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Abstract

Background: A number of studies have been done on movement imagination of motor sequences with a single
limb. However, brain oscillatory patterns induced by movement imagination of motor sequences involving multiple
limbs have not been reported in recent years. The goal of the present study was to verify the feasibility of
application of motor sequences involving multiple limbs to brain-computer interface (BCI) systems based on motor
imagery (MI). The changes of EEG patterns and the inter-influence between movements associated with the
imagination of motor sequences were also investigated.

Methods: The experiment, where 12 healthy subjects participated, involved one motor sequence with a single limb
and three kinds of motor sequences with two or three limbs. The activity involved mental simulation, imagining
playing drums with two conditions (60 and 30 beats per minute for the first and second conditions, respectively).

Results: Movement imagination of different limbs in the sequence contributed to time-variant event-related
desynchronization (ERD) patterns within both mu and beta rhythms, which was more obvious for the second
condition compared with the first condition. The ERD values of left/right hand imagery with prior hand imagery
were significantly larger than those with prior foot imagery, while the phase locking values (PLVs) between central
electrodes and the mesial frontocentral electrode of non-initial movement were significantly larger than those of
the initial movement during imagination of motor sequences for both conditions. Classification results showed that
the power spectral density (PSD) based method outperformed the multi-class common spatial patterns (multi-CSP)
based method: The highest accuracies were 82.86 % and 91.43 %, and the mean values were 65 % and 74.14 % for
the first and second conditions, respectively.

Conclusions: This work implies that motor sequences involving multiple limbs can be utilized to build a
multimodal classification paradigm in MI-based BCI systems, and that prior movement imagination can result in the
changes of neural activities in motor areas during subsequent movement imagination in the process of limb
switching.
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Background
Motor imagery (MI), defined as the mental rehearsal of
a motor act without any overt motor output, can modify
the neuronal activity in the primary sensorimotor areas
in a manner which is quite similar to motor execution
[1, 2]. MI-based brain-computer interface (BCI) systems
could translate the subjective movement consciousness
of the users without any inducing factors such as visual
stimulus producing steady-state visual evoked potential
(SSVEP) or event-related potential (ERP). This provides
an alternative communication and control channel for
patients with limited motor function to improve the
quality of their lives [3]. Therefore, MI-based BCI sys-
tems play an important role in the field of rehabilitation
engineering.
Since Jasper and Penfield’s discovery of brain oscilla-

tory activity induced by MI [4], MI-based BCI systems
have gone through several decades of development.
However, a major problem is the limitation of control
commands in contrast to other BCI paradigms. Most re-
search on MI-based BCI systems have focused on ana-
lyzing EEG rhythms induced by simple limb motor
imagery involving a single part of the limbs such as the
left hand, the right hand or the foot [5, 6]. Pfurtscheller
et al. studied the reactivity of EEG rhythms in associ-
ation with the imagination of three kinds of limb move-
ments (right hand, left hand, and foot) with the addition
of tongue movement [7]. To implement a two-
dimensional cursor movement between arbitrary posi-
tions, P300 potential was combined with MI (left and
right hands) for controlling the horizontal and vertical
movements of the cursor, respectively [8]. Additionally,
MI was applied as a brain switch in a hybrid BCI system
by detecting the post imagery beta event-related
synchronization (ERS) of foot imagery to turn a four-
step electrically driven hand orthosis with two flickering
lights on and off to reduce the false positive rate during
the resting period [9].
On the other hand, a significant amount of work have

been reported on movement imagination of motor se-
quences with a single limb such as sequential finger-to-
thumb opposition tasks [10–12], sequential dorsiflexion,
and plantarflexion of the foot [13]. Lafleur et al. used
positron emission tomography (PET) to measure and
compare the dynamic changes in cerebral activity during
the execution and imagination of sequential dorsiflexion
and plantarflexion of the left ankle before and after prac-
tice [14]. A similar experiment was extended from the
lower to the upper extremities to investigate the cerebral
activations underlying the preparation and the execution
periods associated with the actual and imagined move-
ments of externally paced sequence of finger key press
using EEG [15]. Moreover, Kranczioch et al. measured
movement-related potentials to compare the functional

similarity of the prediction mechanism during overt and
covert action preparations of simple or complex sequen-
tial finger movements [16]. However, brain oscillatory
patterns induced by sequential compound limb motor
imagery (SCL-MI), particularly movement imaginations
of motor sequences involving multiple limbs, have not
been reported in recent years.
Limited choices of limb movement lead to the limita-

tion of control commands in MI-based BCI systems. In
addition, EEG patterns induced by simple limb MI are
similar to those of sequential movement imagination of
the same limb, and the latter case would activate the
same functional area during sequential movement im-
agination of a single limb. In contrast with simple limb
MI or sequential movement imagination of a single limb,
different limbs are involved in SCL-MI, which can acti-
vate the neurons’ oscillation in different functional areas
of the cerebral cortex within specific time intervals se-
quentially, and at the same time, is more in line with the
normal behavior of humans. Furthermore, SCL-MI can
achieve the output of multiple control instructions in
MI-based BCI systems compared with the limited com-
mands of simple limb MI.
In this study, we aimed to verify the feasibility of the

application of SCL-MI to MI-based BCI systems.
Additionally, the changes of EEG patterns and the inter-
influence between movements in the motor sequences
were also investigated. To this end, four kinds of sequen-
tial movement imagination were designed to simulate
the movement of playing drums, involving one sequen-
tial movement imagination of a single limb and three
kinds of SCL-MI based on the cooperation of two or
three limbs. To test the separability of these four MI
tasks, a multi-class common spatial patterns (multi-CSP)
algorithm (successfully used in [17]) and power spectral
density (PSD) were employed in feature extraction.
Event-related spectral perturbation (ERSP) and phase
synchronization analysis were applied to study the in-
duced brain oscillatory patterns during SCL-MI.

Methods
Experimental procedure
The four motor sequences consist of three sub-
movements. One sequential movement imagination of a
single limb is [right hand]–[right hand]–[right hand]
(RRR) and it represents imagining playing drums using
the right hand according to the sequence. The three
kinds of SCL-MI are [right hand]–[left hand]–[right
hand] (RLR), [left hand]–[right foot]–[left hand] (LFL),
and [right foot]–[right hand]–[left hand] (FRL) and they
represent imagining playing drums using the corre-
sponding limbs according to the sequence.
Twelve right-handed healthy subjects (7 females and 5

males, 21–26 years old) participated in this experiment.
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The subjects sat in a chair at a 1-meter distance in front
of a computer screen. There were two task conditions.
The experimental paradigm of the first condition is
shown as Fig. 1. Each trial (8 s) began with a white circle
that appeared at the center of the monitor for 1 s. After
the disappearance of the white circle, a character indica-
tion (‘[right hand]–[right hand]–[right hand]’, ‘[right han-
d]–[left hand]–[right hand]’, etc.) was presented on the
screen for 2 s. During this phase, the subjects were
instructed to mentally prepare and remember the task,
while withholding any imagination. At the 3rd second,
the cue disappeared and the screen turned black for 3 s.
The participants were asked to immediately perform the
indicated task once the screen turned black. MI tasks
were performed kinesthetically rather than visually while
avoiding any motion during imagination. At the 6th sec-
ond, ‘Rest’ was presented for 2 s before the next trial.
During the whole experiment, the subjects were asked
to listen to the drums starting simultaneously with the
appearance of the white circle (60 beats per minute),
that is, there was a drum sound every second to main-
tain the self-rhythm of the imagination. Figure 2 shows
the paradigm of the second condition (12 s), which is
similar to the paradigm of the first condition, and
accompanied by the drums (30 beats per minute) while
the imagination phase lasts for 6 s. Three sub-
movements in each motor sequence were performed se-
quentially, while a single sub-movement was performed
once within a 1-s or 2-s time interval.
The experiments for both conditions were divided

into seven sections, consisting of 40 trials each for
the four kinds of sequential movement imagination
(10 trials for each task in 1 section). The four MI
tasks were presented in a randomized order. The
intersection break lasted for about 5 to 10 min. In
total, there were 280 trials (70 trials per class) in the
study dataset.
Prior to recording, subjects were required to take three

sessions for the training, consisting of five sections each
(once a day) for both conditions for their familiarization
and proper understanding of the tasks.

EEG data were recorded from 64 Ag/AgCl scalp
electrodes placed according to the International 10/20
System referenced to nose and grounded prefrontal
lobe. The EEG signals were acquired by a Neuroscan
SynAmps2 amplifier whose sampling rate is 1000 Hz
and the band-pass filtering range is 0.5–100 Hz. An
additional 50-Hz notch filter was used during data ac-
quisition. Thereafter, the original EEG signals were
downsampled at 200 Hz. Before further analysis, the
common average reference (CAR) was adopted during
pre-processing.
The study was approved by the ethical committee of

Tianjin University. All subjects signed their informed
consent in advance.

Event-related spectral perturbation
The event-related spectral perturbation (ERSP) method
was used to inspect the spectral power changes of the
induced EEG relative to the stimulus from the views of
the time-frequency domain, which could supply more
details about ERD/ERS patterns of different types of MI.
The changes of event-related spectral power were ana-
lyzed with ERSP defined as follows:

ERSP f ; tð Þ ¼ 1
n

Xn

k¼1

Fk f ; tð Þ2� � ð1Þ

where n is the number of trials, and Fk(f, t) is the spec-
tral estimation of the kth trial at frequency f and time t
[18, 19]. Short-time Fourier transform (STFT) was
employed to perform time-frequency analysis of EEG
data using a Hanning-tapered window in EEGLAB. The
number of windows was set to 200 so that the window
length is 256 points for the first condition and 512
points for the second condition. Baseline-normalized
ERSP values (dB) were calculated from −3 to 5 s and
from −4 to 8 s for the first and second conditions, re-
spectively, relative to a baseline period (3 s before move-
ment onset for the first condition and 4 s before
movement onset for the second condition). In this study,
the time-frequency ERD/ERS maps from three key

Fig. 1 Experimental paradigm of the first condition. A white circle indicates the beginning of each trial, followed by a cue indicating the type of
MI task. The subjects performed the indicated MI task for 3 s, and then rested for 2 s before the next trial. Two loudspeakers and the notes
indicate the drum sounds during the whole experiment
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electrode positions C3, Cz, and C4 were presented be-
tween 1 and 30 Hz for analysis because these three elec-
trode positions are located over the right hand, the foot,
and the left hand representation areas, respectively. The
ERSP in the remainder of this paper refers to the
baseline-normalized ERSP.
To investigate the influence of the prior sub-

movement on the subsequent sub-movement, we
measured the alpha ERD values of the second or third
sub-movement imagination by integrating the ERSP
values within the corresponding frequency bands and
time intervals according to equation (2), as follows:

ERDvalue ¼ 1
N

X
f ∈F

X
t∈T

ERSP f ; tð Þð Þ ð2Þ

where F represents the ERD band and T represents
the time interval (1 s or 2 s). N is the number of time-
frequency bins in a selected rectangular area. The ERD
values of the right and left hands were calculated for
electrodes C3 and C4, respectively.

Phase synchronization analysis
Phase synchronization is encountered in weakly interacting
oscillator systems and it manifests through the occurrence
of a relationship between the corresponding phases’ vari-
ables [20]. The degree of synchronization between two
signals could be evaluated by the phase locking value
(PLV), providing a reliable measurement of phase coupling
[21, 22]. At first, the original EEG signals were band-pass
filtered within a specific frequency band. Then, the instant-
aneous phases of the signals could be extracted by Hilbert
transformation, and the difference of instantaneous phases
corresponding to two different signals was defined as Δφ(t)
= φx(t) − φy(t). After obtaining the relative phases, the de-
gree of synchronization between any two signals was evalu-
ated on a single trial basis using PLV, defined as

PLV tð Þ ¼ ejΔφ tð Þ
D E���

��� ð3Þ

where 〈 ⋅ 〉 denotes the temporal average over a time
interval. Thereafter, the mean PLV was calculated by
averaging all trials for each kind of movement

imagination. In this way, the PLV ranges from 0 (no
synchronization) to 1 (phase synchronization), providing
an indication of the degree of interaction between the
two underlying systems.
In this study, to investigate the involvement of the

mesial frontocentral cortex during the imagination of
sequential movement, phase synchronization was used
to evaluate the underlying relationship between cen-
tral electrodes (C3, Cz, and C4) and the mesial fron-
tocentral electrode (Fcz) [23–25] during imagination
of each sub-movement. The signals from these four
electrodes were band-pass filtered between 8 and
13 Hz to focus on the EEG activities of the mu
rhythm. PLVs were calculated according to equation
(3) on three pairs of electrodes (C3-Fcz, Cz-Fcz, and
C4-Fcz) for sub-movement imagination (within 1 or
2 s) in each sequence for further investigation, that
is, studying the PLVs over C3-Fcz, Cz-Fcz, and C4-
Fcz for the right hand, right foot, and left hand
movement imaginations, respectively.

Classification
Multi-class common spatial patterns based method
A common spatial patterns (CSP) algorithm has been
widely used to extract the features of two MI classes
based on multi-channel EEG information. Due to the
property of CSP for binary situation, it has to be modi-
fied into a multi-class common spatial patterns (multi-
CSP) algorithm to be suitable for the circumstance of
multi-class MI tasks. Similar to the steps in [26], we first
obtained the average covariance matrix Σi of each MI
pattern, i ∈ {1, 2, 3, 4}. The whitening matrix can be ob-
tained by

P ¼ Λ
−1=2UT

0 ð4Þ

where U0 is the matrix of eigenvectors and Λ is the
diagonal matrix of eigenvalues from

Σ ¼
X4
i¼1

Σi ¼ U0ΛU
T
0 ð5Þ

Thereafter, to acquire the spatial filter matrix relevant

Fig. 2 Experimental paradigm of the second condition. A white circle indicates the beginning of each trial, followed by a cue indicating the type
of MI task. The subjects performed the indicated MI task for 6 s, and then rested for 2 s before the next trial. Two loudspeakers and the notes
indicate the drum sounds during the whole experiment
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to the first class, we let Σ
0
1 ¼

X4
i¼2

Σi according to the

strategy of one-versus-rest, and if Σ1 and Σ1
' can be

translated as

Y 1 ¼ PΣ1P
T Y

0
1 ¼ PΣ

0
1P

T ð6Þ

then Y1 and Y1
' share common eigenvectors

Y 1 ¼ U1Λ1U
T
1 Y

0
1 ¼ U1Λ

0
1U

T
1 ð7Þ

With the projection matrix W1 =U1
TP consisting of

spatial filters corresponding to the first class, the other
three projection matrices could be obtained similarly.
The support vector machine (SVM) was adopted here

for the classification of four kinds of sequential MI tasks.
In this study, we used the LIBSVM software package to
solve the multi-class classification problem. The multi-
channel (64) EEG data were band-pass filtered between
8 and 30 Hz [26], including the whole MI period. By a
tenfold cross-validation strategy, the training set served
as the input of multi-CSP algorithm to achieve spatial
filter matrices. For each direction of an MI task, only the
eigenvectors corresponding to the first l eigenvalues
could be used as spatial filters. The log variances of the
spatially filtered EEG data were then used as the ex-

tracted features. The final classification accuracy acc

¼ 1
10

X10

k¼1

acc kð Þ where acc(k) is the classification accuracy

of the testing set for the kth fold. The filter combination
with the highest classification accuracy was the optimal
combination.

Power spectral density based method
We extracted the power spectral density (PSD) as the
feature for each MI task using the EEG data during im-
agination by sliding a short window in steps of 50 %
overlaps, in which the PSD was calculated for 200 sam-
ples (1-s interval) shifted by 100 samples (0.5 s). Each
segment was put into a PSD estimator using Burg's
method (the order of an autoregressive model was 5).
The sums of PSD in five frequency bands (delta: 0.5-
4 Hz; theta: 4–8 Hz; alpha: 8–13 Hz; beta: 14–30 Hz;
gamma: 30–50 Hz) were extracted for each segment,
resulting in 5*m (m is the number of segments) features
per channel for 62 channels (except HEO, VEO).
Support vector machine-recursive feature elimination

(SVM-RFE), the most popular recursive feature-
elimination algorithm, was applied to select the features
for elimination. The RFE selection method is a recursive
process that ranks features according to some measure
of their importance [27]. However, in this study, the

features coming from the same channel were regarded
as a group; thus, we measured the importance of N
channels. After constructing a final ranking of all chan-
nels, the features of the first n channels were taken as
the input of SVM to obtain the corresponding classifica-
tion accuracy using a tenfold cross-validation strategy.
The channel combination with the highest classification
accuracy was the optimal combination.

Results
Time-frequency analysis
Figure 3 shows the time-frequency maps of the four MI
tasks for the first condition from one subject at
electrode positions C3, Cz, and C4. The maps present
obvious ERD patterns in both mu (11–13 Hz) and beta
(22–24 Hz) rhythms for all the MI tasks. However, the
phenomenon of ERD changes over time is not clear.
Taking a close look at the ERD patterns at electrode C4
during imagination of LFL, slightly weaker ERD can be
found within the 2nd second. There are no significant
differences between the ERD patterns at C3 and C4 for
the sequences of RLR and FRL. Besides the induced mu
and beta ERD, there are also long-lasting ERS patterns
(around 10 Hz) observed starting from almost 1 s after
the MI onset at all these electrodes.
Figure 4 shows the time-frequency maps of the four

MI tasks for the second condition from the same subject
at electrode positions C3, Cz, and C4. The maps show
obvious ERD and ERS patterns within the same fre-
quency bands as the first condition. In addition, the
ERD patterns present better time-variant features, with
apparent contralateral dominances for left/right hand
imagery during the sequences. Compared with the se-
quence of RRR, quite different ERD patterns can be
found for the other three sequences with discontinuous
ERD over time at electrodes C3 and C4. ERD blocking is
present at electrode C3, while the ERD feature reappears
within the corresponding time interval at electrode C4
during the imagination of RLR. A similar phenomenon
can be observed for the sequences of LFL and FRL. At
the same time, no ERD feature induced by the sub-
movement of the right foot is present at electrode Cz for
both conditions.

ERD analysis
The ERD values within the alpha band during imagination
of the second or third sub-movement were measured to
evaluate the influence of the prior sub-movement on the
subsequent sub-movement. According to Fig. 5a, right
hand imagery with prior hand (left or right)/foot imagery
is represented by RHPH/RHPF, while left hand imagery
with prior hand (left or right)/foot imagery is represented
by LHPH/LHPF. Therefore, with respect to the sub-
movement of the right hand, we can obtain the ERD
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Fig. 3 Examples of time-frequency maps for the first condition from one subject at three electrode locations. RRR, RLR, LFL, and FRL indicate [right
hand]–[right hand]–[right hand], [right hand]–[left hand]–[right hand], [left hand]–[right foot]–[left hand], and [right foot]–[right hand]–[left hand],
respectively. Blue represents ERD and red represents ERS. The first and second vertical lines represent the onset and end of MI, respectively. Time
0 represents the time point of cue offset

Fig. 4 Examples of time-frequency maps for the second condition from the same subject at three electrode locations. RRR, RLR, LFL, and FRL
indicate [right hand]–[right hand]–[right hand], [right hand]–[left hand]–[right hand], [left hand]–[right foot]–[left hand], and [right foot]–[right
hand]–[left hand], respectively. Blue represents ERD and red represents ERS. The first and second vertical lines represent the onset and end of MI,
respectively. Time 0 represents the time point of cue offset
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values of RHPH-I, RHPH-II, RHPH-III, and RHPF-I, while the
ERD values of LHPH-I, LHPH-II, and LHPF-I can be obtained
for the sub-movement of the left hand. Paired t-test was
used to inspect the difference between the ERD values.
The results of the ERD values at electrodes C3 and C4 for
both conditions are shown in Fig. 5b. The ERD values of
RHPH-I, RHPH-II, and RHPH-III are significantly larger than
those of RHPF-I at electrode C3, while the ERD values of
LHPH-I and LHPH-II are significantly larger than those of

LHPF-I at electrode C4 for both conditions. These results
indicate that the ERD values of left/right hand imagery
with prior hand imagery are significantly larger than those
with prior foot imagery during sequential movement im-
agination. For both conditions, there is no difference be-
tween the ERD values of RHPH-I, RHPH-II, and RHPH-III at
electrode C3; there is also no difference between the ERD
values of LHPH-I and LHPH-II at electrode C4, indicating
that there is no difference between the ERD values of

Fig. 5 Illustration of ERD analysis. a Each row in the left diagram represents three sub-movements in each sequence. The diagram on the right
contains the definition of the corresponding sub-movement in each sequence against the diagram on the left. “-” means no definition. b The
comparison of ERD values from the 12 subjects at electrodes C3 (left column) and C4 (right column) for the first condition (upper panel) and
second condition (lower panel). Dark red represents right hand imagery with prior hand imagery, while light red represents right hand imagery
with prior foot imagery. Dark blue represents left hand imagery with prior hand imagery, while light blue represents left hand imagery with prior
foot imagery. Conditions 1 and 2 indicate that the time intervals are 1 s and 2 s, respectively, for sub-movement imagination. Condition pairs that
significantly differ from each other are indicated by a single asterisk (p < 0.05) or two asterisks (p < 0.01)
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hand imagery with prior left or right hand imagery during
sequential movement imagination.

PLV analysis
Phase synchronization was used to evaluate the involve-
ment of the mesial frontocentral cortex for each sub-
movement imagination during sequential movement
imagination. While analyzing PLVs for each sub-
movement imagination in all sequences, we found the
differences of PLVs between the initial movement (the
first sub-movement) and the non-initial movement (the
second or third sub-movement). In the following ana-
lysis, sub-movements in each sequence were divided

into two groups: initial and non-initial movements. For
right hand imagery, the initial movement consists of
two initial imaginations during the sequence imagination
of RRR and RLR, while the non-initial movement consists
of four non-initial imaginations during the sequence im-
agination of RRR, RLR, and FRL. Similarly, the initial and
non-initial imaginations of the left hand were integrated
as a group, respectively. A homogeneity test of variance
and the following two independent sample t-test were
employed to investigate the differences of PLVs between
the initial and non-initial movement imaginations for both
conditions. As shown in Fig. 6a, ERD patterns around
13 Hz could be found at electrode Fcz during the

Fig. 6 The time-frequency maps at electrode position Fcz during imagination of RRR from subject S8 (a) and the comparison of PLVs over C3-Fcz,
Cz-Fcz, and C4-Fcz from the 12 subjects (b) for the first condition (left column) and second condition (right column). Conditions 1 and 2 indicate
that the time intervals are 1 s and 2 s, respectively, for sub-movement imagination. RRR indicates [right hand]–[right hand]–[right hand]. Blue
represents ERD and red represents ERS. The first and second vertical lines represent the onset and end of MI, respectively. Time 0 represents the
time point of cue offset. C3-Fcz(R), Cz-Fcz(F), and C4-Fcz(L) indicate calculating the PLVs over C3-Fcz, Cz-Fcz, and C4-Fcz for the right hand, right
foot, and left hand imagery during sequences, respectively. The black and gray bars represent initial and non-initial movements, respectively.
Condition pairs that significantly differ from each other are indicated by an asterisk (p < 0.05) or two asterisks (p < 0.01)
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imagination of RRR for both conditions. Figure 6b shows
the comparative results of PLVs over C3-Fcz, Cz-Fcz, and
C4-Fcz for both conditions. The PLVs over C3-Fcz during
non-initial imaginations are significantly larger than those
during initial imaginations for the right hand in both con-
ditions. Meanwhile, the PLVs over Cz-Fcz for right foot
imagery and the PLVs over C4-Fcz for left hand imagery
present the same characteristic. The above results indicate
that the PLVs over corresponding electrode pairs of the
non-initial movement are significantly larger than those of
the initial movement.

Classification performance
To validate the separability of the four types of sequen-
tial movement imagination in this study, we used multi-
CSP-based and PSD-based methods, and then analyzed
the highest classification accuracies with optimal com-
bination in each method for both conditions. The high-
est classification accuracies were obtained with optimal
filter combination using the 64-channel EEG data in the
multi-CSP-based method while those were obtained with
optimal channel combination in the PSD-based method.
Figure 7 illustrates the classification accuracies of multi-
CSP-based and PSD-based methods for both conditions.
The classification accuracies of the PSD-based method
are significantly higher than those of the multi-CSP-
based method, whose mean classification accuracies are
lower than 60 % for both conditions.
The averaged results developed over channels selected

with SVM-RFE in the PSD-based method for both condi-
tions are presented in Fig. 8. Results for both conditions

show a similar trend reaching a maximum around 20
channels, and starting to decrease with more than 30
channels. The highest classification accuracy could be ob-
tained with small channel subsets for both conditions, in-
dicating a sharp decrease in channel numbers after feature
optimization. Meanwhile, the classification accuracies of
the second condition are higher than those of the first
condition.
Table 1 shows the classification accuracies of the four

MI tasks using the PSD-based method in both condi-
tions for the 12 subjects. The highest accuracies are
82.86 % and 91.43 %, and the mean values are 65 % and
74.14 % for the first and second conditions, respectively.
The classification accuracies of the second condition are
significantly higher than those of the first condition,
exceeded by ~9 % in the mean classification accuracy, at
the 5 % significance level using t-test (p = 0.001).

Discussion
One disadvantage of MI-based BCI is the limitation of
control commands. Several previous studies have been
devoted to expanding the instruction set of MI-based
BCI using simultaneous imagination of different limbs
[17, 22, 28]. Although MI-based BCI has been frequently
employed in rehabilitation engineering [29–31], rehabili-
tation training using MI-based BCI with sequential and
multiple limbs involved in movement could be a trend
in the future. In terms of SCL-MI, enough time should
be ensured to complete each sub-movement imagination
considering limb switching between different limbs.
Moreover, information transfer rate (ITR) is also an

Fig. 7 The classification accuracies of multi-CSP-based and PSD-
based methods for both conditions from the 12 subjects. Conditions
1 and 2 indicate that the time intervals are 1 s and 2 s, respectively,
for sub-movement imagination. The black and gray bars indicate the
classification accuracies of the multi-CSP-based and the PSD-based
methods, respectively. Condition pairs that significantly differ from
each other are indicated by a single asterisk (p < 0.05) or two
asterisks (p < 0.01)

Fig. 8 The average result of SVM-RFE in PSD-based method from
the 12 subjects. The horizontal and vertical axes represent the
number of channels selected and the classification accuracies,
respectively. The blue and red lines represent the first and second
conditions, respectively. Conditions 1 and 2 indicate that the time
intervals are 1 s and 2 s, respectively, for sub-movement imagination

Yi et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:11 Page 9 of 12



important aspect to be considered for a BCI system.
Therefore, we set two task conditions with two different
time intervals in this study. Although it is difficult to
compress the time needed during SCL-MI, there are
more candidate instructions (except those used in this
study) that could be employed in MI-based BCI systems
as compared with simultaneous compound limb MI.
The results in time-frequency maps mainly show the

difference of ERD changes between two conditions
brought by the changes in time interval during SCL-MI.
From the time-frequency maps of the second condition,
the ERD patterns of sub-movements imagination were
found clearly occurring within corresponding time inter-
vals over time at electrodes C3 and C4, due to the char-
acteristic of contralateral dominance with hand imagery
[32]. Such a phenomenon indicates that the changes of
ERD patterns over time are in line with the changes of
limbs during SCL-MI. However, the changes of ERD pat-
terns in the first condition are less obvious than those
for the second condition during SCL-MI. One explan-
ation could be that a time interval of 1 s is not enough
for EEG power returning to baseline after sub-
movement imagination. At the same time, with respect
to the sequences of RLR and FRL, it may also result
from the mixed effect from the prior hand imagery and
subsequent hand imagery on the same electrode. The
time-frequency results reflect the importance of time-
parameter setting for the imagination of each sub-
movement. On the other hand, no ERD phenomenon
was observed in the foot area during sub-movement
imagination of the right foot, which may be due to its
special location in the mesial wall.
In terms of the inter-influence between sub-movements,

the ERD analysis reflects that different prior sub-movement
imaginations contribute to different influences on the sub-
sequent sub-movement imagination. The statistical analysis
reveals significantly larger ERD values of left/right hand im-
agery with prior hand imagery, indicating that the prior
hand imagery results in more neurons activated during the
subsequent hand imagery because an increased ERD repre-
sents the involvement of more cell assemblies in informa-
tion processing [32]. In addition, we found that there is no
significant difference in ERD values at electrode C3 be-
tween the first and second sub-movements, and between
the second and third sub-movements during sequence im-
agination of RRR for both conditions. In this regard, the

main effect of the prior sub-movement may be caused by
movement type. However, the MI in this study is based on
drum movements where hand movement is more promin-
ent than foot movement. Probably, a dominant movement
could facilitate or a non-dominant movement could inhibit
the activation of contralateral hand area with the subse-
quent hand imagery during sequential movement imagin-
ation. Hence, we still need further studies where both
hands and foot imagery have equal priority or foot imagery
is more prominent than hand imagery to justify the above
speculation. Moreover, the process switching from hand
imagery to hand imagery seems to be more efficient than
switching from foot imagery to hand imagery in the four
motor sequences of the present study as more efficient task
performance shows larger alpha desynchronization in se-
mantic tasks [32, 33]. On the other hand, ERD patterns
were observed at electrode Fcz over the mesial frontocen-
tral cortex, suggesting that the mesial frontocentral cortex
was activated during sub-movement imagination because
ERD reflects the activity in motor areas during MI [32]. Dif-
ferent from the source analysis, functional connectivity
could reveal mutual interaction among multiple cortical re-
gions. As one method to calculate functional connectivity,
phase synchronization has been measured between elec-
trodes over the contralateral hand area and the mesial fron-
tocentral cortex during executed and imagined hand
movements [34, 35], suggesting that the mesial frontocen-
tral cortex is activated and synchronized with the contralat-
eral hand area. Here, we analyzed phase synchronization to
evaluate the involvement of the mesial frontocentral cortex
depending on the coupling degree between the correspond-
ing electrodes for each sub-movement during SCL-MI.
Compared with initial movement, a significantly larger PLV
reveals a closer coupling relationship between central elec-
trodes and the mesial frontocentral electrode for non-initial
movement, which probably implies a higher involvement of
the mesial frontocentral cortex during the information pro-
cessing of non-initial movement imagination. It is inferred
that the coupling degree between the hand/foot representa-
tion areas and the mesial frontocentral cortex may be at a
lower level during the initiation of sequence movement im-
agination, and then gradually becomes strengthened dur-
ing the subsequent sub-movement imagination. In terms
of non-initial movement, the mesial frontocentral cortex
has been activated during the prior sub-movement im-
agination so that it may be easier to be aroused during the

Table 1 Classification accuracies (%) of the PSD-based method in both conditions from the 12 subjects

PSD-based method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 mean

Condition 1 63.57 69.29 72.86 43.57 73.57 73.57 56.43 82.86 62.50 61.79 67.14 52.86 65.00

Condition 2 78.21 76.43 73.93 68.21 70.36 80.71 76.07 91.43 70.71 75.36 73.21 55.00 74.14

Conditions 1 and 2 indicate that the time intervals are 1 s and 2 s, respectively, for sub-movement imagination. The highest accuracy for each condition is in
bold font
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subsequent sub-movement imagination. Probably, this is
the reason for stronger phase synchronization during
non-initial movement imagination. The results of PLV
analysis also reflect the inter-influence between sub-
movements, in particular, that prior sub-movement may
facilitate the involvement of the mesial frontocentral cor-
tex for the subsequent sub-movement during the whole
period of sequential movement imagination. As a result,
not only the neural activities of sensorimotor areas but
also those of the mesial frontocentral cortex could be in-
fluenced during limb switching, indicating that the mental
changes associated with the imagination of sub-movement
in the motor sequence are different from those of simple
limb MI with the same limb.
Considering the different frequency bands used in the

two classification methods, we also computed and
compared the classification accuracies within the same
frequency band. The mean classification accuracy is
39.46 % (SD ± 6.13) for the first condition and 42.50 % (SD
± 8.98) for the second condition in 0.5–50 Hz using the
multi-CSP-based method. The mean classification accuracy
is 63.17 % (SD ± 10.36) for the first condition and 70.39 %
(SD ± 9.87) for the second condition in 8–30 Hz using the
PSD-based method. The classification accuracies in 8–
30 Hz are better than those in 0.5–50 Hz for the multi-
CSP-based method. The frequency band 8–30 Hz is chosen
because it encompasses the alpha and beta frequency
bands, which have been shown to be most important for
movement classification [26]. However, besides alpha and
beta bands, other frequency bands could also be helpful in
the classification. For the PSD-based method, the
classification accuracies in 0.5–50 Hz are better than those
in 8–30 Hz. A broader band (0.5–50 Hz) could be used to
select the optimal feature from a high-dimensional feature
space using SVM-RFE in the PSD-based method. It is im-
plied that the selection of the frequency bands for both
methods in this paper is available to extract features in the
classification of four kinds of SCL-MI. In the meantime, the
performance of the PSD-based method outperformed that
of the multi-CSP-based method in both frequency bands.
CSP is an algorithm based on spatial filtering of raw signals,
while the PSD-based method extracts EEG features over
time. It can be inferred that the changes of temporal effect
are stronger than those of spatial effect during SCL-MI.
SCL-MI presents time-variant EEG patterns on frequency
and spatial domains due to limb switching. As a result,
multi-CSP that is insensitive to temporal effect seems to be
inappropriate for the classification of SCL-MI, while the
PSD-based method is more suitable for capturing time-
variant information and for discriminating the four types of
sequential movement imagination. In addition, the classifi-
cation results of multi-CSP-based and PSD-based methods
should serve as a guide for the next development of algo-
rithms applied for SCL-MI in the future.

For SVM-RFE, after a given point in the feature selec-
tion loop, all useless or redundant channels have already
been removed, and the algorithm begins to eliminate
channels that carry nonredundant information [36].
Therefore, the decrease in classification accuracies when
evaluating smaller subsets with less than ~20 channels is
typical of feature selection methods. SVM-RFE selects
small feature subsets (optimal channel combination) with
better discrimination capabilities than using a whole fea-
ture set, indicating that SVM-RFE is an effective method
for reducing feature dimension to reach the highest accur-
acy with the least channels. From the higher classification
accuracies obtained in the second condition compared
with those in the first condition, we can infer that SCL-MI
presents much richer information of time-variant EEG
patterns for the second condition. A time interval of 2 s is
enough for the changes of EEG patterns during limb
switching just as the ERD changes revealed in time-
frequency maps. The four sequential MI tasks could not
be discriminated effectively with the smaller time interval,
which also indicates the significance of the time required
for sub-movement imagination. Overall, the classification
accuracies in this study are acceptable, but have yet to be
improved with more suitable algorithms in the future. In
conclusion, multi-class SCL-MI and the feature extraction
method studied in this paper could be expected to provide
technical support to expand instructions of MI-based BCI
systems effectively. Furthermore, as an important tool in
the field of rehabilitation engineering, it would seem sig-
nificant to consider the tendency and availability to
complete sequences as a whole rather than one independ-
ent movement at a time in MI-based BCI systems.

Conclusion
This study provides new information about ERD changes
with different time intervals during SCL-MI. Aside from
this finding, prior sub-movement imagination could
affect the neural activities in the motor areas during the
subsequent sub-movement imagination, suggesting that
inter-influence exists between sub-movements in the
motor sequence. On the basis of classification perform-
ance, multiple types of sequential movement imagination
appear to have potential for use as a novel paradigm in
multi-class MI-based BCI system.
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