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Abstract

Background: Chronic pain, defined as persistent or recurrent pain lasting longer than 3 months, is a frequent
condition affecting an important percent of population worldwide. Pain chronicity can be caused by many
different factors and is a frequent component of many neurological disorders. An important aspect for clinical
assessment and design of effective treatment and/or rehabilitation strategies is to better understand the impact of pain
on domains of functioning in everyday life. The aim of this study was to identify the objectively quantifiable features

different pain conditions.

regression and discriminant analysis.

chronic pain management/rehabilitation programs.

of physical functioning in daily life and to evaluate their effectiveness to differentiate behavior among subjects with

Method: Body worn sensors were used to record movement data during five consecutive days in 92 subjects.
Sensor data were processed to characterize the physical behavior in terms of type, intensity, duration and
temporal pattern of activities, postures and movements performed by subjects in daily life. Metrics quantifying
these features were subsequently used to devise composite scores using a factor analysis approach. The severity
of clinical condition was assessed using a rating of usual pain intensity on a 10-cm visual analog scale. The
relationship between pain intensity and the estimated metrics/composite scores was assessed using multiple

Results: According to the factor analysis solution, two composite scores were identified, one integrating the
metrics quantifying the amount and duration of activity periods, and the other the metrics quantifying complexity
of temporal patterns, i.e., the diversity of body movements and activities, and the manner in which they are
organized throughout time. All estimated metrics and composite scores were significantly different between
groups of subjects with clinically different pain levels. Moreover, analysis revealed that pain intensity seemed to
have a more significant impact on the overall physical behavior, as it was quantified by a global composite score,
whereas the type of chronic pain appeared to influence mostly the complexity of the temporal pattern.

Conclusion: The methodology described could be informative for the design of objective outcome measures in

Keywords: Chronic pain assessment, Physical behavior, Pattern complexity, Factor analysis, Composite scores

Background

Chronic pain is a complex disabling experience affecting
at least 10 % of the world’s population, with an estimated
prevalence closer to 20-25 % in some countries and re-
gions [1]. The high prevalence is due to the many factors
contributing to the development and persistence of pain,
including degenerative and inflammatory diseases, nerve
injury and neurological conditions (Parkinson’s disease,
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stroke, multiple sclerosis) among many other factors
[2, 3]. The most important features of chronic pain ex-
perience are pain severity (intensity), pain interference
(with work performance, participation in recreational
activities, ability to perform activities of daily living, so-
cial activity) and emotional distress (depression, anxiety,
coping behaviors) [4]. These factors may influence phys-
ical behavior in various and intricate ways: stop an activity
because of increasing pain or, on the contrary, persist ex-
aggeratedly with tasks despite severe pain due to maladap-
tive coping strategies; avoid painful body movements and
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specific activities due to emotional distress or on the
contrary, break a task into pieces and go slower [5-8].
Although the patterns of functioning play a central role
in models of chronic pain and disability and in evalu-
ation of treatment/rehabilitation efficacy [4, 7, 9-24],
the relationships between clinical conditions of patients
and their behavior in the context of everyday life re-
main difficult to be characterized comprehensively. The
assessment methods need to take into account the
multidimensional, dynamic and relational attributes of
physical behavior. The multidimensional attribute refers
to the many characteristic features, i.e., type, intensity and
duration of various activities, movements and postures,
whereas the dynamic aspect refers to their continuous
change over time that give rise to temporal patterns. The
relational aspect refers to the many factors that may
modulate the behavioral pattern of the person, i.e., bio-
logical, environmental, lifestyle, etc.

The aim of this study was to explore the potential of
wearable technology combined with appropriate analytical
methods for data analysis, to comprehensively characterize
the individuals’ physical behavior in everyday life. Specific-
ally, the objectives were to: (1) devise a set of metrics to
quantify multiple dimensions of daily functioning, given
that individuals with different pain levels may, for ex-
ample, accumulate the same time percent of walking
but with episodes of different duration and intensity in
terms of speed/cadence; (2) integrate multiple metrics into
composite scores, supposed to provide a more complete
assessment of the physical functioning; (3) evaluate the
relationship between a rating of usual pain intensity
and the estimated metrics/composite scores. Overall,
the study aims to illustrate that an objective and de-
tailed characterization of physical behavior in daily life,
may open new perspectives for outcome evaluation in
future clinical intervention studies.

Methods

Subjects and study design

The analysis was conducted retrospectively on a dataset
that included movement registration data in 92 subjects,
including 74 chronic pain patients and 18 pain-free indi-
viduals. Patients were referred to the Pain Management
Center of the Hospital of Morges, Switzerland, because
of long-lasting persistent intractable pain and were candi-
date for spinal cord stimulation therapy. Pain-free subjects
were volunteers recruited from the patients’ relatives or the
medical staff of the clinic. After the approval of the local
ethical committee (University of Lausanne, Switzerland)
and written informed consent was obtained from each
participant, body movements were recorded under free-
living conditions, during five consecutive weekdays, 8 h
each day. Patient recordings were obtained before the
spinal cord stimulation treatment. Data collected were
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body accelerations, recorded 40 samples per second
with custom-made (non-commercial) data-logger devices
including commercial sensors (tri-axial accelerometer,
MMA7341LT, range +3 g, Freescale, Austin, TX, USA),
a battery (3.7 V, 595 mA/h), a memory unit and a
microcontroller. Devices were small and lightweight
(55 x 40 x 18 mm, 50 g) and were stuck to the skin with
medical adhesive patches; one on the sternum to meas-
ure the trunk accelerations and one on the mediolateral
axis of the thigh. Subjects were instructed to install
devices and start recording in the morning before en-
gaging in daily activities.

Chronic pain condition was assessed using a global
rating of usual pain intensity experienced by subjects
during the monitoring period. Each participant was
asked to rate his/her perceived pain on a 10-cm visual
analogue scale (VAS) from 0-cm (no pain) to 10-cm
(worst imaginable pain). Table 1 shows the subjects’
demographic data.

Metrics to quantify dimensions of physical behavior

The recorded trunk and thigh acceleration data were
processed by validated software routines [25, 26] to clas-
sify body postures (sitting, standing, lying) and walking
activity, to calculate the number of steps and cadence of
walking periods, and to quantify intensity of movements
in terms of peak body accelerations. The aggregated pe-
riods of standing and walking, indicating the time spent
on feet, were defined as activity and, sitting and lying
as sedentary (diurnal rest).

The time percentage spent walking and on feet (metrics
walking (%), activity (%)) were selected to represent the
amount/volume of physical activities [27, 28]. Given that
similar time percentages might be obtained with many
short periods, or a few long, or a combination of both, it
appears meaningful to characterize also the duration of
periods. Empirical evidence indicates that in real-life
conditions activity periods may range from seconds to
minutes and hours, therefore the standard central ten-
dency statistics (mean, median) are not appropriate mea-
sures. One alternative is to characterize maximal values

Table 1 Subjects demographic data

Age (yrs) 63+ 14
BMI (kg/m?) 26+5
Gender, n males (%) 44 (47 %)
Employed, n (%) 40 (43 %)

22(SS), 25(FBSS), 10(CRPS), 8(PAD), 9(CP),
18(healthy/pain free)

Diagnosis, n (type)

SS spinal stenosis (n=, FBSS = failed back surgery syndrome, CRPS Complex
regional pain syndrome, PAD peripheral artery disease, CP combined
pathologies: herniated disc (n = 3), polyneuropathies (n = 3), deafferentation
(n=2), meralgya (n=1)
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presumed to reflect better the functional capacity of the
subject. The simpler statistical measures are the sample
extreme upper quantiles, which are more robust to out-
liers compared with single maxima value. For the ensem-
ble of activity periods performed by a subject, we selected
the .975™ quantile who returned a value indicating that
2.5 % of activity periods were longer than that value
(metric ¢.975 actv.).

Further information was deduced from the relationship
between successive activity and sedentary periods, i.e. by
assessing if and to what extent a subject needed longer
rest after an activity period. The assumption was that the
duration of sedentary or resting time after a physically
demanding (and potentially painful) activity period may
increase in chronic disease conditions. Two sets of values
denoted ‘excess rest’ and ‘deficit rest were estimated:
‘excess rest’ was associated to the amount (in seconds)
by which a sedentary period was longer when compared
with the preceding activity period; conversely, ‘deficit
rest’ was associated to the amount by which a sedentary
period was shorter when compared with the preceding
activity period. The idea was to plot on the same dia-
gram the empirical cumulative distribution functions
(ECDF) of the two sets of values (‘excess’ and ‘deficit’)
and to estimate the statistical distance between the
curves using the signed Kolmogorov-Smirnov (KS) dis-
tance (metric KS dist.). The KS test was conducted to test
the null hypothesis that the two ECDFs were equal against
the alternative hypothesis that the ECDF of deficit rest is
larger than ECDF of excess rest (ie., the ECDF plot of
deficit rest is above the ECDF plot of excess rest, so
higher values of KS distance indicates tendency of longer
rest after activity).

Along with the amount and duration of periods, an
additional dimension of physical behavior is the temporal
sequence/pattern of various states, where the states de-
scribe various movement features, for example, walking
periods with various durations and cadences, sitting/
standing quiet or with body movements, transitions be-
tween movements and activities [29]. Patterns contain-
ing a higher diversity of states, changing dynamically
over time, are considered more ‘complex’ and are asso-
ciated with better physical capability [29]. Entropy, as a
fundamental measure of complexity, was used under
different formulations in order to quantify: (i) the diversity
of physical activities states (entropy 1); (i) the diversity
and temporal dynamics of states, i.e., moment-to-moment
variations of activities and movement features (entropy 2,
entropy 3) [29, 30]. Higher entropy/complexity values
were associated with better physical functioning, i.e., the
ability to perform a wide range of movements and actions
and to timely respond to environmental demands.

All metrics were estimated from aggregated data ob-
tained from complete recordings of five consecutive days.
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Exploratory factor analysis to determine composite scores
The associations between metrics and possibility to com-
bine related ones to define composite scores were investi-
gated using exploratory factor analysis (EFA). The analysis
was conducted according to recommendations for best
practice in EFA [31-33], and started with validation of the
basic assumptions for data adequacy. The first assumption
concerned factorability of correlation matrix, i.e., the pres-
ence of appropriate linear correlations among metrics so
that coherent composite scores can be identified. Accord-
ing to recommendations, the pairwise correlations coeffi-
cients should be in the range 0.8 > |r| = 0.4, which means
that metrics should correlate but not too high, to avoid
multicollinearity and singularity, which reduce the clarity
of EFA solution. The second assumption was adequacy of
sample size to yield reliable estimates of correlations
among metrics. Ideally, there should be a large ratio of
N/k, where N is the number of subjects and k the number
of metrics (minimum 5 subjects per metric required). Ac-
cording to the literature, normal distributed data enhances
EFA solution but is not a strict assumption if appropriate
method is used for factor extraction [33].

After confirmation of data adequacy, all metrics were
standardized by subtracting the mean and dividing by
sample standard deviation to accommodate the different
scales (z-scores). One metric (KS dist.) was multiplied
by -1 so that all metrics were positively correlated, with
increasing values associated with increasing physical activ-
ities. The set of metrics was then submitted to a principal
axis factoring recommended for non-normal data, with
oblique rotation (promax) to extract the factors (linear
combinations of interrelated metrics). The optimal num-
ber of factors was determined according to scree plot
criteria and parallel analysis method [32, 33].

The EFA procedure provides two types of results, the
factor loadings and the factor scores. In the context of
our analysis, the factor loadings represent the relation-
ship of each metric with the underlying factor. The degree
of association between metrics and factors was evaluated
according to a minimal factor loading threshold (>0.3)
and the requirement of at least three metrics with high
loadings per factor. The factors were labelled according to
the consistency among the metrics that loaded high on
each factor.

The factor scores were composite measures (standard-
ized to z-scores) created for each subject on each factor
[34]. Generally, two approaches can be used to derive sub-
jects’ composite scores [35]: (1) weighted scores, calculated
as weighted summation of standardized metrics associated
to each factor and (2) unit-weighted scores, calculated as
simple summation of standardized metrics associated to
each factor, so that each metric on the factor contribute
equally to the composite. The composite scores were used
as outcome measures in subsequent analysis aiming to
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evaluate the relationship between pain intensity and
overall physical behavior.

Association between pain intensity and physical behavior
The relationship between intensity of pain evaluated on
the VAS, and physical behavior quantified with the set of
metrics/composite scores, was assessed using multiple
regression and discriminant analysis. Multiple linear regres-
sion analysis was conducted with the metrics/composite
scores as dependent variables, and VAS score, age and
BMI as independent variables. Discriminant analysis
was performed to determine how significantly the met-
rics/composite scores were different between groups of
subjects with clinically different pain intensities (age-
matched). For this purpose, the 92 subjects were divided
into two groups according to pain intensity: the first group
(n = 34) included subjects with VAS score inferior or equal
to 4 (mild pain) and the second group (n =58) included

Page 4 of 10

subjects with VAS superior to 4 (moderate to severe pain).
Based on normality test (Shapiro-Wilk) the differences
between groups were assessed using two-sided Student’s
t-test or nonparametric Mann-Whithney test. The effect
size (magnitude of the difference) was estimated using the
Cohen’s d and the corresponding percent of non-overlap
between groups [36]. The whole analysis was performed
using MATLAB computing software (version R2013a,
MathWorks, Natick, MA, US).

Results

Quantified physical behavior and differences among
individuals

Self-reported pain intensity (VAS score), age and the
set of metrics estimated for each subject are illustrated
in Fig. 1a-i. These results suggest that variability of behav-
iors among individuals may result from the fact that the
various components of everyday life physical activities are
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Fig. 1 Pain intensity (a), age (b) and PA metrics (c-i) estimated for each subject (N =92). This representation highlights variability of physical behaviors
in every-day life, and how a similar amount of activity, expressed as percentage over monitoring time (c), is accumulated from patterns characterized
by different amount of walking (d), different duration of activity periods (e), different duration of sedentary periods following activity (f) and different
complexity of temporal patterns (g, h, i)
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affected in different ways by clinical condition of the
subjects. For illustrative purposes, Fig. 1c shows the
percent of time spent in activity (on feet), which is a
usual metric, for the ensemble of subjects (N =92) as
they score from low to high values. These representa-
tions indicate that some subjects with different pain in-
tensities (Fig. 1a) and ages (Fig. 1b) have accumulated
similar amount of activity during the five monitoring
days; however, differences were revealed by the amount
of locomotion during the time on feet (Fig. 1d, walking
(%)), duration and succession of activity and sedentary pe-
riods (Fig. le, f, g975.actv., KS dist.), and by intensity and
diversity of physical activities (Fig. 1g, h, i, entropy metrics).

For better illustration, Fig. 2 depicts metrics character-
izing aspects of physical behavior of two male subjects
with different pain intensities (Subject #60: VAS =0, age
=64 years, and Subject #58: VAS =4, age =62 years).
Both have spent a similar amount of time in activity
(Fig. 2a). However, subject #60 performed a few longer
periods and many of his activity periods were followed by
shorter or similar sedentary periods, while subject #58
performed longer sedentary periods and his activity was
much more fragmented (scatter plot in Fig. 2b). The
ECDF plots shown in Fig. 2c and the KS statistical dis-
tance (defined as maximum vertical deviation between
curves) indicate for the chronic pain patient a tendency to
prolong systematically sedentary time after activity (in-
creased KS dist.). Additional differences were revealed by
the temporal patterns (‘barcodes’) that include detailed in-
formation about the type (lying/sitting, standing, walking),
intensity (body acceleration, walking cadence), duration
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(continuous walking) and frequency of various activities
and body movements. The patterns illustrated in Fig. 3 are
characterized by relatively similar dynamics (moment-to-
moment changes between states) however it can be ob-
served that the pattern of subject #60 contains a higher
diversity of states, ranging from low intensity (blue
color) to high intensity (red color) and therefore ap-
pears more complex (i.e., characterized by higher en-
tropy values).

Exploratory factor analysis: identified composite scores
The correlation matrix indicated linear relationships and
appropriate pairwise correlations between metrics (Fig. 4).
The sample size requirements were also satisfied, since
the study included N =92 subjects and k = 7 metrics (ratio
approx. 13 to 1). Cattell’s scree test and parallel analysis
indicated an optimal two factors solution accounting for
60 % of the variance among metrics. The factor loadings
for the set of metrics, the proportion of variance explained
by each factor, and communality (i.e., the proportion of
the variance of each metric explained by the two common
factors) are presented in Table 2. The factor loadings were
examined to determine metrics that have the strongest
correlations with a given factor, and thus to provide an
interpretation for that factor. Metrics activity(%), walk-
ing(%), q.975 actv., and KS dist. appeared highly loaded
on Factor 1, so, this factor was named ‘Mobility’; the
entropy metrics were strongly loaded on Factor 2, there-
fore, it was named ‘Complexity’. All weights were positive
suggesting a direct correlation among metrics within
each factor.
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Fig. 3 Definition and visualization of temporal patterns: the information about type, intensity and duration is integrated into several states
(here a number of 18). Low intensity states (‘cold’ colors) are associated with sedentary postures whereas higher intensity states (‘warm’ colors)
integrate the standing posture with various body accelerations (e.g. daily tasks, exercises) and walking periods characterized by various
durations and cadences [29]. Visualization of these patterns provides an overview of the subject’s physical behavior during the

monitoring period

Weighted and unit-weighted factors defining the com-
posite scores were derived for each subject using the
results in Table 2. The literature [35] suggests that the
unit-weighted approach is more robust for subsequent
analysis (or replicated studies) because it is less influ-
enced by deviations from normality or outliers in the

original data (i.e. the set of metrics estimated from the
sample of subjects). Taking into consideration this rec-
ommendation and the strong correlation found between
the composite scores obtained with the two approaches
(r>0.9), the unit-weighted composite scores were retained
for subsequent assessment. A global composite score was
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scatter plots are equal to the displayed correlation coefficients (red color number if statistically significant)
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Table 2 Factor loadings for the two-factor EFA solution

PA metrics Factor loadings Communality
Factor 1 Factor 2
‘Mobility ‘Complexity
Activity (%) 0.91 0.12 0.85
Walking (%) 0.40 0.34 03
q.975 actv. (min) 0.77 -0.19 0.64
KS dist. 0.78 -0.01 06
Entropy 1 0.01 0.72 0.52
Entropy 2 -0.04 0.96 0.92
Entropy 3 0.11 0.56 033
% of variance explained 31 % 29 %

The metrics highly associated with each factor are represented in bold characters

also created as the sum of unit-weighted Mobility and
Complexity, given that they were themselves correlated
(r=0.58, p<0.001) (Fig. 5), and theoretically related.

Relationship between pain intensity and physical
behavior

Multiple regression analysis revealed significant negative
association between pain intensity (VAS) and the global
composite score (standardized Beta =-0.15, p <0.001)
when controlling for age (Beta =-0.009, n.s.) and BMI
(Beta = -0.001, n.s.). The overall model fit has been
found to be R? = 0.25 (F-statistic for change in R*: 14.6,
p <0.001) indicating that 25 % of variance in the global
scores was explained by pain severity. No significant re-
lationship was found between pain intensity and the
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Fig. 5 Scatter plot of composite scores, labelled Mobility and Complexity,
for the ensemble of subjects; the color bar encodes subjects’ pain
intensity, from 0 (in blue), to maximum value of 10 (in red). This
representation indicates that: (1) there is a positive relationship
between the two scores (correlation coefficient r=0.58, p < 0.0001);
(2) @ number of 39 subjects with high pain intensity (VAS=6.2+2)
have negative values for both scores (bottom left quadrant), i.e,
values under the mean value of the entire sample of 92 subjects
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metrics quantifying various aspects of physical behavior
(Fig. 1c-i).

Table 3 contains the averaged values of metrics/
composite scores (mean * std) estimated for two groups
of subjects with clinically different pain levels (matched by
age). According to Mann-Whithney test and Cohen’s d
statistic, all metrics/composite scores were significantly
different between groups and were characterized by large
effect size. The best discriminant property was observed
for the global composite score characterized by the largest
effect size, corresponding to approximately 60 % non-
overlap between groups (Fig. 6).

Variation of physical behavior among subgroups of
patients with different diagnostic

The large within-group variability observed for all metrics
has led to the hypothesis that, in addition to pain severity,
another influencing factor of physical behavior was the
type of pain. Post-hoc analysis was conducted on the
available dataset to compare the metrics of patients with
similar pain intensity (moderate to severe pain) but differ-
ent diagnosis, as follows: spinal stenosis (SS, n = 18, VAS =
6.8+1.6, age=72+10), failed back surgery syndrome
(FBSS, n=19, VAS =7 + 1.5, age =57 £ 12), and complex
regional pain syndrome (CRPS, n=7, VAS=64+ 14,
age =53 + 13). Criteria for selection were the homogeneity
of diagnostic within each group and similar pain intensity
between groups. Figure 7 illustrates two conventional met-
rics, activity (%) and walking (%), and complexity of tem-
poral pattern (entropy 2). These representations indicate

Table 3 Statistical significance of differences between the two
groups of subjects

Clinical variables ~ Mild pain  Moderate to p-val  Effect size:

& PA metrics (n=34) severe pain Cohen’s d
(n=58) (% of non-overlap

between groups)

Pain intensity (VAS) 13+£15 6814 1.2e-15 3.60 (100 %)

Age(yrs) 64+14 62+13 047 3 (8 %)

Activity (%) 41+17  345+14 0.0009 0.78 (~47.1 %)

Walking (%) 95+6 65+4 0.001 0.75 (~45.4 %)

q.975 actv. (min) 37£17  26%12 0002 073 (~44 %)

KS dist. 0.1+007 02+0.12 0.0007 0.84 (~48 %)

Entropy 1 052+£0.11 042+0.10 0.001 0.79 (~47.2)

Entropy 2 0.045+0.02 0.03+0.01 0.0004 0.82 (~47.8)

Entropy 3 051+£040 028+020 0.001 0.80 (474 %)

Composite score 062+0.73 —-036+096 0.0004 0 (58.9 %)

‘Mobility

Composite score 045+09 -026+0.71 00007 081 (~47.5 %)

‘Complexity’

Global composite 1.08+15 —063+160 1.1e-5 1.15 (~60 %)

score

‘Mobility &

Complexity’
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no difference between the three groups for activity or
walking, however lower entropy values seems to differenti-
ate CRPS group from SS and FBSS groups. Although the
sample size was small and this observation needs
additional validation in future prospective studies, it
appears consistent with the clinical description of
motor impairments in CRPS, i.e., ‘bradykinesia, deficit in
movement amplitude, reduced frequency of movements
[37]. The sequence of states defining the temporal
patterns/barcodes includes information related to all
these movement features, so, this may explain why
the entropy metric was lower and more discriminative
for CRPS patients.

Discussion

Technological developments during the last decade have
made available various solutions for physical activity mon-
itoring, allowing collection of data over long periods in
the natural environment of the subject. However, an
important step in the path from raw data to clinical evi-
dence is the extraction of relevant information in terms
of metrics characterizing the dimensions of physical be-
havior that give rise to distinctive patterns of functioning
in everyday life. Analysis of data collected during five con-
secutive days in 92 subjects provides empirical evidence
that ongoing pain may affect numerous aspects of physical
functioning in everyday life. Changes appear to occur with
respect to various features of physical behavior, from the
overall amount of activity, to the duration of periods, and
the complexity of the temporal pattern, characterized by
ability to span a wide range of movements/activities within
a given timeframe (Figs. 1, 2 and 3, Table 3).
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Fig. 7 Variation of metrics between groups of subjects with chronic
pain caused by spinal stenosis (SS), failed back surgery syndrome
(FBSS) and complex regional pain syndrome (CRPS). Lower entropy
values for CRPS patients indicate a reduced diversity of body
movements/activities, low movement intensity and long sedentary
periods, suggesting the potential of this metric to capture clinically

recognized motor-impairements

Complexity as a defining feature of healthy status:
significance for assessment of chronic pain conditions
The concept of complexity emerged two decades ago in
physiological research and it is now generally accepted
that healthy physiological processes are ‘complex’ in that
they are composed of fluctuations with information-rich
structure [38, 39]. The structural richness characterizes
the capacity of healthy physiological function to detect,
respond and adapt to the innumerable perturbations and
stressors of everyday life. The concept was advanced to
postulate that disease and aging process could be defined
by a progressive loss of complexity within the dynamics of
physiologic outputs [40]. This was shown in a number of
diseases and syndromes affecting cardiovascular, respira-
tory, central nervous and motor control systems [41].



Paraschiv-lonescu et al. Journal of NeuroEngineering and Rehabilitation (2016) 13:85

Similar to physiological behavior, it is assumed that
physical behavior generates an ‘output’ that can be mod-
elled as a temporal pattern. Highly complex patterns (high
entropy) are supposed to reflect healthy status and high
level of functioning because results from freedom of
movement and ability to perform daily tasks, physical
performance, diversity of activities and participation in
social life. Chronic diseases (long-lasting pain, fatigue,
depression) may lead to progressive movement impair-
ment, difficulties with daily tasks, limitation or avoidance
of some activities i.e., a less complex (low entropy) pattern
[29, 42]. The relevance of this concept in the context of
chronic pain assessment is supported by the significant
decrease of complexity metrics observed for the group of
subjects with moderate to severe pain intensities, and
more significantly for the patients with CRPS.

Multidimensional quantification of physical behavior:
implications for clinical assessment

The results in Table 3 indicate that pain intensity has a
negative impact on many aspects of physical functioning.
However, although each metrics was on average signifi-
cantly different between groups and indicated large effect
size, none showed a significant linear relationship (correl-
ation) with the intensity of pain (VAS). The weakness of
association demonstrates the heterogeneity of behaviors in
response to pain and the difficulty to establish a single
generic metric as objective outcome measure of physical
functioning in chronic pain conditions.

Exploratory factor analysis revealed that the set of met-
rics clustered along two dimensions (factors), allowing to
devise two composite scores, one integrating features of
activity/mobility, and the other integrating features of
complexity. These two scores were subsequently aggre-
gated into a global composite that was negatively and
significantly associated with the intensity of pain (when
controlled for age and BMI). Although pain intensity
accounted for a modest 25 % of variance in the global
composite score, the suggestion is that only the assess-
ment of the overall physical behavior has the potential
to capture the impact of intensity of pain on daily life
functioning. The observation that pain and levels of
physical activity are related when it is based on broad/
global assessment (and tend to disappear as the assess-
ment become more specific) was first signaled three
decades ago, although at that time the assessment of
physical activity was based on self-report and observa-
tion [12]. Since then, studies that looked at correlations
between pain intensity and measures of physical activity
failed to provide consistent results [43, 44]. To the best
of our knowledge, the present study is the first to dem-
onstrate objectively that pain intensity is related signifi-
cantly to the overall physical behavior of patients, and
that global composite scores could be used as more
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sensitive outcome measures in clinical assessment and tri-
als for treatment evaluation [4, 23].

As a study perspective, the preliminary results illustrated
in Figs. 6 and 7 suggest that the multi-dimensional assess-
ment of physical behavior using new paradigms such as
pattern complexity might be useful in cluster analysis, to
identify subgroups of patients, and to tailor the treatment
according to the etiology (type) of chronic pain.

Study limitations

This study was conducted retrospectively on data recorded
in a heterogeneous sample of subjects in terms of pain se-
verity and etiology, and demographics characteristics. The
variance in physical behavior was possibly due to additional
external sources, superposed to the presumed pain-related
ones. However, the methodology could be used in future
prospective studies using a similar set of metrics and add-
itional information about the context of daily activities
(employment status, professional work, etc.). The sample
size was also relatively modest which may have led to
under-powered analysis.

Another possible limitation is that the methods de-
scribed involved data recorded with two body fixed
movement monitors (trunk and thigh). However, the ap-
proach can be adapted for a simpler and more user-
friendly monitoring setup, e.g. using a single inertial sen-
sor fixed on sternum [26, 45].

Conclusion

Chronic pain is a disabling experience affecting many
aspects of functioning in everyday life. Clinical evidence
indicates that the design of efficient treatment strat-
egies, tailored to the patient, necessitates a reliable assess-
ment of severity, impact, and type of pain. This study
demonstrates that wearable technologies combined with
appropriate analytical tools for data analysis and informa-
tion extraction have the potential to provide an objective
and comprehensive assessment of the impact of pain on
domains of physical functioning in context of daily living.
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