results

Detection of low-quality signals

Sensitivity analysis in the training database for constant
kiine in Eq. 3 is presented in Table 1. Higher values of
Kiine increased the number of TP and FP affecting both,
the sensitivity and the precision of the detection. As it
can be observed on Table 1, kj,. between 2 and 3 is a
good compromise between sensitivity and precision and
it can be confirmed from the accuracy and specificity,
where the highest values were obtained. For values lower
than 2, precision decreases whereas for values higher
than 3, sensitivity decreases.

Performance indexes for the detection of artifacts in the
training and validation databases using ROC and PR are
shown in Table 2. Although results were similar when
comparing both criteria, the precision was higher for the
PR approach at the expense of slightly lower sensitivity be-
cause of the introduction of a number of FN. The sensitiv-
ity was higher when considering the ROC criterion but this
led to an increase in the number of FP (as compared to
PR). The specificity was always very high (above 99%)
because the number of non-artifact signals is much higher
than the number of low-quality signals. A sensitivity ana-
lysis for k; and k, in the training database is presented
in Figure 4. Different values of k, produced the same sensi-
tivity for increasing values of k; whereas the precision var-
ied at high values of k; (because of the inclusion of FP).
Precision and sensitivity increased and decreased respect-
ively for increasing values of k;. The values adopted for k;
and k, in this work represent a good tradeoff between
sensitivity, specificity and precision.

Although high Sensitivity (S) and Specificity (SP) were
desired, a lower number of FP became important when
considering the next step of the analysis where RMS
values of artifacts were interpolated from neighbor chan-
nels. If too many channels in the neighborhood were
wrongly labeled as “artifacts” (i.e. too many FP), then the
interpolation process was not possible. Because of the
lower Precision of the algorithm with the ROC criterion
(Table 2), constants k; and k, were finally selected ac-
cording to optimization results obtained by Precision-
Recall.

Table 2 Optimum values of k7 and k2 (Eq.2 and Eq.4) and
their performance indexes

(ky, k) Acc(%)  S(%)  SP(%)  P(%)

Training ROC (7.1,02) 99.61 97.67 99.69 92.31
PR (112,02) 99.66 94.19 99.87 96.43

Validation ~ ROC (7.1,02) 99.40 97.94 99.46 88.78
PR (11.2,0.2) 99.48 92.78 99.77 94.73

Performance measures for combinations of k; and k,: Accuracy (A), Sensitivity
(S), Specificity (SP) and Precision (P) for the training (20 sets) and validation
(20 sets) databases. The two methods proposed for outlier detection are
presented (ROC, Receiver Operating characteristics and PR, Precision-Recall).
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Figure 4 Sensitivity analysis for k; and k; in the training
database. Constant k; is represented along the x-axis. Curves

(in shades of gray) are shown for k. Higher values of k; increased
P (in dot lines) but decreased S (in solid lines). Acc (dash lines)
remained almost constant for different values of k; and k. Optimal
values for k; were found as a compromise between S and SP and
the obtained ranges are highlighted in gray-shadowed areas.
Performance indexes corresponding to the selected k,=0.2 are
shown in squares.

On the other hand, the algorithm for artifact detection
had low computational complexity. The execution time
of the algorithm, (mean and standard deviation for joint
training and validation databases), was 201.2+12.85 ms,
[min: 187.5 ms, max 234.4 ms] per signal set on a 2.13
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GHz Intel® Core2” processor. Each set had a total
duration of 3s and was composed by a different number
of channels between 109 and 120 channels.

Segmentation

An example of the surface obtained after the triangle-
based cubic interpolation of channels identified as arti-
facts can be observed in Figure 5. Additionally, an ex-
ample of the segmentation of different maps obtained
for flexion, extension, pronation and supination in the
five muscles is presented in Figure 6. The shape of the
segmented area depended on the intensity of the
peaks.

The segmentation produced intensity maps for each
muscle and subject, and allowed the calculation of aver-
age HD-EMG maps representative for the 12 subjects in
the study.

Bipolar vs. High-density EMG signals
Significant differences were observed for the two-way
Friedman test between RMS,,.pi;, and RMS,, yp using
the factor muscle as blocking factor (y* [1] = 16.55,
p<0.001). Thus, significant differences were observed
when characterizing the different tasks and effort levels
with information extracted from one or the other type of
Sensor.

Results for the overall classification into four or twelve
groups are presented in Figure 7 for the variables RMS,,.pi,
and RMS,, yp.

Average HD-EMG Maps
Average activation maps for the 12 subjects at 10, 30
and 50% MVC for each of the four tasks under stu-
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Figure 5 Substitution of RMS values due to artifact signals. RMS values of artifact channels are replaced by fitting the surface described by
nearby non-artifact channels. Left. Sharp peaks caused by artifacts are marked with a circle. Right. Fitted surface obtained after replacing RMS
values detected as artifacts (marked with a circle). Such points were replaced by fitting the surface described by non-artifact neighboring
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Figure 6 Example of segmentation of HD- EMG Maps from the right arm of subject 5: Triceps (top left), Biceps (top right), Brachio
Radialis (bottom left), Anconeus (bottom middle), and Pronator Teres (bottom right). Maps corresponding to 50% MVC in exercises
associated with the main function of each muscle are presented. Final segmented regions are presented with crosses. Regions limited by dash
lines were also segmented and considered as belonging to neighboring muscles and were not taken into account to obtain the average map for

the 12 subjects.

dy were obtained by averaging the individual maps of
each subject. Results on average maps at 50% MVC are
displayed in Figure 8. It is possible to observe different
muscle co-activation patterns resulting from mu